
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322403135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

A Robotic Wheelchair Component-Based
Software Development

Dayang N. A. Jawawi et al.*
Universiti Teknologi Malaysia

Malaysia

1. Introduction

A robotic wheelchair system provides mobility for handicapped and elderly people who are
unable to operate classical wheelchair system. Software development for such system is
challenged by requirement for multi-disciplines expert knowledge which includes
embedded systems, real-time software issues, control theories and artificial intelligence
aspects. Software reuse is an approach to provide a way to reuse expertise that can be used
across domains in software engineering. Software reuse can be a mechanism to support the
attempts to transfer technology from other engineering fields to rehabilitation engineering.
For example, (Bonail et al., 2009) and (Cheein et al., 2009) have attempted to transfer
software platform and algorithms from robotic technologies to rehabilitation engineering
software development. The technologies transfer requires a methodological support to
enable a systematic software reuse of the multi-disciplines expert knowledge.
Software reuse is one of the promising approaches to increase software productivity and

improve its quality, as well as to decrease the costs of software development. This is because

of software reuse uses existing software either in the form of component or knowledge to

construct new software. Yet, applying software reuse in Embedded Real-Time (ERT)

domain, such as robotic wheelchair sets major challenges to the software development

process due to the resource-constrained and real-time requirements of the system.

In order to overcome multi-constraints and multi-disciplinary knowledge in ERT software
development problems, Component-Based Development (CBD) method becomes a
promising approach for ERT software development (Bunse & Gross, 2006; Carlson et al.,
2006). Existing industrial component technologies such as OMG’s CORBA Component
Model (CCM), Microsoft’s (D) COM/COM++, .NET, SUN Microsystems’ JavaBeans and
enterprise JavaBeans, are not suitable to develop ERT systems because they do not address
the non-functional properties in ERT systems.
With the purpose to meet the requirements of ERT systems, a number of component
technologies such as Koala (Ommering, 2000), PECOS (Nierstrasz, et al., 2002) and KobrA
(Atkinson, et al., 2002) have emerged. However, these component technologies still have some
weaknesses. Koala and PECOS cannot support multi-disciplinary knowledge, but they can

* Suzila Sabil, Rosbi Mamat, Mohd Zulkifli Mohd Zaki, Mahmood Aghajani Siroos Talab,
Radziah Mohamad, Norazian M. Hamdan and Khadijah Kamal
Universiti Teknologi Malaysia, Malaysia

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 102

support different multi-constraint extra-functionality requirement. On the contrary, Koala
supports resource constraint and PECOS supports timing problems. KobrA does not support
ERT system development, but it has an extension that calls MARMOT (Bunse & Gross, 2006)
to support multi-disciplinary knowledge in ERT system development. The only limitation of
MARMOT is minimum support for multi-constraint extra-functionality requirement.
Therefore, PECOS is suitable to support multi-constraint in extra-functionality requirements
whereby, MARMOT is good to support multi-disciplinary knowledge. An integration of
PECOS and MARMOT can be a promising strategy to support the two issues. Implying a
methodological support to enable a systematic CBD can be an important approach with
consideration of the two issues. Currently, there are many Object-Oriented Analysis and
Design (OOAD) methodology available, but for Component-Oriented Analysis and Design
(COAD) method, the focus is still on PC based domain such as the web application (Lee and
Shirani, 2004) and simulation systems (Gong et al., 2010). Component technologies also
improved along with engineering practices, but they lack of a methodology that uses
components within such a paradigm (Dogru & Tanik, 2003).
Motivated by these challenges, the focus of this chapter is to propose a method for
developing robotic wheelchair software using a set of reusable software components
obtained from mobile robot software. The method was adapted from general ERT
component technologies and was applied to a robotic wheelchair CBD. The method is a
combination of MARMOT and PECOS technologies aiming to support CBD methodological
with purpose to solve multi-constraint extra-functionality requirement and multi-
disciplinary knowledge that are required in the robotic wheelchair software development.
The proposed systematic CBD process model is based on the Component-Based Software
Engineering (CBSE) that is defined by Wang and Qian (2005). CBSE is a combination of
Component-Oriented Analysis (COA), Component-Oriented Design (COD) and
Component-Oriented Programming (COP) and Component-Oriented Management (COM).
This chapter focuses on COA, COD and COP process of development, and this chapter
defines the COA, COD and COP modelling and deployment activities of the method in a
form of process model representation. The process model depicts understandable
integration between MARMOT and PECOS.
This chapter documented the applicability of the process model in a wheelchair software
development and implementation. This implementation showed how the process model
helped the wheelchair hardware and software engineer to identify the possible software
reused component in the early stage of the system and software development. The amount
of software component reused in the wheelchair CBD from a mobile robot system was
discussed and compared with a reused case from a mobile robot to another mobile robot
CBD. The objective of the comparison was to identify the differences between the software
reuse to support technologies transfer from robotic technologies to rehabilitation
engineering with software reuse within robotics systems. Software reuse in robotics domain
is one of the focuses area in current robotic research, example of the study are by Nesnas et
al. (2006), Jang et al (2010) and Mallet et al. (2007).
The layout of this chapter is as follows: Section 2 discusses the robotic wheelchair design
considerations and the hardware description. In section 3 the strategy to define the process
model to support the CBD of the wheelchair software are described. The process model to
support the CBD method is described in Section 4. Section 5 illustrates the process model in a
CBD of the robotic wheelchair software. The comparison result to compare the process model
with other models will be discussed in detail in Section 6. The Section 7 concludes the chapter.

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 103

2. The robotic wheelchair system

A prototype of robotic wheelchair was developed to support our researches in ERT software
engineering and rehabilitation robotics. The main considerations when developing this
prototype were to have a low cost and ‘open’ system such that it enables different aspects of
hardware and software experimentations to be performed.
Due to these considerations, rather than basing the prototype on a standard power
wheelchair such as the smart wheelchair system developed by Simpson et al. (2004), a
commercially available manual wheelchair was used as the base for the robotic wheelchair
prototype. An easily detachable add-on unit was developed to be attached to the manual
wheelchair without significant modifications to the manual wheelchair. This add on unit
consists of two geared direct current (DC) motors, two 12V batteries and a control box with
embedded processor and associated electronics. Fig. 1 shows the prototype of robotic
wheelchair which consists of a standard manual wheelchair and add on unit. The DC
motors together with two small wheels provide the motorized wheels for mobility. The DC
motors are powered by the 24V 14 Ampere obtained from the two 12V batteries. The voltage
regulators in the control box provide 5V supplies for the sensors and the embedded
processor from the two batteries.

Fig. 1. The prototype of robotic wheelchair. The motorized wheels are under the add on unit

To provide the capability for sensing the environment, sets of sensors are attached to the

robotic wheelchair. Infra red (IR) distance sensors are used to detect obstacles in the

direction of the robotic wheelchair movement. Four IR sensors are mounted at the front and

two IR sensors are mounted at the back. Sonar sensor is used to map room environment or

detect far obstacles. It is mounted on the pole above the user head.

Currently, the robotic wheelchair supports two ways of controlling. The first way is through
the usual joystick or keypad control. The second way is through the movements of head. Head
movements control is particularly useful for severely-handicapped people who have spinal
cord injury or quadriplegia which cannot use their hands to control the wheelchair. In the
developed prototype, the head movement control of the robotic wheelchair is achieved with
the help of accelerometer or tilt sensor. The accelerometer senses head movements and based

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 104

on the predetermined direction of movements, the robotic wheelchair can be controlled
accordingly. Fig. 2 shows the side view of the robotic wheelchair with the locations of sensors.

Fig. 2. The side view of robotic wheelchair prototype with sensors locations.

The embedded processor provides the intelligent decision making and motor control. All
the sensors outputs are processed by the embedded processor and control the two DC
motors as desired by the user. Automatic reactions such as stop or avoid when obstacles are
detected are also handled by the embedded processor.
In the robotic wheelchair prototype an ATMEL ATMega32 8-bit single-chip microcontroller
is used as the embedded processor. The ATMega32 has 32 Kbytes of flash program memory,
and 2 Kbytes internal Random Access Memory (RAM). The ATMega32 also includes an 8-
channels 10-bit analogue-to-digital converter (ADC), three timers, parallel input-output
ports and several serial communication interfaces including Serial Peripheral Interface (SPI),
Inter-Integrated Circuit (I2C) and Universal Synchronous Asynchronous Receiver
Transmitter (USART). Fig. 3 shows the interfaces between the embedded processor, sensors
and actuators in the robotic wheelchair.

Fig. 3. The sensors and actuators in the robotic wheelchair.

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 105

3. The strategy to define the component-based development phases

A strategy is needed to allow the mapping of MARMOT and PECOS methods in order to

identify overlapping phases in between the two methods. The mapping of these two

methods is required in order to propose a new component-oriented developed method

based on the two selected component models. Fig. 4 shows the models and phases of the

methods. It comprises of three development process which are COA, COD and COP. The

development process is then divided into five phases, which are analysis, early design,

detailed design, composition and implementation. COA level involves the analysis phase;

COD level involves two phases, which are early design and detailed design; and COP level

involves composition and implementation phase.

The analysis phase includes two strategies, which are preliminary information and system

architecture planning. Preliminary information consists of the basic requirements of the use

case diagram, use case description and interaction model. The system architecture planning

transforms the circuit into Unified Modelling Language (UML) representation and in turn

produces a preliminary containment hierarchy of the whole system.

The early design phase contains the finer-grain component of software that further divides

into two parts, which are specification and realization. In specification of components, three

models are produced, which are functional model, behavioural model, and structural

model. The structural model is also produced in realization of components, as well as the

activity model and interaction model.

LEVEL CBD PROCESS MODEL DIAGRAM CM

COA

Analysis Phase

Preliminary Information

MARMOT
Method

Integration
Point

PECOS

Component
Model

- Use Case Diagram
- Use Case Description
- Interaction model

System Architecture Planning

- Hardware UML representation
- Preliminary Containment Hierarchy

COD

Early Design
Phase

Finer-Grain Component

Specification
- Functional

Model
- Behavioural

Model
- Structural

Model

Realization
- Structural

Model
- Activity Model
- Interaction

Model

Detailed Design
Phase

Details Information

Regular Containment Hierarchy

COP

Composition
Phase

Integration Process

Composition Diagram

Implementation
Phase

Generation Code

Code Template

Fig. 4. Models and phases of the method

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 106

In order to elaborate upon the preliminary hierarchy containment based on the finer-grain
component, regular containment hierarchy is produced at the detailed design phase. Thus at
implementation phase, the integration process is performed, and it is represented by the
component composition diagram. Based on the component composition diagram, a code
template is generated, which includes single component code template and component
composition code template.
The models and phases in this research are derived from MARMOT and PECOS models to
create a new method; the MARMOT method is applied at analysis, early design and detailed
design phase while PECOS is applied at detailed design, composition and implementation
phase. The integration point between MARMOT method and PECOS component model is at
the detailed design phase, as shown in Fig. 4.
The central notion in COA and COD is the component. COP supports constructing software
systems by composing independent components into software architecture. Software
component is grouped with its component infrastructure. Component infrastructures
include three elements, which are component model, component connection and component
deployment. The analysis phase supports COA method, whereas early design and detailed
design phases support COD. COP method is supported by two phases, which are
composition and implementation phase. The next section provides detailed discussion on
the process model of the integrated MARMOT and PECOS method. The process model
clarifies the integration point of the two methods.

4. A component-based development process model for embedded real time
software

Defining the integrated process of MARMOT and PECOS methods in a systematic form is
important to enable and support the development of CASE tool for ERT system. Here, the
process is represented using Software Process Engineering Meta-model (SPEM)
(Schuppenies & Steinhauer, 2002). SPEM is a meta-model that is used to describe a concrete
software development process or family of related software development process. The Fig. 5
below shows the SPEM icons that are used in this project:
a. Activity: is the main subclass of Work Definition, it describes a piece of work performed

by one Process Role.
b. Document: a stereotype of work product.
c. Process Role: the performer of Activities and responsible for a set of Work Products.
d. Phase: a specialization of Work Definition such that its precondition defines the phase

entry criteria and its goal (often called a "milestone") defines the phase exit criteria.
e. Work Definition: kind of Operation that describes the work performed in the process.
f. Work Product: an artifact is anything produced, consumed, or modified by a process.
There are five phases in the process model; analysis phase, early design phase, detail
design phase, composition phase and implementation phase. Each of these phases
produces a work product for the related activities and has its own responsibilities in
designing one or more artefacts. Fig. 6 illustrates the phases in COA, COD and COP
process using SPEM. The details for each phase are discussed in the following
subsection.
Fig. 7 illustrates the use case diagram for analysis phase, whereas Fig. 8 represents the use
case for early design and detailed design phase. Meanwhile, Fig. 9 illustrates the use case
diagram for composition and implementation phase. These use case diagrams show the

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 107

Fig. 5. SPEM Icons

Fig. 6. Process model phases for the method

Fig. 7. Use case diagram for analysis phase

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 108

relationships between the process and the main activities in the software process based on
the three level developments, which are COA, COD and COP.
In the COA level, analysis phase is divided into two main activities. The first activity is
collecting preliminary information which consists of three processes; requirement
specification, requirement analyzing and interaction analyzing. The second activity is
planning the system architecture which includes two processes; manually transforming
electrical schematic diagram into UML representation and identifying the preliminary
component.

Fig. 8. Use case diagram for early design and detailed design phase

The COD level includes two phases, which are early design and detailed design phase. In
the early design phase, the finer-grain component includes two activities. The first activity is
identifying component specification that will produce a functional model, behavioural
model and structural model. The second activity identifies component realization that

Fig. 9. Use case diagram for composition and implementation phase

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 109

produces a structural model, activity model and interaction model. 1 Meanwhile, in detailed
design the component information is transformed into a graphical representation. The
activities are refining design component, constructing detail component information and
generating the code template for single component.
The COP level of CBD process consists of composition and implementation phase. Process
integration starts at the composition phase and includes three activities, which are
identifying the possible component, component integration and component composition.
The implementation phase is to generate component composition code template.

4.1 Analysis phase
The purpose of analysis phase is to analyze the ERT system requirement. As was previously
mentioned, ERT system requirement involves multi-disciplinary knowledge. Therefore,
analyzing the ERT system requirement does not focus on software only but also on the
hardware. In this analysis phase, the MARMOT method is used to support the multi-
disciplinary knowledge required for ERT system. It is divided into two parts; the first part is
collecting the preliminary information and the second part is planning the system
architecture. Collection of the preliminary information can be further divided into three
activities, which are problem analysis, requirement description and interaction analysis.
System architecture planning includes two activities, which are transforming electrical
schematic diagram and identifying a preliminary component based on transformation
electrical schematic diagram into UML representation.
The analysis phase starts with analyzing the requirement, by identifying the problems and
by looking at the application functionalities. It also identifies the user who is interacting
with the application. This process produces the use case model of the system. The next
activity involved is describing the requirement description thoroughly so as to produce the
use case description table. This description table describes the multi-disciplinary knowledge
of ERT system requirements. After that, interaction analysis is carried out to briefly draft the
interaction between each state in order to produce the interaction model. Fig. 10 shows the
flow of the activity in analysis phase, which is described in terms of work definition and
work product as input.
The next step involves in obtaining the information directly from the electrical schematic
diagram in order to identify the possible preliminary component software. The electrical
schematic diagram is manually transformed into UML and all hardware parts are removed
to obtain a list consisting of only software parts. The software parts can be a component
with a stereotype <>. The list of the possible software components is represented by the
containment hierarchy diagram. Fig. 10 shows the work definition and work product of
analysis phase.

Fig. 10. The analysis phase description in terms of work definition and work product

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 110

4.2 Early design and detailed design phase

The purpose of an early design phase is to fine-grain the preliminary component

containment hierarchy that is identified from the analysis phase. The preliminary

component containment hierarchy at analysis phase is used as input for early design

phase.

The early design phase has two main activities, which are identifying component

specification and component realization for each software component. These two activities

produce UML diagram artefacts. Component specification produces three models, which

are structural, behaviour and functional model whereas component realization also

produces three models, which are structural, activity and interaction model. In this stage,

multi-constraint extra-functionality requirement which focuses on timing is considered as

model for the software component specification and realization, and is represented by

timing diagram.

At the detailed design phase, the integration point between the MARMOT and PECOS

concept is produced. The detailed design phase includes three activities, which are refining

the design component, constructing detail component information, generating the code

template for single component and storing component into the component repository.

Refinement of the design component involves some additional component to model the

software behaviour. As a result, it produced a new version of preliminary component

containment hierarchy. The process repeats until the component containment hierarchy

fulfils the multi-disciplinary requirement. After the preliminary component containment

hierarchy matures, the detailed component information is constructed.

In this phase, PECOS modification is integrated whereby each component includes not only

the functional requirement but also multi-constraint extra-functionality requirement. In this

research, the focus is on timing of extra-functionality requirement. Therefore, regular

component containment hierarchy is produced where the component includes timing,

priority, outport and inport. Based on the detailed information of each component, the code

template produces and stores the component into the component repository. It then

produces component lists of the entire application. Fig. 11 shows the steps at early design

and detail design phase.

Fig. 11. Design phase description in terms of work definition and work product

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 111

4.3 Composition and implementation phase

The purpose of this phase is to integrate the components and generate the composition

component code template for the entire application. The integration process integrates more

than one component. In this stage, a component can have a sub-component, and it produces

the composition component diagrams for the application.

Once the composition is completed, the next step is to allocate property bundles value such

as period and priority for active components using real-time scheduling theory. Meanwhile,

the code template for the composition diagram is generated in the implementation phase.

Fig. 12 illustrates each step at composition and implementation phase.

Fig. 12. Composition and implementation phase description in terms of work definition and
work product

5. The wheelchair software development

The Intelligent Wheelchair (I-Wheelchair) case study, described in Section 2, was

implemented to apply the integrated process model and show how the reuse activities from

mobile robot systems to the I-Wheelchair were performed. The I-Wheelchair case study is an

embedded system and it is relatable with the resource constraint of real-time and multi-

disciplinary requirements.

I-Wheelchair software development as represented by the process model includes five
different phases, which are analysis, early design, detailed design, composition and
implementation phase. The following sub-section further elaborates each phase.

5.1 Analysis phase

As mentioned before, MARMOT method is implemented at the analysis phase. In this case,
this phase involves processes like defining diagrams and textual specifications from the
context realization of the I-Wheelchair system. It is divided into two parts, which are
preliminary information and system architecture planning. Preliminary information
produces use case diagrams, use case description and interaction model; and system
architecture planning produces hardware UML diagram and preliminary containment
hierarchy. The following sub-sections will be based on the I-Wheelchair case study.

5.1.1 Preliminary information

Preliminary information includes three activities which are requirement specification,

analysis requirement and analysis interaction. The requirement specification of I-Wheelchair

system is represented by the use case diagram, in which it consists of a textual and a

graphical representation as shown in Fig. 13.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 112

Fig. 13. I-Wheelchair use case diagram

The actor User initiates the task of controlling the I-Wheelchair movement whereby the
actor Obstacle initiates the task of avoiding an obstacle around its environment. Control
Movement and View Status use cases is controlled by User actor. Meanwhile, Detect
Obstacle use case is controlled by Obstacle actor and extended by Avoid Obstacle use case.
The use case description table is used to provide more information with regards to the I-
Wheelchair use case diagram. An example of a detailed use case description table for Detect
Obstacle use case is as shown in Table 1. The description table provided detailed
information of Detect Obstacle use case which includes the name of use case, responsible
actors, use case goals, use case descriptions, exceptions, rules, quality requirements,
input/output, pre and post-conditions of the use case.

Name Detect Obstacle

Actor Obstacle

Goal To detect any obstacle at front or back using IR sensor

Description Get input data from sensor (HMC) or signal (joystick) to detect
obstacle at the front or back in range distance min=30 cm and
max=80 cm.

Exception N/A

Rules N/A

Quality Requirement N/A

Input/Output Input:
IR sensor back
IR sensor front
Output:
Motor

Pre-Conditions Detect any objects that defend the movement whether at the front
or back

Post-Condition Move follow current direction

Table 1. Detect Obstacle Use Case Description

To analyze the interaction of the I-Wheelchair system, the interaction model diagram is used
as shown in Fig. 14. The purpose of an interaction model is to represent the general flow of
the I-Wheelchair control movement and obstacles avoidance by the two actors; User and
Obstacle. It also illustrates several alternative actions that can be performed, and represents
typical interaction of the operation for the overall system.

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 113

Fig. 14. Obstacle interaction model for avoiding obstacles

Fig. 14 shows the interaction model for Obstacle use case. This model represents behaviour

of the Obstacle use case, in which includes two behaviour: if the I-Wheelchair system detects

an obstacle, it will stop moving and change the direction of its movement, and after that it

will start to detect other obstacles; if no obstacle is detected, the system will move according

to the current direction that is given by the user and it will start to detect other obstacles. A

semaphore used in the implementation of the Obstacle interaction model to avoid deadlock

situation.

The infrared distance sensors at the back and front of the I-Wheelchair system are used to

detect obstacles that labelled as input to the system as mentioned in Table 1. Therefore, the

use case diagram, use case description table and interaction model can be useful for the ERT

system developer to translate the hardware requirement into software requirement at the

analysis phase.

5.1.2 System architecture planning

In this stage, the system architecture is planned by identifying the preliminary components.

The identification of the component hardware is done based on the electrical microcontroller

schematic diagram. As it requires software to calculate the control signal to be sent to

motors, the motor is considered one of the initial hardware components. The

microcontroller schematic diagram will be transformed into the UML presentation

manually. The UML representation diagram represents the hardware component that may

include software component.

Therefore, the five hardware components identified are Sensor, Controller, Joystick, Motor

and Human Computer/Robot Interaction (HCI or HRI). These components are represented

by a component tree called preliminary containment hierarchy as shown in Fig. 15. The I-

Wheelchair is composed of both hardware and software components. The Controller

hardware component consists of Driver and Application, with the Driver acting as the

communicator between the software and the hardware components or called “wrapper

hardware” in MARMOT. Hence, software component should be under the Driver

component and an Application component refers to the behaviour of the software

component.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 114

5.2 Early design phase

MARMOT was implemented based on the software requirement documentation of the I-

Wheelchair. The discussion on the modelling for the I-Wheelchair was divided into two

separate descriptions; specification and realization. As mentioned before, specification

produced three types of model; functional, behavioural and structural model, represented

by the operation specification table, UML state diagram and class diagram respectively.

Realization produced the activity and structural model as well as the interaction model

which are represented by the activity diagram, class diagram and interaction diagram

respectively. The difference between the specification and the realization class diagrams

are the details of the information provided where the specification class diagram only

included the basic information while the realization class diagrams provided more

detailed information such as the operation and the attribute. Fig. 16 and Fig. 17 show the

examples of realization models, i.e. the Sensor class diagram and the Sensor interaction

diagram.

Fig. 15. Preliminary Containment Hierarchy

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 115

Fig. 16. Structural Model (Class Diagram)-Realization (Sensor)

Fig. 17. Interaction Model-Realization (Sensor)

5.3 Detailed design phase

The integration of MARMOT and PECOS was implemented in this phase by extending the

MARMOT Regular Containment Hierarchy diagram. The hierarchy diagram of the I-

Wheelchair system in this phase is derived and extended from the Preliminary Containment

Hierarchy diagram from Fig. 15, which included the component name and also has the

detailed description of the component diagram information. The regular containment

hierarchy of the I-Wheelchair shown in Fig. 18 includes the hardware and software

components. The hardware component is represented by the <component> stereotype with

six hardware components such as sensor, LED, controller, joystick, motor and accelerometer

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 116

and was initially derived from the schematic diagram. The Controller component interacts

with the I-Wheelchair application using the device driver to support software component

structural modelling.

The component definition used in this work was extended from the original PECOS model

(Jawawi et al., 2006). Fig. 19 shows an example of a composite component definition. The

component diagram also contained component types such as active and passive. In order to

represent an active component, initial time and priority are set in the right side of the

component. If there is no set value for timing and priority in that component, it means that

the component is a passive component.

Furthermore, each component has port information which consisted of two types of port;

inport and outport. The port name is represented by a code such as IP00, signifying that the

component has an inport port at the first position followed by IP01 for the inport port at the

second position as illustrated in Fig. 19. The same rules were applied for the outport port.

The components without shadow represent a leaf component (without any sub-components

inside) while the components with shadow indicate that it has sub-components called

composite components as illustrated in Fig. 18.

Fig. 18. Regular Containment Hierarchy

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 117

MotorControl

PID

IP00

IP02

IP01 OP00

Motor

IP00

IP01

Set speed:
0..5000

IP00

IP01

IP02

OP00

Encoder

OP00

Direction:
1- forwad 0- stop
-1- reverse

Period Priority

Current
speed:
0..5000

PID Settings:
[Kc, Ti, Td, Ts]

Fig. 19. MotorControl composite component

The Driver component is made up of four software components which are Sensor, HCI,
Motorctrl and Joystick as shown in Fig. 18. These four software components were initially
derived from hardware components where some modifications have been made based on
the software design; for example, the Battery hardware component was not utilized as a
Battery software component because Battery is one of the sensors.
The purpose of the Application software component is to support behaviour modelling of
the I-Wheelchair application. Behaviour Based Contol (BBC) was used in the I-Wheelchair
application to support behaviour modelling where BBC controls the behaviour of the I-
Wheelchair with its six different behaviours including AvoidObstacle, Stop, Forward,
Reverse, TurnRight and TurnLeft. BBC software components require 12 input ports to
receive data from six behaviours: Avoid, Stop, Forward, Reverse, TurnRight and TurnLeft
software components behaviour. Two output ports from the BBC software component were
sent to the motorctrl_left software component while two other output ports were sent to
motorctrl_right software component and one output port was sent to the HCI component.

5.4 Composition and implementation phase
Fig. 20 illustrates the I-Wheelchair component composition which includes 11 active and
seven passive components, consisting of eight leaf components (without sub-component)
and nine composite components (with sub-component) as shown by the blocks with
shadow. Every single component provides the ports and connection lines to show the
overall composition of the intelligent wheelchair.
From this composition diagram, code template was generated based a Component-Oriented

Programming (COP) framework as proposed in Jawawi et. al (2007). The code consists of

three block codes, which are the synchronization part, execution part, initialization part. The

synchronization part synchronizes the connection port, the execution part chooses a

behaviour based on the current command and the initialization part gives a default value.

The COP is supported by an experimental component composition tool. Fig. 21 shows an
interface of component composition using the COP tool and all the new and reusable
components from other application are listed on the right hand site of the composition. The
COP tool is still at development stage, current version of our tool supports component
integration, composition and code generation of the structure composition. The designer
needs to manually code the functional behaviour of each component. Once the composition
is completed, the next step is to analyse the property bundles value such as period and
priority for active components using real-time scheduling theory. The scheduling analysis of
the composition can be done since the timing required for the analysis were documented
with the designed composition.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 118

Fig. 20. I-Wheelchair component composition

Fig. 21. COP tool’s interface to support component composition and code generation

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 119

5.5 The software reuse results

The case study application showed how the process model can be used to support the CBD
activities of the wheelchair software. The result of implementing these activities on the I-
Wheelchair was software with 3583 lines of C codes which generates firmware with code
size of about 8.6 Kb with RAM usage of about 1.6 Kb. The software was implemented on an
ATMEGA32 8-bit microcontroller with 2 Kb RAM, which illustrated an implementation on a
self-contained I-Wheelchair system. This size proves a light-weight solutions integrated in
the developed process model is suitable for resource-constrained ERT systems. The real-
time performance of the system was predicted during components composition. This
prediction was verified in performance testing during implementation phase where the
wheelchair showed a reliable behaviour especially on hard real-time tasks.
The design and implementation of the wheelchair software design components were derived
from our previous studies and development of mobile robot software systems. One of the
studies was the component engineering process of the reusable design components in the
Autonomous Mobile Robot (AMR) software development documented in Jawawi et. al (2007).
Each component in the reused component repository was modeled using the COP framework.
The reusing process of the software components from an AMR system to the I-Wheelchair
aims to analyze the reuse level resulting from the implementation of the process model
activities. Amount of reused components were used to assess a reuse improvement effort by
tracking percentages of reused components with two types of component reuse: reuse as is
and instantiated reuse.
The main concern in this amount of reused components is to measure the reuse of the
software components on different platforms and different physical sizes of the AMR and the
I-Wheelchair systems. The strategy adopted in analyzing the amount of reused components
in this work is to compare the percentage of component reused in two cases:
1. Case 1 Reuse: MobileRobot1 to MobileRobot2 software reuse as reported in Jawawi et.

al (2007) and
2. Case 2 Reuse: MobileRobot1 to I-Wheelchair software reuse as shown in this section.
The differences between the three systems are tabulated in Table 2 and Table 3. Table 2 is to
differentiate the platform and size of the systems and Table 3 is to differentiate the number
of hardware used in the systems. The code used in the table is as: Mtr – Motor, Fan, Enc –
Encoder, DS - Distance sensor, PS - Proximity sensor, TS - Temperature sensor, LS - Light
sensor, AS - Accelerometer sensor and KP – Keypad.

Case-studies Processor Type
Size
(cm)

Shape
EPROM

(Kilobytes)
RAM

(Kilobyte)

MobileRobot1
AMD188ES (16

bits)
40 round 64 128

MobileRobot2

ATMEL AVR
MEGA32 (8 bits)

16 octagonal 32 2

I-Wheelchair
ATMEL AVR

MEGA32 (8 bits)
Standard

size
Standard
manual

32 2

Table 2. The AMR and wheelchair systems processor platform and size

From Table 3, two hardware components exist in both systems are motor and distance
sensor. The types of distance sensor used in three case-studies are the same but the types of
motor used in the three cases studies are different.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 120

Case-studies Mtr Fan Enc DS PS TS LS AS KP

MobileRobot1 2 0 2 2 2 0 0 0 0

MobileRobot2 2 2 0 1 0 1 1 0 0

I-Wheelchair 2 0 0 6 0 0 0 1 1

Table 3. The AMR and wheelchair systems sensors and actuators

To measure the software reuse rate, the number of reused component from the components
repository will be analyzed. The parameters identified to analyze the amount of reused
components in the two reused cases are: reused 100% from design components repository
without changes (reuse as is), new components developed (new) and reused components by
instantiating the components from MobileRobot1 for the MobileRobot2 or the I-Wheelchair
software development (instantiated reuse). Table 4 shows the number of reused components
in the two reused cases and the components are grouped into five groups according to our
components repository groups.

Component
Groups

MobileRobot1 to
MobileRobot2

MobileRobot1 to I-Wheelchair

Reused
as is

Instantiated
reuse

New
Reused

as is
Instantiated

reuse
New

Sensors 2 1 1 2 1 1
Actuators and
Motor Control

0 5 0 0 4 0

Behavior and
Subsumption

3 1 1 2 2 3

Human-Robot
Interfaces

3 0 0 2 0 3

Input-Output 0 3 0 0 4 0
Total
components

8 10 2 6 11 7

Table 4. The number of reused and new components in the reuse cases

Table 4 shows higher number of components reused without changes in robot to robot
reused case as compared to robot to wheelchair reuse case. This was due to the differences
in the components in HRI group and Behavior and Subsumption group. The wheelchair
system required different HRI devices and the behavior of wheelchair is not fully
autonomous, which still require human control to navigate the wheelchair system. It led to
more number of new behavior components or changes to the existing behavior components.
Apart from HRI group and Behavior and Subsumption group, other groups showed the
same reused pattern.
The analysis work was to identify the rate of components reused from the design repository
integrated in the proposed process model. The component reused percentage is the
calculation of percentage of reused software components over total software components in
the composition. The summary of the component reused percentage for both reused cases
are shown in Fig. 22. The figure shows up to 90% component reused rate achieved in
designing MobileRobot2 software from the MobileRobot1 design components and 71%
components reuse achieved in designing I-Wheelchair software from MobileRobot1
components. It showed that the reuse as is percentage for Case 1 is higher than Case 2. The
instantiated reuse rate in both reused cases were about the same but the reused as is rate

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 121

was higher in Case 1. This was due to high number of new components required in the
wheelchair system as shown in Table 4.

 (a) Case 1: MobileRobot1 to MobileRobot2 (b) Case 2: MobileRobot1 to I-Wheelchair

Fig. 22. Component reused percentage in the two reused cases

The amount of component reuse analyzed in this implementation aims to study the

possibility to achieve software reuse from mobile robot software to robotic wheelchair

software. The component reused results showed a high rate of component reused was

shown in mobile robot to wheelchair reused case, but this rate is lower than mobile robot to

mobile robot reused case. This high rate was possible in this implementation due to the

same behavior-based control paradigm (Brooks, 1986) and sensors’ types used in both

wheelchair and mobile robot systems. The systematic process model used in this wheelchair

implementation help the wheelchair developers to identify the possible reused component

in at the early stage of the software development.

6. Comparison results of component-based development process models

This section discusses the results comparison between the integrated MARMOT and PECOS

method with other method, based on the criteria as shown in Table 5.

No. Groups Criteria

1
Evaluate the domain
application of CBD method

Application domain

2
Evaluate the representation of
component in the respective phase
of the development process

Component representation in analysis
Component representation in design
Component representation in implementation

3
Evaluate which process
development is supported in
the CBD method

Component support in a development process
Reusability

4

Evaluate the supportive tool,
modelling techniques used and
supportive ERT requirements of
the CBD methods

Modelling techniques use
Tool support
Multidisciplinary support
Multiple constrain support

Table 5. Summary of the evaluation criteria

Reused
as is

40%

Instantiated
 reuse

50%

New

10%

Reused
as is

25%

Instantiated reuse

46%

New

29%

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 122

The comparisons were made on two existing CBD methods; COMponent-based design of

software for Distributed Embedded Systems – version II (COMDES-II) (Ke et al., 2007) and

ACCORD/UML (Gerard et al., 2002). ACCORD/UML’s targeted audience includes

engineers who are not software experts and COMDES-II is a component based software

framework intended for efficient development of distributed embedded control systems

with hard real-time requirements. Table 6 shows the evaluation summary of CBD methods

based on the evaluation criteria.

Criteria/CBD
Methods

COMDES-II ACCORD Integrated MARMOT
& PECOS

Application

Domain

Hard real time

requirement

Real time

application

engineering for

engineer (not

software expert)

Multi-disciplinary and

multi-constraint

development

Component

representation in

analysis

Actor Model DAM (detailed

Analysis Modelling)

model

Preliminary

containment hierarchy

Component

representation in

design

Not applicable Not applicable Block diagram

Component

representation in

implementation

Function Block DAM (detailed

Analysis Modelling)

model

Graphical component

composition and code

template

Modelling

techniques use

Actor model and

function block

model

UML with

extension

UML 2.0 and COP

composition

Tools support Workbench UML based tool Any tool that supports

UML 2.0, and COP tool

Component

support in a

development

process

Design and

implementation

Analysis and

prototyping

Analysis, design and

implementation

Reusability Function block

model

State-machine

inheritance

Detailed design

component block and

code template

Multidisciplinary

support

Software Software Hardware and

software

Multiple

constraints

support

Concurrency,

time multitasking

High level

concurrency

Timing Analysis

Table 6. Comparison of CBD methods

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 123

Based on the general criteria evaluation results, it showed all three methods support

component at analysis phase and implementation phase. Only the proposed integrated

method represent components at design phase using block diagram introduced by

MARMOT to be included as part of it containment hierarchy diagram and represented in

component composition diagram at implementation phase.

COMDES-II and ACCORD methods combine the design phase component representation

with the analysis phase. The integrated method defines the component representation in

each phase, this enable all multi-disciplines experts for a system like the robotic wheelchair

systems to define and specify their own components. Both the integrated method and

ACCORD modelling techniques use UML except COMDES-II method that using actor

model and function block model. The UML modelling enables multi-disciplines engineers to

communicate and share their software components.

The integration of MARMOT and PECOS is shown to support both multi-disciplinary and

multi-constraint real-time requirement. ERT CBD methods criteria showed that only the

integrated MARMOT and PECOS method supported multi-disciplinary including software

and hardware and multi-constraint ERT requirement. COMDES-II and ACCORD only

support software disciplinary element. All three CBD methods support different level of

real-time constraints; for example ACCORD supports high level concurrency, the integrated

method supports timing analysis and COMDES-II supports concurrency and time

multitasking. This is due to different nature of ERT systems targeted by different methods

and different real-time requirements supported such soft real-time, hard real-time, time-

triggered or event triggered.

The integrated MARMOT and PECOS aims to produce a systematic CBD process model of

ERT system where the development process model can support multi-disciplinary

knowledge and multi-constraint extra-functionality requirement. The component

representation systematically supported all phases: the analysis, design and implementation

phases, this can provide more reusability facilities in all phases.

The systematic CBD process model allows the multi-disciplines experts in the robotics

wheelchair CBD development to develop their reusable components and integrates their

components with other. Among the software components developed by different discipline

reused in the I-Wheelchair system development are such as BBC component, motors

component, sensors and input-output components.

7. Conclusion

This chapter proposed a method to enable reuse of mobile robot software into a robotic

wheelchair (I-Wheelchair) software system. The robotic wheelchair system prototype was

developed to test the implementation result of the proposed method. The component-based

development (CBD) of the robotic wheelchair software using a set of reusable components,

and the software composition of the wheelchair software were illustrated. The integration of

PECOS into MARMOT method would produces a systematic CBD process model in terms

of multi-disciplinary knowledge and multi-constraint extra-functionality requirement. The

application of the CBD method in the I-Wheelchair system illustrated how the MARMOT

and PECOS were integrated to produce a systematic development method for CBD. The

method guides developers to model and deploy the robotic wheelchair software using the

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 124

CBD activities and the phases are defined by the process model. With the strengths of

MARMOT and PECOS integrated into the method, it enabled the functional and non-

functional requirements, especially the timing properties, to be modelled explicitly in all

phases. Furthermore, the method also considered multi-disciplinary requirements in its

models which help software engineers to focus on their problem-solving of the robotic

wheelchair system development. The activities to reuse software from existing robotics

systems were explicitly supported in the proposed process model.

The implementation of the I-Wheelchair case study, demonstrated that the proposed

method has helped to guide the CBD of the software system from the analysis of the

product to the implementation phase through the defined process model. The component

reused rate achieved in the wheelchair implementation from a mobile robot design

repository was high up to 71% and this implementation was compared with components

reuse from the same mobile robot design repository to another mobile robot system to

identify the pattern of reuse in both reused cases. No direct relation between the process

model proposed and the reused rate studied in this chapter but the process model helped

developer to identify and implement the component in all CBD phases. For future works,

the existing component-based development tools will be refined further to support COD

and COP methods and to integrate the tools with the UML models produced in the COA

method.

8. Acknowledgment

Special thanks to the Universiti Teknologi Malaysia for financing and funding this research

through Research University Grant and also to our Embedded & Real-Time Software

Engineering Laboratory (EReTSEL) members for their continuous support.

9. References

Atkinson, C.; Bayer, J.; Bunse, C.; Kamsties, E.; Laitenberger, O.; Laqua, R.; Muthig, D.;

Paech, B.; Wust, J. & Zettel J. (2002). Component-Based Product Line Engineering with

UML, Addison Wesley Professional, ISBN 978-0201737912, Boston, USA.

Bonail, B.; Abascal, J. & Gardeazaba,l L. (2009). Wheelchair-based Open Robotic Platform

and its Performance within the AmbienNet Project, Proceedings of the 2nd

International Conference on PErvasive Technologies Related to Assistive Environments

(PETRA '09), ISBN 978-1-60558-409-6, Corfu, Greece, June 09-13, 2009.

Brooks R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of

Robotics and Automation. RA-2(1): 14-23.

Bunse, C. & Gross, H. G. (2006), Unifying Hardware and Software Components for

Embedded System Development, In: Architecting Systems with Trustworthy

Components, Reussner R. H., Stafford J. A. and Szyperski C. A., pp. 120-136,

Springer-Verlag, ISBN 978-3540358008, Berlin, Germany.

Carlsona, J.; Håkanssonb, J. & Pettersson, P. (2006). Save CCM: An Analysable Component

Model for Real-Time Systems, Proceedings of the International Workshop on Formal

Aspects of Component Software (FACS 2005), vol. 160 , Macao, October 24-25, pp.127-

140.

www.intechopen.com

A Robotic Wheelchair Component-Based Software Development 125

Cheein, F. A. A.; Cruz, C.; Bastos, T. F. & Carelli, R. (2009). SLAM-based Cross-a-Door

Solution Approach for a Robotic Wheelchair. International Journal of Advanced

Robotic Systems, Vol. 6, No. 3. pp. 239-248, ISSN 1729-8806.

Dogru, A. H. & Tanik M. M. (2003). A Process Model for Component-Oriented Software

Engineering. IEEE Software, Vol. 20 No. 2, (March 2003), pp. 34-41.

Gerard, S; Terrier, F. & Tanguy, Y. (2002). Using the Model Paradigm for Real-Time Systems

Development ACCORD/UML. Proceedings of the Workshops on Advances in Object-

Oriented Information Systems (OOIS '02), Montpellier, France, September 2, pg. 260-

269.

Gong, J.; Peng, Y.; Hao, J.; Huang J., & Huang, K. (2010), Research on Component-Oriented

Methodology for Constructing Simulation Systems. Journal of System Simulation, pp.

1-10.

Jang, C; Lee, S-I; Jung, S-W; Song, B; Kim, R; Kim, S & Lee, C-H. (2010). OPRoS: A New

Component-Based Robot Software Platform. ETRI Journal, Vol. 32, No. 5, (October

2010), pp 646-656.

Jawawi, D.N.A; Deris, S. & Mamat, R. (2006). “Enhancements of PECOS Embedded Real-

Time Component Model for Autonomous Mobile Robot Application”. Proceeding of

The 4th ACS/IEEE International Conference on Computer Systems and Applications, pp.

882 – 889. Dubai/Sharjah, March 8-11 2006.

Jawawi, D. N. A.; Mamat, R. & Deris, S. (2007). A Component-Oriented Programming for

Embedded Mobile Robot Software. International Journal of Advanced Robotic Systems,

Vol. 4, No. 2, (September 2007), pp. 371-380. ISSN 1729-8806.

Ke, X.; Sierszecki, K. & Angelov, C., (2007). COMDES-II: A Component –Based Framework

for Generative Development of Distributed Real-Time Control Systems, Proceeding

of 13th IEEE International Conference on Embedded Real Time Computing System and

Applications (RTCSA 2007), pp. 199 – 208, ISBN 978-0-7695-2975-2, Daegu, Korea,

August 21-23, 2007.

Lee, S. C. & Shirani A. I. (2004). A Component Based Methodology for Web Application

Development. Journal of Systems and Software, Vol.71, No. 1-2, (April 2004), pp.177-

187.

Mallet A.; Kanehiro F.; Fleury S. & Herrb M. (2007). Reusable Robotics Software Collection.
Proceedings of Second Int. Workshop on Software Development and Integration in Robotics

(SDIR). Roma, Italy, April 2007.

Nesnas I. A.D.; Simmons R.; Gaines D.; Kunz C.; Diaz-Calderon A.; Estlin T.; Madison R.;

Guineau J.; McHenry M.; Shu I-H. & Apfelbaum D. (2006). CLARAty: Challenges

and Steps Toward Reusable Robotic Software. International Journal of Advanced

Robotic Systems, Vol. 3, No. 1, (2006), pp. 23-30. ISSN 1729-8806.

Nierstrasz, O.; Arévalo, G.; Ducasse, S.; Wuyts, R.; Black, A.; Müller, P.; Zeidler, C.;

Genssler, T. & van den Born, R. (2002). A Component Model for Field Devices.

Proceedings First International IFIP/ACM Working Conference on Component

Deployment, pg. 200-209, June 20-21, ISBN 3-540-43847-5. Berlin, Germany, June 20-

21, 2002.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 126

Ommering, R.; Linden, F.; Kramer, J. & Magee, J. (2000). The Koala Component Model for

Consumer Electronics Software. IEEE Computer, Vol. 33, No. 3, (Mar 2000). pp. 78 –

85, ISSN 0018-9162.

Schuppenies, R. & Steinhauer, S. (2001). Software Process Engineering Metamodel, OMG

group, November 2002.

Simpson, R.; Lopresti, A. E.; Hayashi, S.; Nourbakhsh, I. & Miller, D. (2004). The Smart

Wheelchair Component System. Journal of Rehabilitation Research & Development.

Vol. 41, No. 3B, (May/June 2004), pp 429–442.

Wang, A. J. A. & Qian, K. (2005). Component-Oriented Programming. Wiley-Interscience, ISBN

0471644463, Danvers, USA.

www.intechopen.com

Mobile Robots - Control Architectures, Bio-Interfacing, Navigation,

Multi Robot Motion Planning and Operator Training

Edited by Dr. Janusz Bȩdkowski

ISBN 978-953-307-842-7

Hard cover, 390 pages

Publisher InTech

Published online 02, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The objective of this book is to cover advances of mobile robotics and related technologies applied for multi

robot systems' design and development. Design of control system is a complex issue, requiring the application

of information technologies to link the robots into a single network. Human robot interface becomes a

demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated

electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video

games. A number of developments in navigation and path planning, including parallel programming, can be

observed. Cooperative path planning, formation control of multi robotic agents, communication and distance

measurement between agents are shown. Training of the mobile robot operators is very difficult task also

because of several factors related to different task execution. The presented improvement is related to

environment model generation based on autonomous mobile robot observations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dayang N. A. Jawawi, Suzila Sabil, Rosbi Mamat, Mohd Zulkifli Mohd Zaki, Mahmood Aghajani Siroos Talab,

Radziah Mohamad, Norazian M. Hamdan and Khadijah Kamal (2011). A Robotic Wheelchair Component-

Based Software Development, Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot

Motion Planning and Operator Training, Dr. Janusz Bȩdkowski (Ed.), ISBN: 978-953-307-842-7, InTech,

Available from: http://www.intechopen.com/books/mobile-robots-control-architectures-bio-interfacing-

navigation-multi-robot-motion-planning-and-operator-training/a-robotic-wheelchair-component-based-

software-development

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

