we are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

122,000

135M

Our authors are among the

TOP 1%

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer

Zahra Tayarani-Najaran¹ and Seyed Ahmad Emami^{2,*} ¹Department of Pharmacology and Pharmacological Research Centre of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, ²Department of Pharmacognosy, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran

1. Introduction

Cancer is a leading cause of death worldwide and accounted for 7.6 million deaths (around 13% of all deaths) in 2008. Deaths from cancer worldwide are projected to continue to rise to over 11 million in 2030. [(2011) World health statistics]. Heredity and environmental changes affect the susceptibility to cancer affection. More than 30% of cancer could be prevented by modifying or avoiding key risk factors, including: tobacco use, being overweight or obese, low fruit and vegetable intake, physical inactivity, alcohol use, sexually transmitted HPV-infection, urban air pollution, indoor smoke from household use of solid fuels.

Plants have been used as a major source of remedies from the ancient time. The modern drug discovery and development is also dependent of medicinal plants (Saklani & Kutty, 2008). Using plants in the treatment of cancer has long history and dates back to ancient time. There are strong evidences about cancer preventing properties of various kinds of herbs used as food, fruit, spices, and vegetables (Dossus, 2008; Kruk, 2007; Moyad, 2004; Montesano, 2001; Lyman, 1992).

Dietary habits especially those involving fruits and vegetables have served the great interest in developing various preventive measures that influence cancer risk (Wu, 2009; Kurahashi, 2009). Phytochemicals of varied chemical structures from fruits and vegetables have already been studied extensively for their potential anticancer or chemopreventive efficacy (Ramos, 2008). Being the rich sources of vitamins, minerals, and fiber without posing "any side effects" made fruits and vegetables the best choice to lowering cancer risk and also in maintaining good general health.

The important role of plant derived compounds is undeniable. Paclitaxel (Wani et al., 1971), camptothecin (Wall, 1998), combrestatin (Cirla & Mann, 2003), epipodophyllotoxin (Canel et al., 2000) and Vinca alkaloids (vinblastine, vincristine) (Johnson et al., 1963) are some examples of herbal originated cancer treatments. These are also many other plant-derived compounds that are in clinical trials for cancers (Saklani & K. Kutty, 2008).

*Corresponding Author

Herbs and spices can defy the DNA damage which is the fundamental cause of cancer and can occur as a result of aging, genetic susceptibility, and exposure to an assortment of carcinogens.

Free radicals and different toxins have the important role in cancer development and progression through interaction with DNA. Numerous phytonutrients found in fruits, herbs and spices act as potent preventive agents against cancer by preventing the overproduction of toxic chemicals within the body, improving the body's detoxification processes.

Herbs and spices not only reduce the risks of developing cancer, but also act as efficient treatments for cancer. Herbs and spices are traditional cancer treatments of radiotherapy and chemotherapy enhancers, reducing the negative side effects of these therapies.

Edible vegetables, fruits, spices and whole grains contain significant amounts of bioactive phytochemicals, which are warrented health benefits beyond basic nutrition to reduce the risk of chronic disease and the process of carcinogenesis [Liu, 2004)

The National Cancer Institute (NCI) of the United States has introduced several plant-based foods that exert cancer-preventive properties, including garlic, soybeans, ginger, onion, turmeric, tomatoes and cruciferous vegetables (for example, broccoli, cabbage, cauliflower and Brussels sprouts). (Surh, 2003). Iridoids, phenols, phenolics, carotenoids, alkaloids, organosulfur compounds, and terpenoids are main class of phytochemicals.

Plants with cytotoxic effects respect to their sub family, species, phytochemical, and the stage of which they are in progress for cancer treatment are classified in table 1 to 38.

Each table is representive of phytochemical of a selected family. Each row illustrates the selected phytochemical of representative plant bioactives that have been shown to induce cytotoxic effects.

Anacardiaceae R.Brown

A family of 69 genera and 850 species mainly subtropical trees, shrubs, lianas or rarely perennial herbs with vertical resine - ducts in bark. The family contains dyeing and tanning materials and phenolic compounds (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Rhus verniciflua Stokes	total extract	not stated	metastatic colorectal cancer (mCRC)	clinical trial	Lee et al, 2009

Table 1. Anacardiaceae Cytotoxic Phytochemicals

Apiaceae Lindley

(Umbelliferae A.L. de Jussieu)

The plant family consists of 434 genera and 3780 species most members are herbs with furrowed stems and hollow internodes, some are annuals, some biennials, and some perennials. The three subfamilies are as follows: 1) Hydrocotyoideae 2) Saniculoideae and 3) Apioioideae.

the family include essential Constituents of oils, coumarins, furocumarins, chromonocoumarins, monoterpenes, sesquiterpenes, triterpenoid saponins, resins and acetylenic compounds. Alkaloids occur but are rare (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Angelica sinensis (Oliv.) Diels	citronellol	terpenoids	improve their immune function, improving their ability to fight off the cancer	randomized, double-blind, placebo- controlled study	Zhuang et al., 2009
Cuminum cyminum L.	apigenin and luteolin	flavonoids	cancer chemopreventive activities	cell culture, animal study	Aggarwal et al., 2008; Patel et al., 2007; Manju & Nalini, 2007
Foeniculum vulgare Mill.	anethole, [1- methoxy-4-(1- propenyl) benzene], anethole dithiolethione	phenylpropanoid	chemopreventive activities as indicated by suppression of the incidence and multiplicity of both invasive and non-invasive adenocarcinomas	cancer cells cell culture	Aggarwal et al., 2008

Table 2. Apiaceae Cytotoxic Phytochemicals

Apocynaceae A.L. de Jussieu

This family contains 380 genera and 4700 species

mostly in tropical and subtropical but also in few temperate regions. The members are trees, shrubs, lianas, vines, sometimes scculent and cactuslike.

Constituents of the family are some types of alkaloids, cardioactive glycosides, cyanogenic glycosides leucoanthyocyanins, saponins, tannins, coumarins, phenolic acids, cyclitols and triterpenoids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Catharanth us roseus (L.) G.Don	methyl jasmonate	cyclopentanone derivatives	induces apoptosis	A549 human lung adenocarcinom a cells, myeloid leukemia cells	
<i>Rhazya stricta</i> Decne.	didemethoxycarbonyl- tetrahydrosecamine, sewarine, tetrahydrosecamine, tetrahydrosecaminediol diacetate vallesiachotamine DL-1-(oxo-3,4-thero-3,4,5- trihydroxy-1-pentyl)-β- carboline, 16-epi-Z- isositsirkine	alkaloids	cytotoxic	cell culture	Gilani et al., 2007

Table 3. Apocynaceae Cytotoxic Phytochemicals

Araliaceae A.L. de Jussieu

A family of 39 genera and 1425 species mainly tropical shrubs, lianas or trees to occasionally herbs, aromatic with secretary canals containing volatile oils and resins. other constituents include saponins, a few alkaloids, acetylenic compounds, coumarins, diterpenoids and triterpenoids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Panax ginseng C.A.Mey.	ginsenosides	saponins	anticancer effects: regulation of cell cycle, Induction of apoptosis, Inhibition of angiogenesis	in vitro and in vivo	Qi et al., 2010
Panax ginseng C.A.Mey.	ginsenosides	saponins	Re and Rg1 enhance angiogenesis, whereas Rb1, Rg3 and Rh2 inhibit it. Rh2, an antitumor agent,, P quinquefolium has better anticancer effects		Chen et al., 2008
Panax ginseng C.A.Mey.	total extract	not stated	anticancer antitumor	cell culture	Xiang et al., 2008
Panax ginseng C.A.Mey.	ginsenosides	saponins	the risk of cancer was shown to be lower in those who used ginseng	prospective cohort study	Yun et al., 1998; Kiefer et al., 2003
Panax ginseng C. A. Mey.	ginsenosides	saponins	antitumor/cytotoxicity activities	<i>in vitro</i> and <i>in</i> <i>vivo</i> against a wide variety of cancer cell lines or <i>in vivo</i> neoplasms	Chang et al., 2003

Table 4. Araliaceae Cytotoxic Phytochemicals

Asteraceae Bercht. & J. Presl

(Compositae Giseke)

The family is the largest family of flowering plants and contains about 1590 genera and 23600 species that comprise of herbs, shrubs or trees. Asteraceae divided into 3 subfamilies: 1) Baradosioideae 2) Cichorioideae and 3) Asteroideae.

The Asteraceae contains a wide variety of chemical constituents. Some of the essential oils found in the family contain acetylenic compounds. sesquiterpenes known as azulenes. mono sesquiterpene lactones occur. Alkaloids of the pyridine, pyrrolizidine, quinoline and diterpenoid types also occur in the family, other constituents include triterpenoid saponins, cyclitols, coumarins and flavonols (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Artemisia annua L.	different fractions	not stated	antiproliferative effect	cancer cell lines	Rabe et al., 2011

Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer

Artemisia annua L.	artemisinin	sesquiterpenoids	colon cancer	in vitro	McGovern et al., 2010
Artemisia annua L.	artemisinin	sesquiterpenoids	anticancer effects, cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness	in a variety of human cancer cell model systems	Firestone et al., 2009
Artemisia annua L.	different fractions	not stated	cytotoxic and pro- apoptotic	variety of cancer cell lines	Emami et al., 2009b
Artemisia annua L.	artemisinins	sesquiterpenoids	anticancer properties	in cell lines and animal models	Krishna et al., 2008
Artemisia annua L.	artemisinin	sesquiterpenoids	proliferation (BUB3, cyclins, CDC25A), angiogenesis (vascular endothelial growth factor and its receptor, matrix metalloproteinase-9, angiostatin, thrombospondin-1) or apoptosis (BCL- 2, BAX, NF- kappaB). p53- dependent and - independent apoptosis		Efferth et al., 2007
Artemisia annua L.	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Vahdati- Mashhadian et al., 2009
<i>Artemisia argyi</i> H.Lév. & Vaniot	isoscopoletin	coumarins	lung cancer	in vitro	McGovern et al., 2010

www.intechopen.com

Artemisia biennis Willd.	different fractions	not stated	antiproliferative effect		Rabe et al., 2011
Artemisia campestris L.	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx	Vahdati- Mashhadian et al., 2009
Artemisia	total extract	not stated	cytotoxic activity	carcinoma (Hep-2) human	Vahdati-
chamaemelifolia Vill.		not surce		Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Mashhadian et al., 2009
Artemisia ciniformis Krasch. & Popov ex Poljak.	different fractions	not stated	antiproliferative effect	cancer cell lines	Rabe et al., 2011
<i>Artemisia</i> diffusa Krasch. ex Poljakov	different fractions	not stated	antiproliferative effect	cancer cell lines	Rabe et al., 2011
Artemisia diffusa Krasch. ex Poljakov	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hem 2)	Emami et al., 2009a
Artemisia fragrans Willd.	total extract	not stated	cytotoxic activity	(Hep-2) human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Vahdati- Mashhadian et al., 2009
Artemisia incana Druce	total extract	not stated	cytotoxic activity	human Caucasian	Vahdati- Mashhadian

656

Artemisia khorassanica Podlech Artemisia kulbadica Boiss. & Buhse	different fractions total extract	not stated not stated	cytotoxic activity cytotoxic activity	hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2) variety of cancer cell lines human Caucasian hepatocyte carcinoma (HepG-2) and human	et al., 2009 Mahmoudi et al., 2009 Emami et al., 2009a
Artemisia	different fractions	not stated	antiproliferative	Caucasian larynx carcinoma (Hep-2) cancer cell	Rabe et al.,
persica Boiss. Artemisia persica Boiss.	total extract	not stated	effect cytotoxic activity	lines human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	2011 Vahdati- Mashhadian et al., 2009
Artemisia santolina Schrenk	different fractions	not stated		cancer cell lines	Rabe et al., 2011
Artemisia santolina Schrenk	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Emami et al., 2009a
Artemisia sieberi Besser	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human	Emami et al., 2009a

Current Cancer Treatment – Novel Beyond Conventional Approaches

				Caucasian larynx carcinoma (Hep-2)	
Artemisia turanica Krasch.	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Emami et al., 2009a
Artemisia	different fractions	not stated	antiproliferative	cancer cell	Rabe et al.,
vulgaris L.			effect	lines	2011
Artemisia vulgaris L.	total extract	not stated	cytotoxic activity	human Caucasian hepatocyte carcinoma (HepG-2) and human Caucasian larynx carcinoma (Hep-2)	Vahdati- Mashhadian et al., 2009
Inula britannica M.Bieb.	1-O- acetylbritannilactone	sesquiterpene lactones	cytotoxic, apopotic	cell culture	Khan et al., 2010
Inula britannica M.Bieb.	1,6- <i>O,O-</i> diacetylbritannilacton e	sesquiterpene lactones	cytotoxic, apopotic	cell culture	Khan et al., 2010
<i>Inula britannica</i> M.Bieb.	6α-O-(2- methylbutyryl)- britannilactone	sesquiterpene lactones	cytotoxic, apopotic, inflammation	cell culture	Khan et al., 2010
Inula britannica M.Bieb.	neobritannilactone A	sesquiterpenes lactones	cytotoxic, apopotic, inflammation	cell culture	Khan et al., 2010
Inula britannica M.Bieb.	neobritannilactone B	sesquiterpene lactones	cytotoxic, apopotic, inflammation	cell culture	Khan et al., 2010
Inula britannica M.Bieb.	quercetin, spinacetin, diosmetin	flavonoids	antioxidant, cytotoxic	cell culture	Khan et al., 2010
<i>Saussurea</i> <i>costus</i> (Falc.) Lipsch.	C17 polyene alcohol	polyenes	anticancer, antitumor, moderate cytotoxicity	against the human tumor cell lines A549, SK-OV3, SK-MEL-2, XF 498, and	Wang et al., 2010

658

				HCT 15	
<i>Saussurea</i> <i>costus</i> (Falc.) Lipsch.	lappadilactone, dehydrocostuslactone , and costunolide	sesquiterpene lactones	most potent cytotoxicities	HepG2, OVCAR-3, and HeLa cell lines	Wang et al., 2010
<i>Saussurea</i> <i>costus</i> (Falc.) Lipsch.	total extract	not stated	cytostatic effects, inducer of apoptosis	AGS gastric cancer cell line	Wang et al., 2010
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	costunolide	sesquiterpene lactones	Anticancer, induction of apoptosis	in HL-60 human leukemia cells	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	total extract	not stated	induced apoptotic cell death	AGS gastric cancer cell line	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	lappadilactone, dehydrocostuslactone and costunolide	sesquiterpene lactones	cytotoxic	HepG2, OVCAR-3 and HeLa cell lines	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	dehydrocostus lactone	sesquiterpene lactone	induced apoptosis	human leukemia HL-60 cells	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	cynaropicrin	sesquiterpene lactones	pro-apoptotic activity	leukocyte cancer cell lines, such as U937, Eol-1 and Jurkat T cells	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	costunolide	sesquiterpene lactones	anti-angiogenic effect	vascular endothelial growth factor (VEGF)	Pandey et al., 2007
Saussurea costus (Falc.) Lipsch.= Saussurea lappa C.B.Clarke	C-17 polyene alcohol	polyenes	moderate cytotoxicities	human tumor cell lines A549, SK- OV3, SK- MEL-2, XF 498 and HCT 15	Pandey et al., 2007
Saussurea medusa Maxim.	arctiin and arctigenin	lignans	remarkable antitumorpromoting effect on two-stage carcinogenesis test	mouse-skin	Wang et al., 2010

Saussurea spp.	costunolide	sesquiterpene lactones	inducer of apoptosis	HL-60 human leukemia cells	Wang et al., 2010
Saussurea spp.	arctigenin		inhibition of TNF-a induction		Wang et al., 2010
Saussurea spp.	dehydrocostuslactone	sesquiterpene lactones	induced apoptosis	human leukemia HL-60 cells	Wang et al., 2010
Saussurea spp.	cynaropicrin	sesquiterpene lactones	inhibited the proliferation, potential anticancer agent against some leukocyte cancer cells	leukocyte cancer cell lines, such as U937, Eol- 1, and Jurkat T cells	Wang et al., 2010
Saussurea spp.	costunolide	sesquiterpene lactones	anti-angiogenic effect	human umbilical vein endothelial cells (HUVECs)	Wang et al., 2010
Silybum marianum (L.) Gaertn	total extract	not stated	prevention or treatment of liver dysfunction in patients undergoing anticancer therapy	patients with cancer	Ladas & Kelly, 2003
<i>Silybum marianum</i> (L.) Gaertn	silibinin, silymarin	flavonolignans	Prostate cancer, anticancer effects, inhibition of mitogenic and cell survival signaling	in different cancer cells, animal models	Singh et al., 2004
Silybum marianum (L.) Gaertn.	silibinin	flavonolignans	inhibition of multiple cancer cell signaling pathways, including growth inhibition, inhibition of angiogenesis, chemosensitization, and inhibition of invasion and metastasis	in animals and humans	Li et al., 2010
Silybum marianum (L.) Gaertn.	silybin, isosilybin, silychristin, silydianin and taxifoline	flavonolignans	suppression of the proliferation of a variety of tumor cells (e.g., prostate, breast,	cell culture, animal study and clinical trials	Agarwal et al., 2006

Silybum marianum (L.) Gaertn.	silybin and silymarin	flavonolignans	ovary, colon, lung, bladder), angiogenesis (VEGF) and metastasis, as a chemopreventive agent, apoptosis induction, antitumor activity anticancer and canceroprotective	not stated	Kren et al., 2005
<i>Silybum marianum</i> (L.) Gaertn.	silymarin	flavonolignans	cancer prevention, adjuvant cancer treatment, and reduction of iatrogenic toxicity	clinical trials	Sagar et al., 2007
<i>Silybum marianum</i> (L.) Gaertn.	total extract	not stated	protective effect in certain types of cancer	clinical trials	Tamayo et al., 2007

Table 5. Asteraceae Cytotoxic Phytochemicals

Brassicaceae Burnett

(Cruciferae A.L. de Jussieu)

A family of 321 genera and about 3400 species of herbs and a few undershrubs. Many members of the family contain glucosinolates. Cardiac glycosides occur in some genera and the seeds usually contain mucilage and fixed oil (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Arabidopsis thaliana (L.) Heynh.	jasmonate	cyclopentanone derivatives	induces cell death and suppresses cell proliferation	in animals, several human cancer cell lines	Balbi & Devoto, 2007
<i>Brassica</i> spp.	indole-3- carbinol	glucosinolates	breast cancer, prostate cancer, endometrial cancer, colon cancer, and leukemic, induce G1/S arrest of the cell cycle, and induce apoptosis	<i>in vitro</i> and <i>in vivo,</i> clinical trials	Aggarwal & Ichikawa, 2005

Table 6. Brassicaceae Cytotoxic Phytochemicals

Campannlaceae A.L. de Juessieu

The family contains 79 genera and around 1900 species mostly herbs but some shrubs and pachycaul trees with a network of lacticifers in phloem. The members of the family contain

phenolic compounds, tannins and triterpenoid glycosides (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Codonopsis pilosula	a mixture of citronellol and	not stated	Improvement of immune	randomized, double-blind,	Zhuang et al.,
Nannf.	extracts of		function, improving	placebo-	2009
(Ganoderma lucidum,		the ability to fight off the cancer, as well as	controlled study	
	Codonopsis pilosula and	291	any secondary infections that could	999	
	Angelicae sinensis		compromise the treatment and the		
			health		

Table 7. Campannlaceae Cytotoxic Phytochemicals

Cannabaceae Martynov

A family of 10 genera and 80 species usually trees or shrubs but also herbs or vines. Widely distributed in tropical to temperate regions (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Ĥumulus lupulus L.	hop acids		proliferation and angiogenesis, by	<i>in vitro</i> and <i>in vivo</i>	Van Cleemput et al.,
			inducing apoptosis		2009

 Table 8. Cannabaceae Cytotoxic Phytochemicals

Clusiaceae Lindley

(Guttiferae A.L. de Jussieu)

The Clusiaceae contains about 30 genera and 1150 tropical species. They are trees shrubs or lianas with colored exudate in secretory canals or cavities. Constituents of the family include resins, volatile oils, alkaloids, xanthones and seed oil (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
<i>Garcinia</i> <i>cantleyana</i> Whitmore	cantleyanones, 7- hydroxyforbesione, and deoxygaudichaudione A from	xanthones	cytotoxic effect	variety of cancer cell lines	Han et al., 2009
<i>Garcinia gaudichaudii</i> Planch. & Triana	gaudichaudiones, gaudichaudic acids, gaudichaudione H xanthones	xanthones	potent antitumor activity	variety of cancer cell lines	Han et al., 2009
<i>Garcinia indica</i> Choisy	gambogic acid (gamboges or kokum)	pigments	cytotoxic, apoptotic, antiangiogenesis and anticancer	<i>in vitro</i> and <i>in vivo</i>	Aggarwal et al., 2008

Garcinia spp.	gaudichaudione A	xanthones	induced the apoptosis	human leukemic cells	Han et al., 2009
Garcinia spp.	gambogic acid	pigments	induce apoptosis, can overcome the drug resistance, In vitro and in vivo studies	<i>in vitro</i> and <i>in vivo</i>	Han et al., 2009

Table 9. Clusiaceae Cytotoxic Phytochemicals

Combretaceae R. Brown

A family of 17 genera and 525 species, tropical and subtropical trees, shrubs or lianas, sometimes with erect monopodial trnnk supporting a series of horizontal, sympodial branches. Members of the family usually rich in tannin (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
<i>Combretum</i> <i>caffrum</i> Kuntze		phenolic compounds	1	cancer cells cell culture	Nam et al., 2003

Table 10. Combretaceae Cytotoxic Phytochemicals

Cornaceae Bercht. & Presl

A family of 2 genera and 80 species. Trees, shrubs or rarely rhizomatous herbs usually with iridoids, widespread; specially common in north temperate regions, rare in tropical and south temperate regions (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
	_	Compound			
Camptotheca	camptothecin	alkaloids	anticancer drugs	cancer	Sirikantaramas
acuminata	and its			treatment	et al.,
Decne.	derivatives			in patients	2007

Table 11. Cornaceae Cytotoxic Phytochemicals

Crassulaceae J. St. Hilaire

The Crassulaceae contains 92 genera and around 1380 species almost cosmopolitan especially south Africa, rare in Australia and wcst Pacific. succulent herbs to shrubs; often with cortical or medullary vascular bundles; with crassulacean acid metabolism (CAM), tannins present, often with alkaloids, sometimes cyanogenic (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Rhodiola rosea L.	total extract		anticancer, decreased metastasis to the liver, and extended survival times		Kelly et al., 2001

Table 12. Crassulaceae Cytotoxic Phytochemicals

Cupressaceae Gray

A family of 30 genera and 130 species. The family is subcosmopolitan of warm to cold temperate climate. Monoecious or dioecious resinous trees or shrubs. Leaves descussate or in whorls of 3 or 4, in young plants needle – like, usually small and scale – like in mature plants. Flowers, small, solitary, axillary or terminal on short shoots, cones terminals, woody, leathery or berry – like, cone – scales opposite or in whorls of 3, ovules usually several per scale. Seeds winged or not. Constituents of the family include essential oils, monoterpenes, sesquiterpenes diterpenes, tannins and flavomoids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Cupressus sempervirens L. var. horizentalis (Mill.) Gordon	total extract	not stated	cytotoxic effect	cell culture	Emami et al., 2005
<i>Juniperus</i> excelsa M.Bieb. subsp. excelsa	total extract	not stated	cytotoxic effect	cell culture	Sadeghi- aliabadi et al., 2009a
Juniperus excelsa M.Bieb. subsp. polycarpos (K. Koch) Takhtajan	total extract	not stated	cytotoxic effect	cell culture	Sadeghi- aliabadi et al., 2009a
Juniperus foetidissima Willd.	total extract	not stated	cytotoxic effect	cell culture	Sadeghi- aliabadi et al., 2009b
Juniperus sabina L.	total extract	not stated	cytotoxic effect	cell culture	Sadeghi- aliabadi et al., 2009b
<i>Platycladus orientalis</i> (L.) Franco	total extract	not stated	cytotoxic effect	not stated	Emami et al., 2005

 Table 13. Cupressaceae Cytotoxic Phytochemicals

Ericaceae A.L. de Jussieu

They Ericaceae contains 117 genera and 3850 species cosmopolitan except deserts usually montane in tropical regions. Trees, shrubs, lianas or subherbaceous, sometimes epiphytic, occasionally mycoparasitic herbs lacking chlorophyll, strongly associated with micorrhizal fungi. The family produces phenolic acids, phenolic glycosides aucubin glycosides, diterpenoids, triterpenoids, cyclitols and leucoanthecyanins. A few species are cyanogenic; saponins are absent (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Vaccinium	not stated	not stated	induction of apoptosis in	in vitro	Neto et al.,
macrocarpon			tumor cells, reduced	tumor	2008
Aiton			ornithine decarboxylase	models	
			activity, decreased		
			expression of matrix		

Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer

Vaccinium	polyphenolic extracts fl	lavonoids	inhibit the growth and	in vitro	Neto et al.,
macrocarpon	flavonols,		proliferation of breast,	studies	2007
Aiton	proanthocyanidin		colon, prostate, lung,	using a	
	oligomers, and		and other tumors,	variety of	
	triterpenoids isolated		induction of apoptosis in	tumor	
	from the fruit.		tumor cells, reduced	models	
			ornithine decarboxylase		
			activity, decreased		
			expression of matrix		~
	$\square \neg \land \land \frown \land \land$		metalloproteinases	(\bigtriangleup)	$\left(\right)$
			associated with prostate		
			tumor metastasis, and		
			antiinflammatory		
			activities including		
			inhibition of		
			cyclooxygenases		

Table 14. Ericaceae Cytotoxic Phytochemicals

Fabaceae Lindley

(Leguminosae A.L. de Jussieu)

This is the second – largest family of flowering plants and contains 720 genera and 19500 cosmopolitan species. Herbs, shrubs, trees or vines / lianas climbing by twining or tendrils; with a high nitrogen metabolism and unusual aminoacids, often with root nodules containing nitrogen – fixing bacteria, sometimes with secretory canals or cavities, tannins usually present, often with alkaloids; sometimes cyanogenic, sieve cell plastids with protein crystals and usually also starch grains.

The family is divided into three subfamilies: 1) Papilionoideae; 2) Mimosoideae and 3) Caesalpinoideae (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
<i>Glycine max</i> (L.) Merr.	soy saponins	saponins	cancer protective effects	epidemiological studies	Kerwin et al., 2004
<i>Glycyrrhiza</i> <i>inflata</i> Batalin	licochalcone E,	flavonoids	potent cytotoxic effect	in tumor cells	Asl & Hosseinzadeh, 2008
<i>Glycyrrhiza</i> spp.	total extract	not stated	inhibits angiogenesis, induced apoptosis	in vivo and in vitro	Asl & Hosseinzadeh, 2008
<i>Glycyrrhiza</i> spp.	glycyrrhetinic acid	triterpenoids	trigger the proapoptotic pathway	in tumor cells	Asl & Hosseinzadeh, 2008
<i>Glycyrrhiza</i> spp.	isoliquiritigenin (ILG)	triterpenoids	antiproliferative activity, trigger the proapoptotic pathway	in tumor cells	Asl & Hosseinzadeh, 2008
<i>Glycyrrhiza</i> spp.	glabridin dibenzoylmethane	triterpenoids	antiproliferative activity, trigger	in tumor cells	Asl & Hosseinzadeh,

665

Current Cancer Treatment – Novel Beyond Conventional Approaches

	(DBM)		the proapoptotic pathway		2008
Trigonella foenum graecum	diosgenin	saponins	suppress proliferation, invasion inhibition, cytotoxic, apoptotic, anti- cancer activity	cell culture, animal study	Aggarwal et al., 2008
Table 15. F	abaceae Cytotox	ic Phytochemic	cals		

Ginkgoaceae Engler

A family contains only a monotypic genus, limited to remote mountain valleys of China; possibly extinct in the wild. From among the many groups of compounds isolated from Ginkgo biloba it is diterpenelactons and flavonoids which have been shown to possess therapeutic activity (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Ginkgo biloba L.	total extract	not stated	chemopreventive action at various levels with antioxidant, antiangiogenic properties, reduce angiogenesis	cell culture, cancer model	Mahadevan et al., 2008
Ginkgo biloba L.	total extract	not stated	anticancer (chemopreventive) properties are related to its antioxidant, antiangiogenic and gene-regulatory actions	cell culture	Dubey et al., 2004
Ginkgo biloba L.	ginkgolide B	sesquiterpenoids	anticancer (chemopreventive) properties that are related to their antioxidant, anti-angiogenic and gene-regulatory actions	molecular, cellular and whole animal models	DeFeudis et al., 2003
Ginkgo biloba L.	not stated	flavonoids	anticancer (chemopreventive) properties that are related to their antioxidant, anti-angiogenic and gene-regulatory actions	molecular, cellular and whole animal models	DeFeudis et al., 2003

Table 16. Ginkgoaceae Cytotoxic Phytochemicals

Hypericaceae A. L. de Jussieu

The Hypericaceae consists of 9 genera and 540 species. Members of this family are trees, shrubs or herbs with clear or block resinous sap in secretory cavities (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
01	hypericin	naphthodianthrones	antineoplastic	<i>in vivo</i> and <i>in</i>	
perforatum L.		BCN	activity upon irradiation, photosensitizer can induce both apoptosis and necrosis	vitro, potential clinical anticancer agent	al., 2002

Table 17. Hypericaceae Cytotoxic Phytochemicals

Iridaceae A. L. de Jussieu

A family of 70 genera nd 2000 species. The species are widely distributed usually geophytic herbs with rhizomes, corms or bulbs, less often evergreen or even shrubby, rarely annuals or achlorophyllous mycotroph. Constituents include quinones, aromatic ketones, carotenoid pigments, terpenoids, and flavonoids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Crocus	total extract	not stated	antitumor and cancer	experimental in	Abdullaev &
sativus L.			preventive activities	vitro and in vivo	Espinosa-
			of saffron and its	investigations	Aguirre,
			main ingredients	_	2004
Crocus	total extract	not stated	apoptosis induction	in vitro	Mousavi et al.,
sativus L.			in MCF-7 and MDA-		2009;
			MB-231 breast cancer		Chryssanthi et
			cells		al., 2007

Table 18. Iridaceae Cytotoxic Phytochemicals

Lamiaceae Martynov

(Labiatae A. L. de Jussieu)

A family of 238 genera and 6500 species. Trees, shrubs, annual or perennial herbs, rarely lianas. Young stems often 4 – angleded. Leaves opposite and simple. Flower are bisexuals, usually bracteolate and in cymes, thyrse or verticillasters or single. The family divided into 7 subfamilies. The Lamiaceae contains many species that are economically important either for their volatile oils or for use as spices. Among the constituents found in the family are essential oils, saponins, tannins, quinones, irodoids: alkaloids appear to be rare (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Ocimum sanctum L.	ursolic acid	triterpenoids	antitumor		Prakash & Gupta, 2005

Current Cancer Treatment – Novel Beyond Conventional Approaches

Phlomis	Phenyl propanoid	phenolic	anticancer activity	several kinds	Limem-Ben
armeniaca Willd.		compounds		of cancer	Amor et al.,
	phenylethyl alcohol	1		cells	2009
	and				
	phenylethylalcohol				
	glycosides				
Phlomis	verbascoside,	phenolic	cytotoxic activity	L6 cell lines	Limem-Ben
brunneogaleata	isoverbascoside,	compounds			Amor et al.,
HubMor.	forsythoside B and 3-				2009
	O-caffeoylquinic acid				
	methyl ester	\neg			
Rosmarinus	ursolic acid (3β -	triterpenoids	suppress	<i>in vitro</i> and <i>in</i>	Aggarwal
officinalisL.	hydroxy-urs-12-en-		tumorigenesis,	vivo	et al., 2008
	28-oic acid)		inhibit tumor		
			promotion, and		
			suppress angiogenesis,		
			inhibited		
			proliferation,		
			induced apoptosis		
Salvia	total extract	not stated	cyotoxic	animals and	Kamatou et
chamelaeagnea	total extract	not stated	cyotoxic	humans	al., 2008
P.J.Bergius,					, 2000
	total extract	not stated	cyotoxic	animals and	Kamatou et
Schinz			5	humans	al., 2008
Salvia runcinata	total extract	not stated	cyotoxic	animals and	Kamatou et
L.f.				humans	al., 2008
Salvia africana–	total extract	not stated	cytotoxic effects on	human cancer	Kamatou et
caeruleaL.			cancer cells	cell lines	al., 2008
Salvia	total extract	not stated	cytotoxic effects on	human cancer	Kamatou et
chamelaeagnea			cancer cells	cell lines	al., 2008
P.J.Bergius					
	total extract	not stated	5	human cancer	
Codd	1	1	cancer cells	cell lines	al., 2008
Salvia	total extract	not stated	cytotoxic effects on		
gariepensis E.Mey.			cancer cells	cell lines	al., 2008
Salvia hypargeia	total extract	not stated	cytotoxic effects on	human cancer	Kamatou at
Fisch. & Mey.	iotal extract	not stated	cancer cells	cell lines	al., 2008
Salvia lanceolata	total extract	not stated	cytotoxic effects on	human cancer	
Lam.	iotal extract	not stated	cancer cells	cell lines	al., 2008
Salvia	in mixture with	not stated	could be beneficial	clinical trial	Wong et al.,
miltiorrhiza	coriolus versicolor		for promoting		2005
Bunge	in		immunological		
	capsules		function		
	-		in post-treatment of		
			breast cancer		
			patients		
Salvia	total extract	not stated	cytotoxic effects on	human cancer	Kamatou et
<i>muirii</i> L.Bolus			cancer cells	cell lines	al., 2008
Salvia namaensis	total extract	not stated	cytotoxic effects on	human cancer	Kamatou et
Schinz			cancer cells	cell lines	al., 2008

Salvia radula	total extract	not stated	cytotoxic effects on	human cancer	
Benth.			cancer cells	cell lines	al., 2008
<i>Salvia repens</i> Burch. ex Benth.	total extract	not stated	cytotoxic effects on cancer cells	human cancer cell lines	Kamatou et al.,2008
<i>Salvia runcinata</i> L.f.	total extract	not stated	cytotoxic effects on cancer cells	human cancer cell lines	Kamatou et al., 2008
Salvia verbenaca L.	total extract	not stated	cytotoxic effects on cancer cells	human cancer cell lines	
Scutellaria barbata D.Don	aqueous extract	not stated	anticancer activity in women with metastatic breast cancer (MBC)	the trial was an open- label, phase 1B, multicenter, dose escalation study	Perez et al., 2010
Scutellaria spp.	Wogonin, Baicalein and Baicalin	flavones	potent anticancer activities, scavenge oxidative radicals, to attenuate NF- kappaB activity, to inhibit several genes important for regulation of the cell cycle, to suppress COX-2 gene expression and to prevent viral infections	in vitro and in vivo	Li-Weber 2009
Scutellaria lindbergii Rech. f.	different fractions	not stated	cytotoxic effects in different cancer cell lines in which apoptosis plays an important role, potential chemotherapeutic agent	cancer cell lines	Tayarani- Najaran et al., 2009
<i>Scutellaria litwinowii</i> Bornm. & Sint. ex Bornm	different fractions	not stated	cytotoxic effects in different cancer cell lines in which apoptosis plays an important role, potential chemotherapeutic agent	cancer cell lines	Tayarani- Najaran et al., 2011

Table 19. Lamiaceae Cytotoxic Phytochemicals

Liliaceae A. L. de Jussieu

A widely distributed family of 16 genera and about 600 species of perennials with bulbs or rhizomes; aerial stem unbranched. Leaves oval to filiform, usually parallel – veined.

Inflorescences usually raceme sometimes umbel, thyrse or 1 – flowered. Many members of the family contain alkaloids, which are of the steroidal, isoquinoline or purine types, other steroidal substances include sterols, cardenolides bufadienolides and steroidal saponins. Other constituents include quinones, flavonoids, the gamma – pyrone chelidonic acid, cyanogenic substances and fructosan – type carbohydrates. Some volatile oils of the family have antimicrobial properties (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Allium sativum L.	ajoene	thiosulfinates	anticancer activity, activation of the mitochondrial- dependent caspase cascade	in vitro	Kaschula et al., 2010
Allium sativum L.	not stated	not stated	garlic rich diet decreases risk of some cancers	epidemiological studies	Iciek et al., 2009
Allium sativum L.	not stated	not stated	Mortality in stomach cancer patients from the region where people have consumed high- garlic diet (about 20 g a day) was three times lower than in the second region in which consumption of plats of the family Allium was very low	trials carried out in China compared two big human populations living	Iciek et al., 2009
Allium sativum L.	not stated	not stated	negatively correlated with colon cancer, reduced risk of prostate cancer, reduced risk of breast cancer	epidemiological analysis,	Iciek et al., 2009
Allium sativum L.	DATS (diallyl trisulfide)	not stated	protection against gastric cancer	double-blind intervention study	Iciek et al., 2009
Allium sativum L.	alk (en)yl sulfides	thiosulfinates	anticancer effect	human colon cancer cells	Seki et al., 2008
Allium sativum L.	organosulfur compounds (OSCs)	thiosulfinates	inhibition of DNA adduct formation, upregulation of antioxidant defences and DNA repair systems, and suppression of cell proliferation by blocking cell cycle	epidemiological studies as well as laboratory data	Nagini et al., 2008

			progression and/or		
			inducing apoptosis		
Allium sativum L.	diallylsulfides	thiosulfinates	not stated	not stated	Münchberg et al., 2007
Allium sativum L.	allicin and diallyltrisulfide	thiosulfinates	anticancer agents	cell culture	Münchberg et al., 2007
Allium sativum L.	allicin, methyl allyl trisulfide, and diallyl trisulfide	thiosulfinates	not stated	not stated	Ariga et al., 2006
Allium sativum L.	organosulfur compounds	thiosulfinates	anticarcinogenic and antitumorigenic	preclinical	Milner, 2006
Allium sativum L.	thiosulfinates such as allicin	thiosulfinates	anticancer and chemopreventive activities	not stated	Amagase, 2006
Allium sativum L.	organic allyl sulfur components		inhibitors of the cancer process, depression in nitrosamine formation and a reduction in carcinogen bioactivation	not stated	Milner et al., 2001
Allium sativum L.	thiosulfinates, allicin, S- allylcysteine, S- allylmercaptocyste ine, N (alpha)-fructosyl arginine	thiosulfinates	not stated	not stated	Amagase et al., 2001
Aloe arborescens Mill.	in combination with pineal indole melatonin	not stated	stabilization of disease and survival, in patients with advanced solid tumors	a randomized study of chemotherapy versus biochemotherapy	Lissoni et al., 2009
Aloe vera L.	barbaloin,octapept ide, aloesin, aloe- emodin	antheraquinones	prolongation of the life span of tumor-transplanted animals, cytotoxicity, apoptosis	<i>in vitro</i> (acute myeloid leukemia (AML) and acute lymphocytes leukemia (ALL) cancerous cells) and <i>in vivo</i>	El-Shemy et al., 2010
Aloe vera L.	acemannan	polysaccharides	anti-tumour activity	<i>in vitro</i> models as well as in different animal species	Hamman et al., 2008
Aloe vera L.	gel	not stated	reduced tumour burden, tumour shrinkage, tumour necrosis and prolonged survival rates,	<i>in vitro</i> models as well as in different animal species	Hamman et al., 2008

			chemopreventative		
			and anti-genotoxic		
			effects on		
			benzo[a]pyrene-		
			DNA adducts		
Aloe vera L.	not stated	glycoproteins	anti-cancer effects,	<i>in vitro</i> models as	Hamman et
		(lectins) and	stimulation of the	well as in	al.,
		polysaccharides	immune response	different	2008
5				animal species	
Table 20. L	iliaceae Cytotoxic	Phytochemicals			

Linaceae A. P. de Candolle ex Perleb.

A family of 10 genera and 280 species.

Lianas, shrubs and herbs sometimes cyanogenic. Leaves are spirals to opposites, simple, entire. Flowers bisexuals usually regulars and 5 – merous in cymose or racemose inflorescence. Constituents of the family in clued cyanogenaic glycosides, fixed oils, mucilage, diterpenes and triterpenes (Evans 2009; Judd et al., 2008; Mabberley 2008). Family Linaceae

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Linum	secoisolariciresinol	lignans	inhibited the	cell culture	Sok et al.,
usitatissimum L.			invasion,		2009
			inhibitory effect		
			on breast and		
			colon carcinoma,		
			potent cytotoxic		
			effect on		
			human		
			promyleocytic		
			leukemia HL-60		
			cells, DNA		
			damage and		
			apoptosis,		
			anticancer,		
	$ \neg (\bigcirc) (\cap)$		antiapoptotic	$(\bigtriangleup) $	$\left[\bigcirc \right]$
Linum	lariciresinol and	lignans	anticancer,	cell culture	Sok et al.,
usitatissimum L.	pinoresinol		antiapoptotic		2009
Linum	secoisolariciresinol	lignans	anticancer,	cell culture	Sok et al.,
usitatissimum L.	diglucoside		antiapoptotic		2009
Linum	hydroxymatairesinol,	lignans	antitumor activity,	cell culture,	Sok et al.,
usitatissimum L.		-	anticarcinogenic	animal	2009
			effects	experiment	
Linum	enterolactone and	Lignans	potential	randomized	Coulman
usitatissimum L.	enterodiol		anticancer effects	crossover	et al.,
				study	2005

Table 21. Linaceae Cytotoxic Phytochemicals

Loranthaceae A. L. de Jussieu

A family of 84 genera and 950 species. Pantropical but no single genus spans both Old and New Worlds.

Typically brittle shroblets on tree – branches; less often trrestrial shrubs, lianas or even trees. The family contains glycoproteins, polypeptides, lignans, flavonoids, etc. (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Viscum album L.	total extracts	not stated	the evidence from RCTs to support the view that the application of mistletoe extracts has impact on survival or leads to an improved ability to fight cancer or to withstand anticancer treatments is weak.	randomized clinical trials (RCTs) and controlled clinical trials	Horneber et al., 2008
Viscum album L.	lectins	proteins	anti-metastatic effect, inhibition of tumour- induced angiogenesis, and in part due to an induction of apoptosis, suppress tumour growth	different tumour cell lines, in vivo	
Viscum album L.	aqueous extract (Isorel)	not stated	Isorel can improve immune competence and the overall health status of cancer patients undergoing surgery	clinical trial	Enesel et al., 2005
Viscum album L.	mistletoe lectins I, II, and III	proteins	improvement of quality of life in cancer patients	several preclinical studies, randomised phase III study	Stauder & Kreuser, 2002
Viscum album L.	total extract (Isorel)	not stated	benefit in terms of survival from combined postoperative chemotherapy and Isorel biotherapy, either adjuvant or palliative	Randomized and controlled study, patients	Cazacu et al., 2003

Table 22. Loranthaceae Cytotoxic Phytochemicals

Lythraceae J. St. - Hilaire

A family contains 31 genera and 600 tropical with few temperate species. Herbs, less often sub shrubs or trees. Leaves are opposite and simple. Flowers are bisexuals, often heterostylons, solitary, fascicled in axils or terminal racemes, regular or not, with conspicuous hypanthium.

Constituents of the family include quinones, alkaloids and tannins (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Punica granatum L.	total exract	not stated	potential chemopreventive and anticancer agent	<i>in vitro</i> and <i>in</i> <i>vivo</i> animal models	Syed et al., 2007
Punica granatum L.	total exract	not stated	cancer chemoprevention, anticancer activities, interference with tumor cell proliferation, cell cycle, invasion and angiogenesis	mouse mammary organ culture, <i>in</i> <i>vitro</i> and <i>in</i> <i>vivo</i> , open- label, singlearm, 2-year, phase-2, Simon two- stage clinical trial	Lansky et al., 2007

Table 23. Lythraceae	Cytotoxic P	hytochemicals
----------------------	-------------	---------------

Malvaceae A. L. de Jussieu

The Malvaceae consists of 113 genera and 5000 cosmopolitan species. Trees, shrubs, lianas and herbs, rarely scandent, usually with tufted or stellate hairs and parenchyma typically with scattered mucilage cell, mucilage cavities or mucilage canals. The family divided into 9 subfamilies. Constituents of the family include alkaloids, cardiac glycosides, saponins, tannins, pbenolic acids and mucilage (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Gossypium spp	gossypol	polyphenols	anticancer	not stated	Wang et al., 2009

Table 24. Malvaceae Cytotoxic Phytochemicals

Melanthiaceae Batsch ex Borkh.

A family of 16 genera and about 120 species distributed in temperate and/or montane habitats. Members of this family perennial herbs sometimes pachycaul, with rhizomes and spirals of or distichous leaves. Inflorescence are spikes or racemes of usually bisexual flowers, steroidal saponins and various tonic alkaloids often present (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Veratrum	resveratrol, trans-	stilbenoids	growth-inhibitory	wide variety of	Aggarwal et
grandiflorum	3,5,4'-		effects, suppression	tumor	al.,
O.Loes	trihydroxystilbene		of angiogenesis,	cells, including	2004
			potentiate the	lymphoid and	

674

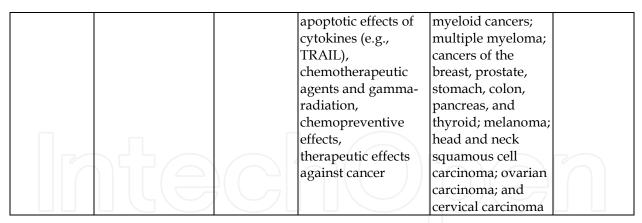


 Table 24. Melanthiaceae Cytotoxic Phytochemicals

Meliaceae A. L. de Jussieu

The Meliaceae contains 50 genera and 650 tropical and subtropical species. Trees, often pachycaul, rarely subshrubs or suckering shrublets, dioecious polygamous, monoecious or with only bisexual flowers, bark bitter and astringent. Leaves pinnate to bipinnate, unifolioate or simple, in spirals with usually entire leaflets and basally swollen petiole sometimes spiny. Flowers if unisexual often with rudiments of opposite sex, in spikes to thyrses, axillary to snpra – axillary. The family divided into two subfamilies. Significant constituents of the family are triterperoids and limonoids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Family Meliaceae

Species	Compound	Class of Compound	Effect	Status	Ref.
Âglaia elliptifolia Merr.	rocaglamide		activity, induce apoptosis in different human	<i>in vivo</i> model,	Kim et al., 2006

Table 25. Meliaceae Cytotoxic Phytochemicals

Moraceae Gaudich.

A family of 38 genera and 1150 species of tropical and warm monoecious or dioecious trees, shrubs, lianas or rarely herbs, usually with laticifers with milky latex dis tributed in all parenchy matous tissues. The family divided into 5 tribes. Constituents of the family include cardenolides and pyridine alkaloids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Ficus	6-O-acyl-	latex	anti-proliferative	in	Lansky et
spp.	d-glucosyl-sitosterol		activity, inhibited	several	al.,
	isoforms		the growth of	tumor	2008
			hepatic	cell lines,	
			carcinoma	in vitro	
			xenografts by	in mice	
			approximately		
			49%		

Ficus	apigenin, carpachromene,	flavonoids	cytotoxic	In	Lansky et
spp.	and norartocarpetin			several	al.,
				cancer cell lines	2008
Ficus spp.	C-28 carboxylic acid functional groups	triterpenoids, phenanthroindolizidine alkaloids	cytotoxic	human cancer cell lines	Lansky et al., 2008
<i>Ficus</i> <i>septica</i> Burm. f.,	ficuseptine-A (6), (+)-tylophorine (19), and a mixture of (+)- antofine (1) and (+)- isotylocrebrine (12)	alkaloids	cytotoxic activity	in several cancer cell lines	Lansky et al., 2008
Ficus hispida L.f.	O-methyltylophorinidine	alkaloids	cytotoxic activity	in several cancer cell lines	Lansky EP 2008

Table 26. Moraceae Cytotoxic Phytochemicals

Oleaceae Hoffmannsegg & Link.

A family of 24 genera and 800 species of trees and shrubs, sometimes lianoid, usually with peltate secretory hairs. Sclereids often present, usually with phenolic glycosides. Other constituents of the family are saponins, tannins, coumarins and iridoid glycosides. Alkaloids are rare (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Olea europaea L.	not stated	Phenolic compounds	inhibit colon cancer development	in large intestinal cancer cell models, animals , and humans	Corona et al., 2009
Olea europaea L.	oleic acid	fatty acids	induces apoptosis and cell differentiation, colorectal chemoprotection	<i>in vitro</i> and <i>in vivo</i> studies	Waterman et al., 2007
Olea europaea L.	squalene	triterpenoids	chemoprotective effect, lower incidence of skin cancer, inhibitory action on chemically-induced skin carcinomas.	epidemiological data, animal studies	Waterman et al., 2007
Olea europaea L.	monounsaturated fatty acids, squalene, tocopherols, and phenolic compounds	Phenolic compounds	associated with low incidence and prevalence of cancer, including colorectal cancer	epidemiologic, <i>in</i> <i>vitro</i> , cellular, and animal studies	Hashim et al., 2005

Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer

Olea	squalene and	phenolic	scavenging singlet	animal, cellular	Owen et al.,
europaea	terpenoids	antioxidants	oxygen generated	and	2004
L.	acteosides,	and	by UV light,	metabolic studie	
	hydroxytyrosol,	squalene???	chemopreventive		
	????tyrosol		effects against		
	and phenyl		colorectal		
	propionic acids		cancer, potential as		
	hydroxytyrosol and		chemopreventive		
	tyrosol secoiridoids and		agents		
	lignans			YS	

Table 27. Oleaceae Cytotoxic Phytochemicals

Papaveraceae A. L. de Jussieu

The Papaveracea contains 430 genera and 770 species widely distributed in mainly temperate regions; specially diverse in the Northern Hemisphere, but also in southern Africa and eastern Australia. Herbs to soft – wooded shrubs; stem with vascular bundles sometimes in several rings with laticifers present and plants with white, cream, yellow, orange, or red sap, or with specialized elongated secretory cells and sap then mucilaginous, clear, sap with various alkaloids. The family is rich in alkaloids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
-	-	Compound			
Chelidonium	total extract	not stated	has curative effects on	randomised	Ernst &
majus L.			a range of cancers	clinical trials	Schmidt,
					2005

 Table 28. Papaveraceae Cytotoxic Phytochemicals

Sapindaceae A. L. de Jussieu

The Sapindaceae is a family of 131 genera and 1450 species.

This family is divided into 3 subfamilies: 1) Hippocastanideae 2) Dodonaeoideae and 3) Sapindoideae. Mainly tropical and subtropical with a few genera most diverse in temperate regions. Trees, shrubs or lianas and herbaceous climbers. Constituents of the family inclued saponins, cyanogenic glycosides, cyclitols and coumarins. Alkaloids have been reported in a few species (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect		Status	Ref.
Litchi chinensis Sonn.	epicatechin, procyanidin B2, procyanidin B4	flavonoids	inhibition of proliferation and induction of apoptosis in cancer through upregulatio and down-regulatio multiple genes, anti breast cancer	on on of	cell culture	Li et al., 2007

Table 29.	Sapindaceae	Cytotoxic	Phytochemicals

Solanaceae A. L. de Jussieu

The family comprise of 91 genera and 2450 species. Subcosmopolitan especially in tropical America. Shrubs, trees, lianas and herbs with branched hairs and often prickles; internal phloem around pith; some dioecious. Leaves simple, or lobed to pinnate or 3 – foliate, usually in spirals. Flowers solitary or in appearent basically cymose inflorescence. The Solanaceae is divided into two subfamilies: 1) Solanoideae and 2) Browallioideae.

The family contains a wide range of alkaloids which are great taxonomic interest. Types of alkaloid recorded are tropane, alkaloidal amine, indole, isoquinoline, purine, pyrazole, pyridine, pyrrolidine, quinolizidine, stroid alkaloids and glycoalkaloids. Other constituents include stroidal saponins, withanolides, coumarins, cyclitols, pungent principles, flavones, caretenoids and anthra quinons (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Capsicum annuum L.	capsanthin and capsorubin	carotenoids	potent P-gp inhibitors	cell culture	Molnár et al., 2010
<i>Capsicum</i> <i>chinense</i> Jacq.	capsaicin	capsaicinoids.	apoptosis inducer	cell culture	Meghvansi et al., 2010
Capsicum spp.	capsaicin (trans- 8-methyl-N- vanillyl-6- nonenamide)	alkaloids	blocks the translocation of nuclear factor kappa B (NF-kB), activator protein 1 (AP-1), and signal transducer and activator of transcription (STAT3) signaling pathway	cell culture	Oyagbemi et al., 2010
<i>Capsicum</i> spp.	capsaicin (trans- 8-methyl-N- vanillyl-6- nonenamide)	alkaloids	anticancer effects	cell culture, in animal models	Aggarwal et al., 2008
Lycopersicon esculentum Mill.	lycopene	carotenoids	prostate cancer	cell culture, animal, epidemiologic and case-control studies	Ansari & Ansari, 2005
Lycopersicon esculentum Mill.	lycopene	carotenoids	several types of cancer, including prostate cancer	<i>in vitro</i> and <i>in vivo</i> studies	Hwang et al., 2002
Lycopersicon esculentum Mill.	lycopene	carotenoids	cancer chemopreventive effects	animal models	Cohen et al., 2002
Nicotiana tabacum L.	alpha- and beta- 2,7,11- cembratriene- 4,6-diols	diterpenoids	anticancer activity	cell culture, mice, mouse, rats	El Sayed et al., 2007
Solanum incanum L.	diosgenin	saponins	suppress proliferation, invasion inhibition,	cell culture, animal study	Aggarwal et al., 2008

			Cytotoxic, apoptotic, anti- cancer activity		
Solanum xanthocarpum Schrad. & Wendl	diosgenin	saponins	suppress proliferation, invasion inhibition, Cytotoxic, apoptotic, anti- cancer activity	cell culture, animal study	Aggarwal et al., 2008

Table 30. Solanaceae Cytotoxic Phytochemicals

Ranunculaceae A. L. de Jussieu

A family of 56 genera and 2100 species. Widespread, but especially characteristic of temperate boreal regions of the Northern Hemisphere. Herbs, shrubs or occasionally vines. Leaves usually alternate and spiral, occasionally opposite, simples sometimes lobed or dissected, to compound, usually serrate, or crenate, with pinnate to occasionally palmate venation. Inflorescences determinate, sometimes appearing in de terminate or reduced to a single flower, terminal. Flowers usually bisexual. The family has diverse chemical constituents and is of considerable phytochemical and chemotaxonmic interest (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Nigella sativaL.	Thymoquinone	not stated	suppress proliferation, invasion inhibition, Cytotoxic, apoptotic, anti-cancer activity, anti	animal study <i>, in</i>	Aggarwal et al., 2008
			angiogenic		

 Table 31. Ranunculaceae Cytotoxic Phytochemicals

Rosaceae A. L. de Jussieu

A family of 85 genera and around 3000 species. The family is subcosmopolitan and most abundant in the northern Hemisphere. Herbs, shrubs, or trees, often rhizomatous, in frequently climbing; thorns sometimes present. This family is divided into 3 subfamilies and 17 tribes. Constituents of the Rosaceae include cyanogenic glycosides, saponins, tannins, sugar alcohols, cyclitols, terpenoids and mucilage; alkaloids and coumarins are rare (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of	Effect	Status	Ref.
		Compound			
Aronia	not stated	anthocyanins	anticancer	in vitro and in in	Kokotkiewicz et
arbutifolia (L.)		and		<i>vivo</i> studies	al.,
Pers.		procyanidins			2010
Aronia	not stated	anthocyanins	anticancer	in vitro and in	Kokotkiewicz et
melanocarpa		and		<i>vivo</i> studies	al.,
(Michx.)		procyanidins			2010
Elliott					

Fragaria ×	ellagic acid, and flavonoid	anticancer	in several	Hannum et al.,
ananassa	certain	activity, blocking	different	2004
(Weston)	flavonoids:	initiation of	experimental	
Duchesne ex	anthocyanin,	carcinogenesis,	systems	
Rozier	catechin,	and suppressing		
	quercetin and	progression and		
	kaempferol	proliferation of		
		tumors		

Table 32. Rosaceae Cytotoxic Phytochemicals

Rubiaceae A. L. de Jussieu

The Rubiaceae consists of 563 genera and 10900 species. Members of the family are cosmopolitan, but most diverse in tropical and subtropical regions. The Rubiaceae divided into 4 subfamilies. In the family, alkaloids of indole, oxindole, quinoline and purine types are common; anthraquinones occur in some genera of the Rubiaceae. Other constituents of the family inclued anthocyanins, cyclitols, coumarins, diterpenoids, triterpenoids and iridoid glycosids.

Species	Compound	Class of	Effect	Status	Ref.
	_	Compound			
Morinda	total extract	not stated	potential anticancer	cell culture,	McClatchey et
citrifolia L.			activity,	phase I	al.,
			immunomodulatory	clinical	2002
			activity	study	

Table 33. Rubiaceae Cytotoxic Phytochemicals

Rutaceae A. L. de Jussieu

A family of 158 genera and 1900 species. Nearly cosmopolitan, but mainly tropical and sub tropical. Usually trees or shrubs, sometimes with thorns, spines, or prickles. The Rutaceae is divided into 5 subfamilies.

Constituents of this family include a wide variety of alkaloids, volatile oils, rhamno – glucosides, coumarins and terpenoids. Alkaloids include alkaloidal amines, imidazole, indole isoquinoline, pyridine, pyrrolidine, quinazoline types. Many of the fruits are rich in citric and other acids and in vitamin c (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
<i>Citrus</i> spp.	limonoids	triterpenoids	chemopreventive agents for cancer, Reduction of skin tumours	animal studies	Silalahi et al., 2002
<i>Citrus</i> spp.	nomilin	triterpenoids	inhibitor of carcinogenesis	animal studies for forestomach tumours	Silalahi, 2002
<i>Citrus</i> spp.	nobiletin and tangeretin dietary fibre	flavonoids	anticancer activity	in vivo and in vitro	Silalahi et al., 2002
<i>Citrus</i> spp.	β-carotene	not stated	pro-tumorigenic properties	not stated	Silalahi et al., 2002

<i>Citrus</i> spp.	ascorbic acid	not stated	prevents oxidation of	<i>in vivo,</i> in humans	Silalahi et al., 2002
			specific chemicals to their active		
			carcinogenic forms,		
			protects against in		
			vivo oxidation of		
			lipids and DNA		
Citrus spp.	dietary fibre and	polysaccharides	influence colon	in human	Silalahi et
110	pectin		cancer by physical	$\cap)(\bigtriangleup)$	al., 2002
			dilution of colon		
			content, absorption		
			of bile acids and		
			carcinogens,		
			decreased transit		
			time, altered		
			bile acid metabolism		
			and the effects of		
			fermentation,		
			namely,		
			the production of		
			short-chain fatty		
			acids, lowering of		
			pH and		
			stimulation of		
			bacterial growth,		
			absorbing		
			carcinogens in the		
			gastrointestinal tract,		
			reducing the risk of		
			bowel cancer,		
<i>Citrus</i> spp.	flavanone and	flavonoids	anti-inflammatory	in vitro and in	Manthey et
	flavone O- and		and anticancer	vivo	al., 2001
	C-glycosides and		actions		
	methoxylated				
	flavones???				

Table 34. Rutaceae Cytotoxic Phytochemicals

Taxaceae Bercht. & J. Presl

A family of 6 genera and 28 species. Small or moderately sized dioecious trees or shrubs, usually not resinous or only slightly resinous, fragrant or not. Wood without resin canals, leaves simple, persistent for several years, shed singly, spirals, often twisted so as to appear 2 – ranked, linear, flattned, entire, acute at apex, with 0 – 1 resin canals. Some species of Taxus investigated for taxane alkaloids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
<i>Taxus baccata</i> L.	total extract	not stated	cytotoxic effect	Cell culture	Emami et al., 2005

Table 35. Taxaceae Cytotoxic Phytochemicals

Theaceae Mirbel

A family of 7 genera and about 240 species. Usually evergreen trees and shrubs. Leaves simple, entire to toothed usually in spirals and coriaceous, often withering red. Flowers usually large and bisexual, hypogynous to epigynous, solitary and axillary. Among the constituents are purine alkaloids, saponins, tannins and fixed oil (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Camellia sinensis (L.) Kuntze	(-)- epigallocatechin gallate (EGCG)	polyphenols	synergists with anticancer drugs	cell culture	Suganuma et al., 2011
<i>Camellia</i> sinensis (L.) Kuntze	catechins (specifically EGCG)	polyphenols	targeting of lipid rafts by EGCG	cell culture	Patra et al., 2008
<i>Camellia</i> sinensis (L.) Kuntze	catechins (specifically EGCG)	polyphenols	growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase- dependent pathway, and ubiquitin/proteasome degradation pathways	phase I and II clinical trials	Chen et al., 2008
<i>Camellia</i> sinensis (L.) Kuntze	catechin, (-)- epigallocatechin	polyphenols	antioxidant, antiangiogenesis, and antiproliferative	review to summarize recent findings on the anticancer and medicinal properties of green tea	Cooper et al., 2005 b
Camellia sinensis (L.) Kuntze	epigallocatechin gallate (EGCg)	polyphenols	antioxidant, anti- angiogenesis, and antiproliferative	review to summarize recent findings on the anticancer and medicinal properties of green tea	Cooper et al., 2005 a
Camellia sinensis (L.) Kuntze	catechin EGCG	polyphenols	antioxidant properties of the catechins with anticancer effects	preclinical research	Moyers et al., 2004
<i>Camellia</i> sinensis (L.) Kuntze	catechins and polyphenols	polyphenols	both cytostatic and cytotoxic activity towards cancer cells	<i>in vitro</i> and <i>in vivo</i> research	Colic & Pavelic, 2000

Table 36. Theaceae Cytotoxic Phytochemicals

Zingiberaceae Martynov

The Zingiberaceae family of 50 genera and 1500 species widespread in tropical regions; chiefly in shaded to semi – shaded forest understory habitats; occasionally in wetlands. Small to large, spicy – aromatic herbs, scattered secretory cells containing ethereal oils, various terpenes, and phenyl – propanoid compounds. The family is divided into two subfamilies: 1) Costoideae and 2) Zingiberoideae.

Volatile oils and pungent principles are a feature of the family. Other constituents include the colouring matters known as curcominoids, tannins, phenolic acids, leucoantheyanins, flavonoids, ketones and terpenoids. Only a few isolated of alkaloids have been reported (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Curcuma longa L.	curcumin, difluorocurcumin analogs	polyphenols	prevention of tumor progression and/or treatments of human malignancies	promising leads for conducting first in-depth animal studies and subsequently clinical trials	2010
Curcuma longa L.	curcumin	polyphenols	anticancer activities	not stated	Agarwal et al., 2007
Curcuma longa L.	curcumin	polyphenols	cancer chemoprevention , antitumor	studies, Preclinical studies	Thangapazham et al., 2006
Curcuma longa L.	curcumin	polyphenols	cancer prevention	human clinical trials	Aggarwal et al., 2008
Curcuma longa L.	curcumin, demethoxycurcumin and bisdemethoxycurcumin	polyphenols	Anti-cancer activity	progress clinical trials	Jurenka et al., 2009
Curcuma longa L.	turmerone, atlantone, and zingiberone	sesquiterpenoids	anti-cancer activity	progress clinical trials	Jurenka et al., 2009
Zingiber officinale Roscoe	[6]-gingerol	phenolic compounds	cytotoxic, apoptotic, anti- cancer activity	cell culture, animal study	Aggarwal et al., 2008
Zingiber officinale Roscoe	pungent vallinoids, viz. [6]-gingerol and [6]-paradol, shogaols, zingerene	phenolic compounds	cancer preventive activity	in experimental carcinogenesis	Shukla et al., 2007
Zingiber zerumbet Smith.	zerumbone [2,6,9,9- tetramethyl- (2E,6E,10E)- cycloundeca-2,6,10- trien-1-one]	phenolic compounds	cytotoxic, apoptotic, anti- cancer activity	cell culture, animal study	Aggarwal et al., 2008

Table 37. Zingiberaceae Cytotoxic Phytochemicals

Zygophyllaceae R. Brown

A family of 26 genera and 280 tropical species. Small trees, shrubs to herbs with stems often sympodial and jointed at the nodes, xylem with vessels, tracheids, and fibers arranged in horizon tally aligned tiers; usually producing steroidal or teriterponoid saponins, sesquiterpenes and alkaloids (Evans 2009; Judd et al., 2008; Mabberley 2008).

Species	Compound	Class of Compound	Effect	Status	Ref.
Larrea divaricata Cav.	nordihydroguaiaretic acid	phenolic compounds	anticancer, antioxidant, antimicrobial, anti- inflammatory and immunosuppressive activities	phase I/II clinical trials as an anticancer agent	Chen et al., 2009

Table 38. Zygophyllaceae Cytotoxic Phytochemicals

2. References

http://www.who.int/mediacentre/factsheets/fs297/en/

- Abdullaev FI, Espinosa-Aguirre JJ. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev. 2004;28 (6):426-32.
- Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 2006 Nov-Dec;26 (6B):4457-98.
- Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004 Sep-Oct;24 (5A):2783-840.
- Aggarwal BB, Ichikawa H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle. 2005 Sep;4 (9):1201-15. Epub 2005 Sep 6.
- Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P. Potential of spice-derived phytochemicals for cancer prevention. Planta Med. 2008 Oct; 74 (13):1560-9. Epub 2008 Jul 8.
- Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007;595:1-75.
- Agostinis P, Vantieghem A, Merlevede W, de Witte PA. Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol. 2002 Mar;34 (3):221-41.
- Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J Nutr. 2001 Mar;131 (3s):955S-62S.
- Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr. 2006 Mar;136 (3 Suppl):716S-725S.
- Ansari MS, Ansari S. Lycopene and prostate cancer. Future Oncol. 2005 Jun;1 (3):425-30.

684

- Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26 (2):93-103.
- Asl MN, Hosseinzadeh H. Review of pharmacological effects of *Glycyrrhiza* sp. and its bioactive compounds. Phytother Res. 2008 Jun;22 (6):709-24.
- Balbi V, Devoto A. Jasmonate signalling network in *Arabidopsis thaliana*: crucial regulatory nodes and new physiological scenarios. New Phytol. 2008;177 (2):301-18. Epub 2007 Nov 27.
- Canel C, Moraes R M., Dayan F E., Ferreira D, (2000) Podophyllotoxin. Phytochemistry 54, 115–120
- Cazacu M, Oniu T, Lungoci C, Mihailov A, Cipak A, Klinger R, Weiss T, Zarkovic N. The influence of isorel on the advanced colorectal cancer. Cancer Biother Radiopharm. 2003 Feb;18 (1):27-34.
- Chang YS, Seo EK, Gyllenhaal C, Block KI. *Panax ginseng*: a role in cancer therapy? Integr Cancer Ther. 2003 Mar;2 (1):13-33.
- Chen CF, Chiou WF, Zhang JT.Comparison of the pharmacological effects of *Panax ginseng* and *Panax quinquefolium*. Acta Pharmacol Sin. 2008 Sep;29 (9):1103-8.
- Chen D, Milacic V, Chen MS, Wan SB, Lam WH, Huo C, Landis-Piwowar KR, Cui QC, Wali A, Chan TH, Dou QP. Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol. 2008 Apr;23 (4):487-96.
- Chen Q. Nordihydroguaiaretic acid analogues: their chemical synthesis and biological activities. Curr Top Med Chem. 2009;9 (17):1636-59.
- Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res. 2007 Jan-Feb;27(1A):357-62. PubMed PMID:17352254.
- Cirla, A. and Mann, J. (2003) Combrestatins: from natural product to drug discovery. Nat. Prod. Rep. 20, 558–564
- Cohen LA. A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med (Maywood). 2002 Nov;227 (10):864-8.
- Colic M, Pavelic K. Molecular mechanisms of anticancer activity of natural dietetic products. J Mol Med. 2000;78 (6):333-6.
- Cooper R, Morré DJ, Morré DM. Medicinal benefits of green tea: part II. review of anticancer properties. J Altern Complement Med. 2005a Aug;11 (4):639-52.
- Corona G, Spencer JP, Dessì MA. Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract. Toxicol Ind Health. 2009 May-Jun;25 (4-5):285-93.
- Coulman KD, Liu Z, Hum WQ, Michaelides J, Thompson LU. Whole sesame seed is as rich a source of mammalian lignan precursors as whole flaxseed. Nutr Cancer. 2005;52 (2):156-65.
- DeFeudis FV, Papadopoulos V, Drieu K. *Ginkgo biloba* extracts and cancer: a research area in its infancy. Fundam Clin Pharmacol. 2003 Aug;17 (4):405-17.
- Dossus L, Kaaks R. Nutrition, metabolic factors and cancer risk. Best Pract Res Clin Endocrinol Metab. 2008;22:551–71.
- Dubey AK, Shankar PR, Upadhyaya D, Deshpande VY. Ginkgo biloba--an appraisal. Kathmandu Univ Med J (KUMJ). 2004 Jul-Sep;2 (3):225-9.

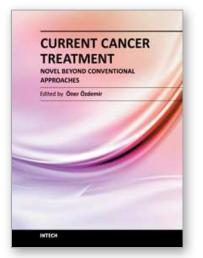
- El Sayed KA, Sylvester PW. Biocatalytic and semisynthetic studies of the anticancer tobacco cembranoids. Expert Opin Investig Drugs. 2007 Jun;16 (6):877-87.
- El-Shemy HA, Aboul-Soud MA, Nassr-Allah AA, Aboul-Enein KM, Kabash A, Yagi A. Antitumor properties and modulation of antioxidant enzymes' activity by *Aloe vera* leaf active principles isolated via supercritical carbon dioxide extraction. Curr Med Chem. 2010;17 (2):129-38.
- Emami A, Sadeghi-aliabadi H, Saidi M, and Jafarian A (2005). Cytotoxic evaluation of Iranian conifers on cancer cells. Pharm. Biol. 43 (4): 299-304.
- Emami SA, Rabe SZT, Ahi A, Mahmoudi M, Tabasi N. Study the cytotoxic and proapoptotic activity of *Artemisia annua* extracts. Pharmacol. online 3: 1062-1069 (2009b).
- Emami SA, Vahdati-Mashhadian N, Oghazian MB, Vosough R (2009a). The anticancer activity of five species of *Artemisia* on Hep2 and HepG2 cell lines. Pharmacol. online 3: 327-339.
- Enesel MB, Acalovschi I, Grosu V, Sbarcea A, Rusu C, Dobre A, Weiss T, Zarkovic N. Perioperative application of the *Viscum album* extract Isorel in digestive tract cancer patients. Anticancer Res. 2005 Nov-Dec;25 (6C):4583-90.
- Ernst E, Schmidt K. Ukrain a new cancer cure? A systematic review of randomised clinical trials. BMC Cancer. 2005 Jul 1;5:69.
- Evans W. C., Trease and Evans Pharmacognosy,16th edition pp. 22, 24, 25, 28-42, W.B. Saunders, (2009).
- Firestone GL, Sundar SN. Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med. 2009 Oct 30;11:e32.
- Gilani SA, Kikuchi A, Shinwari ZK, Khattak ZI, Watanabe KN. Phytochemical, pharmacological and ethnobotanical studies of *Rhazya stricta* Decne. Phytother Res. 2007 Apr;21 (4):301-7.
- Hamman JH. Composition and applications of *Aloe vera* leaf gel. Molecules. 2008 Aug 8;13 (8):1599-616.
- Han QB, Xu HX. Caged *Garcinia* xanthones: development since 1937. Curr Med Chem. 2009;16 (28):3775-96.
- Hannum SM. Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr. 2004;44 (1):1-17.
- Hashim YZ, Eng M, Gill CI, McGlynn H, Rowland IR. Components of olive oil and chemoprevention of colorectal cancer. Nutr Rev. 2005 Nov;63 (11):374-86.
- Horneber MA, Bueschel G, Huber R, Linde K, Rostock M. Mistletoe therapy in oncology. Cochrane Database Syst Rev. 2008 Apr 16; (2):CD003297.
- Hwang ES, Bowen PE. Can the consumption of tomatoes or lycopene reduce cancer risk? Integr Cancer Ther. 2002 Jun;1 (2):121-32; discussion 132.
- Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen. 2009 Apr;50 (3):247-65.
- Johnson, I.S. et al., (1963) The *Vinca* alkaloids: a new class of oncolytic agents. Cancer Res. 23, 1390
- Judd, W. S.; Campbell, C. S.; Kellogg, E. A.; Stevens, P. F. and Donoghue, M. J. Plant Systematics, A Phylogenetic Approach "Third Edition "PP.208,215-217, 219-221,257

Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer

- 258, 260 - 262, 272 - 273, 302 - 304, 309-312,314 - 316, 334, 336, 342, 350 - 351, 362 - 364, 371 - 376, 379 - 381, 391 - 393, 408 - 410, 412 - 414, 416, 420 - 427, 429 - 437, 438 - 440, 443 - 445, 452 - 455, 459 - 462, 469 - 475, 480 - 481, 492 - 501, 508 - 515, Sinauer Associates, Inc. Publisher, Sunderland, Massachusetts,USA (2008).

- Kamatou GP, Makunga NP, Ramogola WP, Viljoen AM. South African Salvia species: a review of biological activities and phytochemistry. J Ethnopharmacol. 2008 Oct 28;119 (3):664-72. Epub 2008 Jul 2.
- Kaschula CH, Hunter R, Parker MI. Garlic-derived anticancer agents: structure and biological activity of ajoene. Biofactors. 2010 Jan-Feb;36 (1):78-85.
- Kelly GS. *Rhodiola rosea*: a possible plant adaptogen. Altern Med Rev. 2001 Jun;6 (3):293-302.
- Kerwin SM. Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr Med Chem Anticancer Agents. 2004 May;4 (3):263-72.
- Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, Kim YH, Kang SM, Lee IJ. Secondary metabolites from Inula britannica L. and their biological activities. Molecules. 2010 Mar 10;15 (3):1562-77.
- Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician. 2003 Oct 15;68 (8):1539-42.
- Kim S, Salim AA, Swanson SM, Kinghorn AD. Potential of cyclopenta[b]benzofurans from Aglaia species in cancer chemotherapy. Anticancer Agents Med Chem. 2006 Jul;6 (4):319-45.
- Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. *Aronia* plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food. 2010 Apr;13 (2):255-69.
- Kren V, Walterová D. Silybin and silymarin--new effects and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005 Jun;149 (1):29-41.
- Krishna S, Bustamante L, Haynes RK, Staines HM. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci. 2008 Oct;29 (10):520-7. Epub 2008 Aug 25.
- Kruk J. Lifetime physical activity and the risk of breast cancer: a casecontrol study. Cancer Detect Prev. 2007;31:18–28.
- Kurahashi N, Inoue M, Iwasaki M, Tanaka Y, Mizokami M, Tsugane S, JPHC Study Group. Vegetable, fruit and antioxidant nutrient consumption and subsequent risk of hepatocellular carcinoma: a prospective cohort study in Japan. Br J Cancer. 2009;100:181–4.
- Ladas EJ, Kelly KM. Milk thistle: is there a role for its use as an adjunct therapy in patients with cancer? J Altern Complement Med. 2003 Jun;9 (3):411-6.
- Lansky EP, Newman RA. *Punica granatum* (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol. 2007 Jan 19;109 (2):177-206. Epub 2006 Sep 10.
- Lansky EP, Paavilainen HM, Pawlus AD, Newman RA. *Ficus* spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents.J Ethnopharmacol. 2008 Sep 26;119 (2):195-213. Epub 2008 Jun 28.
- Lee SH, Choi WC, Yoon SW. Impact of standardized Rhus verniciflua stokes extract as complementary therapy on metastatic colorectal cancer: a Korean single-center experience. Integr Cancer Ther. 2009 Jun;8 (2):148-52.

- Li J, Jiang Y. Litchi flavonoids: isolation, identification and biological activity. Molecules. 2007 Apr 11;12 (4):745-58.
- Li L, Zeng J, Gao Y, He D. Targeting silibinin in the antiproliferative pathway. Expert Opin Investig Drugs. 2010 Feb;19 (2):243-55.
- Limem-Ben Amor I, Boubaker J, Ben Sgaier M, Skandrani I, Bhouri W, Neffati A, Kilani S, Bouhlel I, Ghedira K, Chekir-Ghedira L. Phytochemistry and biological activities of *Phlomis* species.J Ethnopharmacol. 2009 Sep 7;125 (2):183-202. Epub 2009 Jun 27.
- Lissoni P, Rovelli F, Brivio F, Zago R, Colciago M, Messina G, Mora A, Porro G. A randomized study of chemotherapy versus biochemotherapy with chemotherapy plus *Aloe arborescens* in patients with metastatic cancer. *In vivo*. 2009 Jan-Feb;23 (1):171-5.
- Liu R H, Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S.
- Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin.Cancer Treat Rev. 2009 Feb;35 (1):57-68.
- Lyman GH. Risk factors for cancer. Prim Care. 1992;19:465-79.
- Mabberley D. J., The Plant-Book, 3th edition pp. 41, 56-57, 61-62, 143-144, 147, 205, 207-211, 218, 225-226, 231-232, 313-314, 359, 380-381, 424, 433, 445, 460-461, 474-477, 489, 502, 508, 518-519, 533-534,557-558, 598-599, 628, 688-689, 747-748, 750-751, 755-756, 766, 803-804, 852,884-885, 923, 925 Cambridge University Press, (2008).
- Mahadevan S, Park Y. Multifaceted therapeutic benefits of *Ginkgo biloba* L.: chemistry, efficacy, safety, and uses. J Food Sci. 2008 Jan;73 (1):R14-9.
- Mahmoudi M, Rabe SZT, Ahi A, Emami SA. Evaluation of the cytotoxic activity of different *Artemisia khorassanica* samples on cancer cell lines. Pharmacologyonline 2: 778-786 (2009).
- Manju V, Nalini N. Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Cell Biochem Funct 2007; 25: 189–94
- Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem. 2001 Feb;8 (2):135-53.
- McClatchey W. From Polynesian healers to health food stores: changing perspectives of *Morinda citrifolia* (Rubiaceae). Integr Cancer Ther. 2002 Jun;1 (2):110-20; discussion 120.
- McGovern PE, Christofidou-Solomidou M, Wang W, Dukes F, Davidson T, El-Deiry WS. Anticancer activity of botanical compounds in ancient fermented beverages (review). Int J Oncol. 2010 Jul;37 (1):5-14.
- Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L.Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications.J Ethnopharmacol. 2010 Oct 28;132 (1):1-14. Epub 2010 Aug 20.
- Milner JA. Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation. Garlic and carcinogenesis. Adv Exp Med Biol. 2001;492:69-81.


- Milner JA. Preclinical perspectives on garlic and cancer.J Nutr. 2006 Mar;136 (3 Suppl):827S-831S.
- Molnár J, Engi H, Hohmann J, Molnár P, Deli J, Wesolowska O, Michalak K, Wang Q. Reversal of multidrug resitance by natural substances from plants. Curr Top Med Chem. 2010;10 (17):1757-68.
- Montesano R, Hall J. Environmental causes of human cancers. Eur J Cancer. 2001; 37:S67–87.
- Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol. 2009 Aug;47(8):1909-13. Epub 2009 May 18. PubMed PMID: 19457443.
- Moyad MA, Carroll PR. Lifestyle recommendations to prevent prostate cancer, part II: time to redirect our attention? Urol Clin North Am. 2004;31:301–11.
- Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr Rev. 2004 May;62 (5):204-11.
- Münchberg U, Anwar A, Mecklenburg S, Jacob C. Polysulfides as biologically active ingredients of garlic.Org Biomol Chem. 2007 May 21;5 (10):1505-18. Epub 2007 Apr 17.
- Nagini S. Cancer chemoprevention by garlic and its organosulfur compounds-panacea or promise? Anticancer Agents Med Chem. 2008 Apr;8 (3):313-21.
- Nam NH. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr Med Chem. 2003 Sep;10 (17):1697-722.
- Neto CC, Amoroso JW, Liberty AM. Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res. 2008 Jun;52 Suppl 1:S18-27.
- Owen RW, Haubner R, Würtele G, Hull E, Spiegelhalder B, Bartsch H. Olives and olive oil in cancer prevention. Eur J Cancer Prev. 2004 Aug;13 (4):319-26.
- Oyagbemi AA, Saba AB, Azeez OI. Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer. 2010 Jan-Mar;47 (1):53-8.
- Padhye S, Chavan D, Pandey S, Deshpande J, Swamy KV, Sarkar FH. Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Rev Med Chem. 2010 May;10 (5):372-87.
- Pandey MM, Rastogi S, Rawat AK. Saussurea costus: botanical, chemical and pharmacological review of an ayurvedic medicinal plant.J Ethnopharmacol. 2007 Apr 4;110 (3):379-90. Epub 2007 Jan 20.
- Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 2007; 30: 233–45
- Patra SK, Rizzi F, Silva A, Rugina DO, Bettuzzi S. Molecular targets of (-)-epigallocatechin-3gallate (EGCG): specificity and interaction with membrane lipid rafts. J Physiol Pharmacol. 2008 Dec;59 Suppl 9:217-35.
- Perez AT, Arun B, Tripathy D, Tagliaferri MA, Shaw HS, Kimmick GG, Cohen I, Shtivelman E, Caygill KA, Grady D, Schactman M, Shapiro CL. A phase 1B dose escalation trial of *Scutellaria barbata* (BZL101) for patients with metastatic breast cancer.Breast Cancer Res Treat. 2010 Feb;120 (1):111-8.

- Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol. 2005 Apr;49 (2):125-31.
- Pryme IF, Bardocz S, Pusztai A, Ewen SW. Suppression of growth of tumour cell lines *in vitro* and tumours *in vivo* by mistletoe lectins. Histol Histopathol. 2006 Mar;21 (3):285-99.
- Qi LW, Wang CZ, Yuan CS. American ginseng: potential structure-function relationship in cancer chemoprevention. Biochem Pharmacol. 2010 Oct 1;80 (7):947-54. Epub 2010 Jun 25.
- Rabe SZT, Mahmoudi M, Ahi A, Emami SA. Antiproliferative effects of extracts from Iranian *Artemisia* species on cancer cell lines. Pharm. Biol. 2011, 1–8, Early Online.
- Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signaling pathways. Mol Nutr Food Res. 2008;52:507–26.
- Sadeghi-aliabadi H, Emami A, Sadeghi B and Jafarian A (2009a). *In vitro* cytotoxicity of two subspecies of *Juniperus excelsa* on cancer cells. Iranian Journal of Basic Medical Sciences 11 (4): 250-253.
- Sadeghi-aliabadi H, Emami A, Saidi M, Sadeghi B and Jafarian A (2009b). Evaluation of *in vitro* cytotoxic effects of *Juniperus foetidissima* and *Juniperus sabina* extracts against a panel of cancer cells. IJPR 8 (4): 281-286.
- Sagar SM. Future directions for research on Silybum marianum for cancer patients. Integr Cancer Ther. 2007 Jun;6 (2):166-73.
- Saklani A, Kutty SK. Plant-derived compounds in clinical trials. Drug Discov Today. 2008 Feb;13 (3-4):161-71. Epub 2007 Nov 26.
- Saklani A. and K. Kutty S. Plant-derived compounds in clinical trials Drug Discovery Today.Volume 13, Numbers 3/4, 2008
- Seki T, Hosono T, Hosono-Fukao T, Inada K, Tanaka R, Ogihara J, Ariga T. Anticancer effects of diallyl trisulfide derived from garlic. Asia Pac J Clin Nutr. 2008;17 Suppl 1:249-52.
- Silalahi J. Anticancer and health protective properties of citrus fruit components.Asia Pac J Clin Nutr. 2002;11 (1):79-84.
- Singh RP, Agarwal R. A cancer chemopreventive agent silibinin, targets mitogenic and survival signaling in prostate cancer. Mutat Res. 2004 Nov 2;555 (1-2):21-32.
- Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K. Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol. 2007 Aug;8 (4):196-202.
- Sok DE, Cui HS, Kim MR. Isolation and bioactivities of furfuran type lignan compounds from edible plants. Recent Pat Food Nutr Agric. 2009 Jan;1 (1):87-95.
- Stauder H, Kreuser ED. Mistletoe extracts standardised in terms of mistletoe lectins (ML I) in oncology:current state of clinical research. Onkologie. 2002 Aug;25 (4):374-80.
- Suganuma M, Saha A, Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 2011 Feb;102 (2):317-23.

- Surh, Y. J., Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780.
- Syed DN, Afaq F, Mukhtar H. Pomegranate derived products for cancer chemoprevention. Semin Cancer Biol. 2007 Oct;17 (5):377-85. Epub 2007 May 29.
- Tamayo C, Diamond S. Review of clinical trials evaluating safety and efficacy of milk thistle (*Silybum marianum* [L.] Gaertn.). Integr Cancer Ther. 2007 Jun;6 (2):146-57.
- Tayarani-Najaran Z, Emami SA, Asili J, Mirzaei A, Mousavi SH. Analyzing cytotoxic and apoptogenic properties of *Scutellaria litwinowii* root extract on cancer cell lines. Evid Based Complement Alternat Med. 2011
- Tayarani-Najaran Z, Mousavi SH, Asili J, Emami SA. Growth-inhibitory effect of *Scutellaria lindbergii* in human cancer cell lines. Food Chem Toxicol. 2010 Feb;48 (2):599-604. Epub 2009 Nov 22.
- Thangapazham RL, Sharma A, Maheshwari RK. Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J. 2006 Jul 7;8 (3):E443-9.
- Vahdati-Mashhadian N, Emami SA, Oghazian MB, Vosough R (2009). The cytotoxity evaluation of seven species of *Artemisia* on human tumor cell lines. Pharmacoly online 3: 327-339.
- Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hop (*Humulus lupulus*)-derived bitter acids as multipotent bioactive compounds. J Nat Prod. 2009 Jun;72 (6):1220-30.
- Wall, M.E. (1998) Camptothecin and Taxol: discovery to clinic. Med. Res. Rev. 18, 299-314
- Wang X, Howell CP, Chen F, Yin J, Jiang Y. Gossypol--a polyphenolic compound from cotton plant. Adv Food Nutr Res. 2009;58:215-63.
- Wang YF, Ni ZY, Dong M, Cong B, Shi QW, Gu YC, Kiyota H. Secondary metabolites of plants from the genus Saussurea: chemistry and biological activity. Chem Biodivers. 2010 Nov;7 (11):2623-59.
- Wani, M.C. et al., (1971) Plant antitumor agents. VI. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327
- Waterman E, Lockwood B. Active components and clinical applications of olive oil. Altern Med Rev. 2007 Dec;12 (4):331-42.
- Wong CK, Bao YX, Wong EL, Leung PC, Fung KP, Lam CW. Immunomodulatory activities of Yunzhi and Danshen in post-treatment breast cancer patients. Am J Chin Med. 2005;33 (3):381-95.
- World health statistics 2008. pp. 1–80, WHO (2008) (http://www.who.int/)
- Wu H, Dai Q, Shrubsole MJ, Ness RM, Schlundt D, Smalley WE, Chen H, Li M, Shyr Y, et al., Fruit and vegetable intakes are associated with lower risk of colorectal adenomas. J Nutr. 2009;139:340–4.
- Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res. 2008 Jul;22 (7):851-8.
- Yun TK, Choi SY. Non-organ specific cancer prevention of ginseng: a prospective study in Korea. Int J Epidemiol 1998;27:359-64.

Zhuang SR, Chen SL, Tsai JH, Huang CC, Wu TC, Liu WS, Tseng HC, Lee HS, Huang MC, Shane GT, Yang CH, Shen YC, Yan YY, Wang CK. Effect of citronellol and the Chinese medical herb complex on cellular immunity of cancer patients receiving chemotherapy/radiotherapy.Phytother Res. 2009 Jun;23 (6):785-90.

Current Cancer Treatment - Novel Beyond Conventional Approaches Edited by Prof. Oner Ozdemir

ISBN 978-953-307-397-2 Hard cover, 810 pages Publisher InTech Published online 09, December, 2011 Published in print edition December, 2011

Currently there have been many armamentaria to be used in cancer treatment. This indeed indicates that the final treatment has not yet been found. It seems this will take a long period of time to achieve. Thus, cancer treatment in general still seems to need new and more effective approaches. The book "Current Cancer Treatment - Novel Beyond Conventional Approaches", consisting of 33 chapters, will help get us physicians as well as patients enlightened with new research and developments in this area. This book is a valuable contribution to this area mentioning various modalities in cancer treatment such as some rare classic treatment approaches: treatment of metastatic liver disease of colorectal origin, radiation treatment of skull and spine chordoma, changing the face of adjuvant therapy for early breast cancer; new therapeutic approaches of old techniques: laser-driven radiation therapy, laser photo-chemotherapy, new approaches targeting androgen receptor and many more emerging techniques.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zahra Tayarani-Najaran and Seyed Ahmad Emami (2011). Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer, Current Cancer Treatment - Novel Beyond Conventional Approaches, Prof. Oner Ozdemir (Ed.), ISBN: 978-953-307-397-2, InTech, Available from: http://www.intechopen.com/books/current-cancer-treatment-novel-beyond-conventional-approaches/cytotoxic-plants-potential-uses-in-prevention-and-treatment-of-cancer

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2011 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the <u>Creative Commons Attribution 3.0</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IntechOpen

IntechOpen