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1. Introduction 

The development of various original semiconductor devices, which act as electromagnetic 

wave generators in the THz region of the spectrum, has long been an active area of research 

in our group. The terahertz (THz) region, which lies between the microwave and infrared 

regions, offers a wealth of untapped potential. In most cases, the devices are based upon the 

utilization of THz lattice vibrations in compound semiconductors (e.g., GaP and GaAs), 

which has recently become an important technology behind frequency-sweepable coherent 

THz-wave sources, following the invention of the semiconductor laser by Nishizawa in 1957 

[1]. In 1963, Nishizawa was the first to predict the utility of the phonon and molecular 

vibration in semiconductors for optical communication and THz-wave generation. 

However, an important frequency gap between the microwave and optical frequencies 

remained, and presently is referred to as the THz region. In 1983, the semiconductor Raman 

laser was realized, which relied on the longitudinal optical phonon (LO phonon) mode of a 

GaP crystal. This work highlighted the generation of a 12-THz wave with a peak power as 

high as 3 W [2]. The output power of the Raman laser was increased by a phonon 

enhancement effect within the waveguide-structured GaP [3].  

A high-power frequency-tunable THz-wave was generated via excitation of phonon–

polaritons mode in GaP [4–8]. The frequency range was approximately 0.3–7.5 THz, in 

which the peak power was greater than 100 mW over most of the tunable region [5–7]. The 

generated THz-wave power and frequency regions have been shown to depend on carrier 

densities within the GaP crystals.  

Furthermore, THz signal generators have been developed with various functions. 

Generation of narrow-linewidth THz waves has very useful applications in the fields of 

high-resolution spectroscopy, optical communications and in-situ security screening. The 

CW THz waves are generated from GaP by using semiconductor diode lasers. The linewidth 

is about 4 MHz. A 30 cm-long portable THz-wave generator is constructed using two 

Cr:Forsterite lasers pumped using a single Nd:YAG laser. 

In this chapter, we review the photonic approaches of THz-wave sources and highlight the 

principles and performance of these THz-wave generating devices. Developments in THz 
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technology allow spectroscopic investigation of low-energy excitations of macromolecules, 

such as molecular rotations, hydrogen bonding, and intermolecular interactions, with a 

broad frequency range and high resolution. Indeed, low-energy excitations are believed to 

be critical in understanding the complex behavior of biological molecules, cells, and tissues. 

For industrial applications, we have recently developed THz diagnosis technologies. 

Deformation of polyethylene can be monitored using polarized THz spectroscopy. The THz 

diagnoses the inside of object even with covered by materials.  

THz wave has unique properties with high transparency for non-polarized materials such as 
with radio waves and easy handling as in the case of light. THz waves are expected to be a 
promising frequency for the non-destructive diagnosis of the interior of non-polarized 
materials [9-14]. For the THz inspection method, the spatial resolution is higher compared 
with that of conventional microwave techniques.  
The energy of a THz wave is as low as room temperature, for example, whose energy 

level corresponds to hydrogen bonding, van der Waals interactions and free carrier 

absorption. Although the transparency of a THz wave is not as great as that of X-ray, a 

THz wave is sensitive to soft materials such as hydrate as well as to wet conditions. To 

date, our group has utilized THz waves for inspections of diffused water and defects in 

timber and concrete blocks using a 0.2 THz generator [15]. The phase transition of liquid 

crystal has been investigated based on molecular interactions using a GaP THz signal 

generator [16]. Polarization THz measurements are helpful for THz non-destructive 

diagnosis of the tensile strain in deformed UHMWPE [17]. Use of THz waves in 

conjunction with X-ray and -ray measurements shows promise for analysis macro-

structures in organic materials and polymers. Recently, compact sized THz wave 

generators have been developed for practical use [18]. For single-frequency coherent THz 

waves, a geometrical optical design can be applied. A THz beam spot can be controlled to 

be as small as the wavelength of a THz wave. Such THz sources are suitable for 

spectroscopic imaging with spatial high-resolution. 

As one application of the THz diagnosis, the study has focused on the interior copper 

conductors covered with insulating polyethylene. THz reflectivity of the copper surfaces 

was investigated by using the GaP THz wave generator. Surface evaluation of copper with 

various conditions was performed using THz diffused reflection spectroscopy. Copper is a 

basic metal. In particular, copper cables are used for a wide variety of electric components. 

Confirmation of copper conductors covered with plastics is essential for a social safety. A 

suitable way to evaluate the deterioration of interior copper conductors has not yet been 

fully established. A non-destructive method for the diagnosis of electric cables would be of 

value for quality evaluation in use of it. 

2. THz-wave generation from semiconductors 

Widely frequency-tunable high-power THz waves have been generated from GaP by 
pumping with a Q-switched Nd:YAG laser and an OPO, or two Cr:Forsterite lasers [4–7]. 
THz waves were generated in the frequency range from 0.3 to 7.5 THz using difference 
frequency generation (DFG) via the excitation of phonon–polaritons in GaP. Indeed, this 
process converts energy very efficiently, and resulted in a THz wave with an energy of 9 
nJ/pulse (peak power of 1.5 W). Furthermore, frequency-tunable CW THz waves were 
generated by enhancing the power density of incident beams from semiconductor lasers [8]. 
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The THz-wave output power (PTHz) can be increased by exploiting the inverse proportion to 
the beam spot size, S, based on the follow equation: 

 1 2THz

A
P P P

S
   ,            (1) 

where A is the coefficient for generating THz waves from a GaP crystal pumped under non-

collinear phase-matching conditions. Note that A is estimated to be 0.4 × 10–13 W–1 cm2 [15, 

16], while S is the spatial overlap of the cross-sectional areas of the pump and signal beams, 

and P1 and P2 are the effective powers of the pump and signal beams, respectively.  

The two lasers used for the DFG of THz waves via excitation of the phonon–polariton mode 

in GaP crystals were a 1.064 Ǎm Nd:YAG source and a ǃ-BaB2O4-based OPO system. They 

were set up in a non-collinear configuration with a very small angle between the two beams, 

and the GaP crystals were positioned as depicted in Fig. 1 [4–7]. The wavelength of the 

pump beam was varied between 1.035 and 1.062 Ǎm, which corresponded to generated 

THz-wave frequencies between 8 and 0.5 THz. The THz-wave energy can be collected with 

parabolic reflectors and determined using a pyroelectric DTGS detector operating at room 

temperature or a liquid-helium-cooled Si bolometer.  
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Fig. 1. Schematic of the YAG and OPO beam paths within the GaP crystal. 

The THz-wave generation using two Cr:Forsterite lasers (Cr:F) was very similar to the OPO-

based system. The pump and signal beams were combined using a cubic polarizer placed on 

a rotating platform on top of a linear stage, which automatically produced a very small 

angle between the two beams to fulfill the phase-matching condition and achieve a spatial 

overlap of the incoming beams. The non-collinear phase-matching was satisfied under the 

following condition [4, 6]. The calculated angle between the pump and signal light beams 

(θin) inside the GaP crystal matched quite well with respect to the experimental results, as 

long as θin << 1: 

 
22( / )( / )I L Sin

L S

q q n n n
  

 



,            (2) 

where ǎL, νS, and ǎ are the frequencies of the pump, signal, and THz waves, respectively; 

(∆q/q) is the relative deviation of the wave-vector phonon–polaritons in the GaP crystal; nI, 

nL and nS are the refractive indexes of the THz wave, pump, and signal beams, respectively; 
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and Δq is the deviation of q from the exact phase-matching value in the collinear 

configuration, which can be described as 

 
I eff

I

n nq

q n

 
 

 
.                          (3) 

In the case of the collinear interaction, the difference between the pump and signal wave 
numbers can be described by the following equations:  

 
2eff

L S

n
k k k

c


   , eff S L

n
n n




               (4) 

where kL and kS are the wave numbers of the pump and signal beams, respectively, and 

ǅn/ǅν is the frequency dispersion of the refractive index. Moreover, the dispersion 

relationship of phonon–polaritons in GaP can be given by the following equation: 

 
 
 

2 22
02

2 2
0

2

S

I

cq
n

   

  

    
  

,                                        (5) 

where ǆs and ǆ∞ are the static and optical frequency dielectric constants, respectively (ǆs = 

11.15, ǆ∞ = 9.20), and ν0 = 11.01 THz is the pure transverse optical phonon frequency [19]. In 

general, this equation holds true as long as the THz frequency, ν, is not nearly equal to ν0. 

The internal angle external to the GaP, θinext, is given by the relationship 

 
ext
in

in
Sn


  ,            (6) 

where θin is calculated to be 0.1° at 2 THz; therefore, the two near-IR beams overlapped 

sufficiently to interact with each other. The polarization of the pump and signal beams was 

adjusted to be in the <001> and <1 1 0> directions, respectively. Figure 2 illustrates the 

relationship between θinext and the THz-wave frequency at which the maximum output 

power was obtained. The slope of the curve declined noticeably, which was reflected in the 

measured dispersion curve of the phonon–polariton branch of GaP. The θinext increased with 

the wavelength of the pump and signal beams, while the propagation direction of the THz 

wave was related to (∆q/q). The output direction of the THz wave depends on the 

wavelength of the pump and signal beams, as well as the THz frequency. The angle of the 

propagation direction of the THz wave inside the crystal, θI, is given as  

  sin sinS
I in in

k

q
  

 
   

 
, with θI >> θin.                   (7) 

From this, we obtain  

 
2 2

sin S S
I

L L

q qn

q n q




      
        

    
.                                (8) 
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The THz-wave direction was compensated with a pair of off-axis parabolic reflectors, where 
one of them was carefully moved on a translation stage. The GaP crystal was rotated at a 
lower frequency in the Cr:F-based system when compared to the OPO-based source to 
prevent total internal reflection of the THz wave.  
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Fig. 2. The relationship between θinext and the THz-wave frequency at which the maximum 
output power was obtained in CW and pulse pumping. The solid line represents the 
calculated relationship described in more detail within the text. 
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Fig. 3. Frequency dependence of the THz-wave output power from various semiconductor 
crystals. Note: the pump and signal energy was 3 mJ before incidence to the crystal: GaP (●), 

GaSe (▲), CdSe (■), ZnGeP2-oee (◆), and ZnGeP2-eoo (◀). 
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Figure 3 shows the frequency dependence of the maximum THz-wave output power at 
various θinext. The pulse energies of the YAG and OPO were both attenuated to 3 mJ before 
incidence to the GaP crystal. The THz-wave output power remained stable at approximately 
100 mW over a wide frequency range (2.0–5.2 THz). The total tunable frequency range was 
0.3–7.5 THz. In cases when the THz-wave frequencies were greater than 5.5 THz (θinext > 70°), a 
much higher power was obtained by rotating the GaP crystal in order to prevent total 
internal reflection. The THz-wave output power increased linearly with the pump and 
signal beam energy. Note that the frequency bandwidth is equivalent to the pump and 
signal beams.  
Figure 4 shows the THz-wave power generated as a function of the measured pump beam 
energy using the Cr:F-based system. It can be seen that the THz-wave power was nearly 
proportional to the pump energy. When the pump and signal energies were 11.4 and 11.6 
mJ, respectively, the THz power increased to 1.5 W for a 10-mm-long crystal without 
causing surface damage. 
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Fig. 4. Generated THz-wave power as a function of the pump beam (Ch1) energy/pulse in 
the 10-mm-long GaP crystal using a Cr:F source system. The signal beam (Ch2) 
energy/pulse was 11.6 mJ. 

The continuous wave (CW) single-frequency THz waves were generated in a widely 

frequency-tunable pumping source consisting of an external cavity laser diode (ECLD) and 

a laser diode (LD)-pumped Nd:YAG laser combined with an ytterbium-doped fiber 

amplifier (FA) [8]. The estimated THz-wave output peak was 50 pW. In the automatic 

measurement of transmission spectroscopy, the wavelength of the ECLD was swept from 

1.0538 to 1.0541 m with external cavity fine-tuning. The THz frequency can be shifted 

according to the wavelength of ECLD. The THz-wave generation efficiency is related to the 

THz absorption coefficient in GaP crystals. High-power THz-wave output requires a 

stoichiometric control of the GaP to reduce the THz absorption due to free carriers and 

phonons in crystal. 

In the waveguide structure, efficient THz-wave generation was achieved. THz-wave 
generation was demonstrated in a GaP waveguide with the same size as the wavelength of 
THz-wave under a collinear phase-matching condition. The conversion efficiencies of THz 
wave generation from the rod-type waveguides were estimated. Interestingly, higher 
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conversion efficiencies were achieved as the waveguide size decreased. For example, in the 

case in which the waveguide cross section was 200 m  160 m, the conversion efficiency 

increased to 7.6  10–12 W–1. This value was an order of magnitude greater than that in bulk 

GaP crystals (7.4  10–13 W–1). 
In addition to the GaP crystal measurements, we also generated frequency-tunable coherent 
THz-waves using GaSe, ZnGeP2, and CdSe semiconductors based upon difference-
frequency generation. GaSe had a high second-order nonlinear optical (NLO) coefficient (d22 
= 54 pm/V) [20]. Furthermore, GaSe crystals have merit because they can be used to 
construct a simple THz-wave generation system, since collinear phase-matched DFG 
eliminates the complexity of angle-tuning in both the input and output beams. THz waves 
were generated in a wide frequency range from the THz to the mid-infrared region as 
shown in Fig. 3. Note that Fig. 3 shows the frequency dependence of the THz-wave output 
power from each semiconductor crystal at various PM angles using the YAG and OPO-
based sources. Upon closer inspection of Fig. 6, it is apparent that the combination of GaP 
(0.3–7.5 THz) and GaSe (10–100 THz) had the widest tunable range with the highest power. 
In practical applications, THz-wave generation systems have been used for spectroscopic 
measurement and THz imaging. A portable THz-wave generator is necessary for practical 
use, by which it can be moved closer to sample for THz sensing in the field. For example, in 
organic and inorganic crystal fabrication processes, crystalline defects can be detected using 
a THz spectrometer. For this motivation, using only one small 30-cm-long Nd:YAG laser 
and two Cr:Forsterite crystals, we constructed two Cr:Forsterite lasers pumped with the 
YAG laser and generated THz waves with the compact device. We investigated the pulse 
duration and delay time to realize Cr:Forsterite lasers which are suitable for use as the THz-
wave generator because it requires overlapping of two Cr:Forsterite laser pulses both 
temporally and spatially for DFG in GaP. 
A Cr:Forsterite (Cr:Mg2SiO4) laser is a solid state laser that is tunable between 1130 and 1370 
nm. The laser properties have been investigated, leading to the CW and mode-locked pulse 
operations. A Cr:Forsterite crystal has Cr4+ in the tetrahedrally coordinated Si4+ site, which 
acts as the lasing ion. Crystal growth processes induce impurities such as Cr3+ and Cr2+. 
Those impurities can be decreased by annealing. Two Cr:Forsterite crystals (Cr:F-1, Cr:F-2) 
with different crystal properties were used for this study: Cr:F-1 is dark blue and Cr:F-2 is 
dark green. Respectively, they are a rectangular parallelepiped (-R) and a Brewster-cut 
crystal (-B) of 5 mm × 5 mm (cross-section) × 10 mm (length). Transmittance spectra of Cr:F-
1 and Cr:F-2 were measured in the NIR region at room temperature and the absorption 
coefficient were estimated, respectively. The absorption peaks at 550, 660, 740, and 1060 nm 
are attributed to the Cr4+. In contrast, Cr3+ has absorption at 474 and 665 nm. At around 700 
nm, the Cr3+ absorption is dominant compared to that of the Cr4+. The 732-nm absorption is 
considerably higher than that at 1064 nm, but the slope efficiency excited at 732 nm is less 
than 1064 nm. Consequently, a Nd:YAG laser was used for pumping Cr:Forsterite. The 
figure of merit (FOM) of Cr:F-1 and Cr:F-2 are 8.0 and 5.9, respectively. A Q-switched Nd:YAG 
laser with 10-ns pulse duration at 10  30Hz repetition was used to pump the Cr:Forsterite 
crystals. Selective frequency cavity oscillator systems were constructed using the Cr:F-1 and 
Cr:F-2. The Cr:Forsterite laser characteristics of the pulse duration and delay time were 
measured in terms of the Cr:Forsterite laser energy and cavity length. A THz-wave generation 
system was constructed using two Cr:Forsterite crystals and one Q-switched Nd:YAG laser. A 
plane-plane cavity oscillator was constructed for measurement of the slope efficiency in the 
Cr:Forsterite laser. The output coupler is of 6% transmittance around 1.2 m. The Cr:Forsterite 
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laser energies using Cr:F-1-B, Cr:F-1-R, and Cr:F-2-B were measured according to changes in 
the Nd:YAG laser energy. Cr:F-1-B has the highest slope-efficiency of 8.4%, with the lasing 
threshold of 2.2 mJ/mm2. Slope efficiencies and lasing thresholds are respectively 6.8%, 2.0 
mJ/mm2 in Cr:F-1-R and 4.8%, and 4.6 mJ/mm2 in Cr:F-2-B. These results suggest a relation of 
the slope efficiency to FOM and the crystal shape. 
It is necessary to select a frequency for THz-wave generation. The cavity oscillator using a 

diffraction grating can select a frequency. The selective-frequency cavity was adjusted so 

that the first-order reflected light is directed to the direction of incident beam. The cavity can 

oscillate at 1250 nm when the incident beam angle is 31.2° normal to the grating of 830 

lines/mm. The selective frequency Cr:Forsterite laser can be outputted from zero-order 

light. The pulse duration and delay time were optimized as a function of Cr:Forsterite laser 

energy and cavity length. The laser crystal was Cr:F-1-R. The delay time was measured as 

the time from the 50% rising edge of the Nd:YAG laser to the 50% rising edge of the 

Cr:Forsterite laser using photodiodes and an oscilloscope. The 200 points were recorded at 

the same optical condition; each result was plotted and fitted to a Gaussian function for 

measurement of the pulse duration and delay time. 

Figure 5 shows the Cr:Forsterite laser characteristics of the pulse duration and delay time 

when the cavity length was fixed at 20 cm. The Nd:YAG pumping laser energy is changed to 

66 mJ, 80 mJ, and 95 mJ. Changing the optical alignment at each Nd:YAG laser pumping 
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Fig. 5. Cr:Forsterite laser characteristics of the pulse duration (a) and delay time (b) at 
Cr:Forsterite laser energy of 3–8 mJ. The cavity length was fixed to 20 cm. Nd:YAG laser 
power was changed to 66 mJ, 80 mJ, and 95 mJ.  
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energy changed the Cr:Forsterite laser energy to maximum. Both the pulse duration and 
delay time are decreased when the Cr:Forsterite laser energy increases. 
Figure 6 shows Cr:Forsterite laser characteristics of the pulse duration and delay time for the 

case in which the cavity length was changed from 12 cm to 30 cm at Cr:Forsterite laser 

energy of 3 mJ, 4 mJ, and 5 mJ. Both the pulse duration and delay time are increased as a 

function of the cavity length. The result of pulse duration at any cavity length can be 

understood according to the photon lifetime, which is  

   
2

(1 )

L

c R
 


     (9) 

where  is the photon lifetime, L is the cavity length, c is the velocity of light, and R is the 

transmittance of an output coupler. Therefore, the cavity length produces a long photon 

lifetime and long pulse duration.  
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Fig. 6. Cr:Forsterite laser characteristics of the pulse duration (a) and delay time (b) with the 
cavity length of 12–30 cm. The Cr:Forsterite laser energy was 3 mJ, 4 mJ, and 5 mJ. 

According to these results, the delay time can be controlled according to the Cr:Forsterite 

laser energy and cavity length. The Cr:Forsterite laser energy is controllable according to 

the conversion efficiency and pumping energy. The conversion efficiency is changed by 

optical alignment. Each pumping energy of the two Cr:Forsterite lasers can be changed 

using a pair of a polarizer and a half-wavelength plate, even if single Nd:YAG laser is 

used. The method can generate a higher-powered THz wave because the two laser 

conversion efficiencies are kept high. 
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Fig. 7. Optical setup of THz-wave generation with two Cr:Forsterite lasers. The THz-wave 
detector was a liquid-He cooled silicon bolometer. 

Figure 7 shows that two Cr:Forsterite laser oscillators with a 15-cm cavity for THz-wave 

generation were constructed to be 30 cm × 30 cm. The 30 cm-length Nd:YAG laser can be 

put diagonally under this Cr:Forsterite laser system. The two different frequency lasers 

were generated respectively using Cr:F-1-R and Cr:F-2-R with single Nd:YAG pumping of 

95 mJ and 105 mJ. The Cr:Forsterite laser using Cr:F-1-R crystal energy is 5.0 mJ; the 

frequency is tuned to around 1238.4 nm. The Cr:Forsterite laser using Cr:F-2-R crystal 

energy is 1.5 mJ and the frequency is 1223.5 nm. The two pulses are overlapped 

temporally and spatially at the GaP crystal surface. The pulse timing was tuned using the 

conversion efficiency of Cr:Forsterite laser. The THz wave was generated with energy of 

4.7 pJ around 2.95 THz. Both the Cr:Forsterite laser line widths were measured as less 0.07 

nm using a spectrum analyzer. The linewidth of the generated THz wave is estimated as 

less than 30 GHz. 

Changing the conversion efficiency and pump energy of a Cr:Forsterite laser controlled 
temporal overlap of two Cr:Forsterite laser pulses. A THz wave was generated using two 
Cr:Forsterite lasers pumped using a single Nd:YAG laser. The Cr:Forsterite laser system was 
built as 30-cm square for portable use in the field.  

3. Polarized THz spectroscopy for uniaxially deformed ultra high molecular 
weight polyethylene 

One research objective is developing THz evaluation technique of uniaxially deformed 
polyethylene. Polarized THz spectra have been measured for the deformed polyethylene at 
room temperature. The THz pulse has a linear polarization.  
Ultra high molecular weight polyethylene (UHMWPE) has strength against impact force, 
friction, chemical attack, and coldness. Therefore this material has been used for many 
industrial applications, for example gears, gaskets and artificial joints. Several non-
destructive tests for UHMWPE have been developed already. The conventional methods are 
XRD, FT-IR, Raman spectroscopy. These methods should be improved for easy and safe test 
of mechanical deformation of bulk polymer. The molecular vibration modes of polyethylene 
are well known. The 14 vibration modes of polyethylene are divided into two types: carbon 
– carbon vibration and CH2 plane vibration. In THz spectra of UHMWPE, absorption band 
is appeared around 2.2 THz, which is assigned to B1u translational lattice vibration mode [21, 
22]. THz wave has high transparency for polymers comparing to mid-infrared. Furthermore, 
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it is harmless and easy to use it. Until now, chemical degradation diagnosis of UHMWPE 
was reported with THz Time Domain Spectroscopy [23]. THz spectra have been obtained 
for Ǆ-ray irradiated UHMWPEs with or without vitamin E doping. Vitamin E has anti-
degradation effect on UHMWPE. 
The UHMWPE plates were deformed at room temperature. One day after deformation, the 

polarized spectra were obtained with every strain. The measurement frequency is swept 

from1.5 to 3 THz with 15 GHz step. It takes about 10 minutes for measurement. The 2.2 THz 

absorption band is due to B1u lattice translational vibration mode of PE. For the spectra with 

the polarized direction of THz wave parallel to the deformed direction, the absorbance 

decreases drastically as a function of strain. For the spectra with the THz wave direction 

perpendicular to the deformed direction, the absorbance decreases gradually in the 

perpendicular direction. 

The integral absorption intensities of the 2.2 THz band are plotted as a function of strain in 

Figure 8(a). In the parallel direction, up to 25% strain, absorption intensity decreases 

rapidly. Over 25% strain, the intensity decreases slowly. The degrees of orientation are 

estimated from XRD. In figure 8(b), the THz absorption intensities in parallel direction are 

plotted against the degrees of orientation from XRD. This relative is appeared linearity. This 

result indicates the correlative between THz spectroscopy and XRD. These results suggest 

the absorption intensity decrease of parallel polarization is caused by orientation. 
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Fig. 8. (a) The integrated absorption intensities of the B1u band as a function of the degree of 

elongation strain. Incident THz wave was polarized parallel (●) and perpendicular (■) to 
the axial direction of the deformation. (b) THz absorption intensity vs. degree of orientation. 
THz wave electric polarization direction is perpendicular to the deformation direction. 
Degree of orientation was evaluated by XRD measurements. 

These results are discussed with lamellar model. Dependent of THz spectral feature on 

the polarization direction as well as strain amount is explained. THz absorption 

intensities are inversely proportional to the degree of orientation. When lamellas are 

oriented along c-axis, the dipole moment direction of B1u vibration mode is perpendicular 

to c-axis. Then, the B1u absorption band cannot be observed with THz wave polarization 

direction to the c-axis. According to the IR selection rule, absorption intensity decreases in 

the parallel polarization spectrum.  

For in-situ spectroscopic measurements of UHMWPE during uniaxial deformation, the 
UHMWPE plate was strained at every 10 minutes with 1 % step. It is appeared that the red  
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Fig. 9. The absorption peak position, FWHM, and integral absorption intensity of the B1u 
band as a function of the degree of elongation strain.  

shift and widening of B1u absorption band as a function of strain. For perpendicular 

polarized spectra, the clear peak shift and widening are unclear. For the 2.2 THz band, the 

absorption peak position, full width at half maximum (FWHM) and integral absorption 

intensity are plotted in Figure 9 against the elongation strains, respectively. The peak 

position clearly shifts to lower frequency in the parallel polarized in-situ spectra. The peak 

shift rate is -7.6 % / strain. For absorption bands in higher frequency regions, Richard Wool 

and co-researchers reported that the peak shift rates of the CH2 rocking B1u band at 730 cm-1 

and the CH2 B2u bending band at 1472 cm-1 are -3.0 % and -0.6 % / strain, respectively [24]. 

The relation between the peak shift rate and peak position is appeared linearity in Figure 10.  
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Fig. 10. The relation between peak shift rate and peak position of the B1u band during 
uniaxial deformation. 

Polarized THz wave spectra were obtained for evaluation of polymer chains in mechanically 

extensional-deformed UHMWPEs. THz absorption band was seen around 2.2 THz which is 

due to the B1u translational lattice vibration mode. For the deformed UHMWPE, the 

dichroism is appeared in the 2.2 THz band intensity and peak position. The absorption 

intensity is smaller in spectra with the THz wave electric polarization direction parallel to 

the deformation direction than that with the polarization direction perpendicular. The peak 

position shift and absorption intensity is dependent on the amount of elongation strain, 

respectively. Based on these results, it is suggested that the THz nondestructive diagnosis of 

the tensile strain in deformed UHMWPE is possible based on the dichroism of B1u band 

intensities on polarized THz wave spectroscopy. 
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4. THz reflection spectroscopy for metal conductor surfaces covered with 
insulating polyethylene 

The THz wave has a lot of characteristics, for example, high permeability for non polar 

materials, less-invasive, high reflectance on metal surfaces and safety. Our one research 

target is a THz application for monitoring of metal surface corrosion. Even a metal surface 

has a corrosion protective covering for practical uses, THz wave is transparent for 

covering polymers. Here at the metal surface THz wave is absorbed due to corrosion 

products. This application has many merits as following, high spatial resolution 

comparing to that of conventional microwave techniques, non-contact, non-destructive 

and safety. 

Until now, the THz spectral data base has been developed mainly for organic materials. 

That data for metal and inorganic materials is under construction. However, of course, for 

THz non-destructive applications, the THz spectral data of metal compounds is very 

important. THz characteristics of metal compounds are essential. We have focused on 

copper for the non-destructive THz inspection of electric power lines. At present, 

inspection method of electric cupper cable is based on pealing of cover with visual 

observation. For prevention of unexpected break down, the non-destructive inspection is 

desired as a THz application. The non-destructive THz inspection can be applied even for 

live power lines. Thus THz spectra have been measured for inorganic chemicals of copper, 

such as Cu2O, CuO, Cu(COO)2・1/2H2O. THz reflection spectrum of natural cupper 

oxides on an electric line surface was measured for practical applications. The difference 

of spectral features between standard copper chemicals and natural copper oxides has 

been discussed. 

For sample preparation, Cu2O, CuO and Copper oxalate were purchased with 99 % purity. 

These samples were formed into pellets with PE powder under various concentrations for 

transmittance THz spectral measurements. The PE powder has high permeability for THz 

wave. Sample and PE powder are mixed and pressed, then a 1 mm thickness PE pellet was 

prepared with the diameter of 20 mm. In order to escape the interference in THz spectral 

measurements, the pellet is formed with wedge shape. 

For the THz spectral measurement, THz wave is generated from GaP based on non linear 

optical effect. We use Nd:YAG laser as a pumping light. Two near-infrared (NIR) beams are 

from Cr:Forsterite lasers, and we use two detectors of DTGS in a double beam configuration. 

Two NIR laser beams from Cr:Forsterite lasers are introduced to GaP, then THz wave is 

generated via the difference frequency generation method. The THz-wave path was purged 

with dry air to eliminate water vapour absorptions. Absorbance is calculated by Lambert-

Beer law. For practical applications, the diffused reflection spectrum of natural copper oxide 

was measured. In reflection spectral measurements, 4K cooled Si bolometer was used as a 

THz detector. Samples are copper electric line with oxidized surface and not oxidized 

surface. THz wave induced to sample surfaces are separated into two directions. One THz 

wave is reflected at sample surfaces and the other is transmitted and reflected at the 

interface between an oxide film and a copper substance. 

Figure 11(a) shows THz spectra of Cu2O with various concentrations. One sharp absorption 

peak is appeared at 4.43 THz. Over wide frequency region from 2.2 to 4.2 THz, the broad 

band is observed. Following the background correction, these absorption bonds are split 
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with a Gaussian function fitting. For each band the intensity are plotted against sample 

concentrations in a log-log graph, as shown in Figure 11(b). It is apparent that the each 

integrated intensity increase as a function of sample concentration.  
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Fig. 11. THz spectra of Cu2O with various concentrations at room temperature. 

THz spectra of CuO are shown in Figure 12(a). A broad band is observed. The integrated 

intensity is plotted in Figure 12(b) as a function of sample concentrations in a log-log graph. 

This intensity increases against the concentration. The broad band is assigned to CuO. THz 

spectral feature of CuO is difference from that of Cu2O.  

Figure 13 shows THz spectra of copper oxalate. An asymmetric band is observed around 3.3 

THz. The band is split into 3 peaks with a Gaussian function fitting. The peak positions are 

2.7, 3.4, and 3.5 THz, respectively. For bands at 2.7 and 3.4THz, the intensities are increased 

as a function of sample concentration. That means the 2.7 and 3.4 THz bands are assigned to 

copper oxalate. But, for 3.5 THz band, the intensity is near constant regardless of sample 

concentrations. The 3.5 THz band is not due to the sample.  
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Fig. 12. THz spectra of CuO with various concentrations at room temperature. 

Diffused reflection THz spectra of copper surface covered with oxide and without oxides 

were shown in Figure 14(a), respectively. In the region from 1.3~2.5 THz, the reflectance is 
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difference in each spectrum. The THz reflectance from the no oxide surface is larger than 

that from the oxide surface, which is attributable to the very thin surface oxide layer, even 

though the oxide layer thickness is very thin compared with the wavelength of THz wave. 

The difference is plotted at each frequency as an absorption spectrum of natural oxide, 

shown in Figure 14(b). The absorption band is split into 3 peaks with a Gaussian function 

fitting. The positions are 1.51, 1.77 and 1.95 THz, respectively. Every peak position is not in 

agreement with that of standard copper chemicals. This is due to the difference of 

composition ratio for Cu and O between the natural copper oxide and standard copper 

chemicals. The depth profiles of relative concentration are obtained on CuO, Cu and O by 

secondary ion mass spectroscopy (SIMS). Cs+ primary ions at an energy of 5 keV were used. 

The ion incidence angle is 60 ° relative to the surface normal. The ion current was 100 nA 

and the beam was scanned across areas of 300 m  300 m. To reduce the crater effect, the 

analysis beam with square of 90 m was positioned in the center of sputter scan area. CuO 

was used to monitor the distribution of oxygen. The monitoring CuO- cluster leads to 

change of dynamic range with half order of magnitude around 3 m. The depth profile 

indicates the thickness of the oxide layer was 3 m. The O- yield is saturated so that the 

oxygen distribution is nearly uniform. Matrix effect affect on the Cu- yield. The difference of 

THz reflectivity is helpful for a non-destructive evaluation of the corrosion of metal surface. 

This result is one of killer applications of THz wave and greatly contributes in the field of 

non-destructive inspection for corroded metals, even covered with an insulating 

polyethylene. 
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Fig. 13. THz spectra of Cu(COO)2・1/2H2O with various concentrations at room 

temperature. 

For THz reflection spectroscopy, very thin surface oxide layer reveals serious difference on 

THz reflectivity at a specific frequency even when layer thickness is very thin compared 

with the wavelength of THz wave. This phenomenon contributes to detect the corroded 

surface of metals for non-destructive evaluation of corrosion. To realize such an evaluation, 

THz wave is the best, due to its high permeability for insulators and sensitive change of 

reflection intensity from metal surface even covered with insulators. 
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Fig. 14. THz spectra of copper surface covered with oxide and without oxides at room 
temperature. 

5. Conclusion 

Frequency-tunable terahertz (THz) wave pulse is generated by exciting a phonon-

polariton mode in a GaP crystal, which are based upon non-collinear phase-matched 

different frequency generation (DFG) of nonlinear optical effect. We have developed a 

compact THz-wave generator using two small Cr:Forsterite lasers with single Q-switched 

Nd:YAG laser pumping. A Cr:Forsterite laser was constructed with diffraction gratings, 

by which the pulse duration and delay time of the Cr:Forsterite laser depend on 

Cr:Forsterite laser energy and the cavity length. The Cr:Forsterite laser energy was tuned 

using the optical alignment and pumping energy. Temporal overlap of two Cr:Forsterite 

laser pulses was realized at the GaP crystal. A single-frequency THz wave was generated 

at energy of 4.7 pJ around 2.95 THz using a 30-cm-long Cr:Forsterite laser system. The 

tunable range was approximately 0.3–7.5 THz. 

The THz waves are located between radio waves and light waves. Thus, a THz wave has 

unique properties with high transparency for non-polarized materials such as with radio 

waves and easy handling as in the case of light. THz waves are expected to be a promising 

frequency for the non-destructive diagnosis of the interior of non-polarized materials. THz 

non-destructive diagnosis are possible for tensile strain in deformed polyethylene and metal 

conductor surfaces covered with insulating polyethylene. 
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