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1. Introduction 

Photodynamic therapy is a non-surgical and minimally invasive procedure that is rapidly 

developing as a cancer treatment modality. It involves the administration of a 

photosensitizer that selectively accumulates in the tumor tissue, which is subsequently 

activated with light of specific wavelength that interacts with molecular oxygen to form 

toxic, short-lived species known as singlet oxygen, which causes tumor cell death 

(Macdonald & Dougherty, 2001). The evident advantage of PDT over other conventional 

cancer treatments such as chemotherapy and radiotherapy is its selective targeting and 

reduced toxicity (Dolmans et al., 2003). The treatment is relatively non-invasive as it usually 

only requires targeted illumination of the tumor site. PDT can also be repeated without 

detrimental consequences to the patients. Currently, PDT is being successfully used for the 

treatment of early lung cancers (Moghissi et al., 2007; Usuda et al., 2006) and in dermatology 

for the treatment of non-melanoma skin cancers and precancerous diseases (Klein et al., 

2008). PDT has also been successfully employed to treat early carcinomas of the oral cavity 

and larynx to preserve normal tissue and improve cure rates (Biel, 2007). In the past 20 

years, PDT has been successfully used for the treatment of dermatological diseases, 

ophthalmic diseases, head and neck cancers, brain tumors, pulmonary and pleural 

mesothelial cancer, cardiovascular disease, gastroenterological cancer, urological disease 

and gynaecological cancer (Z. Huang, 2005).  

However, PDT is an oxygen consuming modality, and an inherent consequence of PDT is 
local hypoxia. This condition arises either due to direct oxygen consumption during 
treatment or indirectly due to the destruction of tumor vasculature. As a result, cells under 
hypoxic stress may switch to an adaptive response by inducing hypoxia inducible factor like 
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HIF-1α thus triggering angiogenesis. Angiogenesis is the formation of new blood vessels 
from pre-existing vessels. It is a vital process in the progression of cancer from small, 
localized neoplasms to larger, growing, and potentially metastatic tumors (Folkman, 2002). 
Therefore, the process of tumor angiogenesis is triggered by the tumor's release of pro-
angiogenic signals such as vascular endothelial growth factor (VEGF), which bind to 
receptors on nearby vessel endothelial cells. VEGF is a potent regulator of tumor 
angiogenesis that plays a critical role by increasing blood vessel permeability, endothelial 
cell growth, proliferation, migration and differentiation (Ferrara, 2004). It is upregulated in 
response to hypoxic conditions in tumor via the transcription of hypoxia-inducible factor 
(HIF-1) (Pugh & Ratcliffe, 2003). Cellular and circulating levels of VEGF have been elevated 
in haematological malignancies and are adversely associated with prognosis (Giles, 2001).  
Reports on tumors treated with PDT showed an upregulation of various angiogenic factors 
like VEGF, HIF-1α, cyclooxygenase-2 (COX-2), basic fibroblast growth factor (bFGF) and 
matrix metalloproteinases (MMPs) (Solban et al., 2006; Yee et al., 2005). Studies have shown 
the upregulation of HIF-1α, VEGF, COX-2 and bFGF after hypericin-mediated PDT treated 
tumors, suggesting that PDT-induced damage to tumor microvasculature and the resultant 
hypoxia upregulated the expression of certain proangiogenic factors (Zhou et al., 2005). 
They also reported that the inclusion of various angiogenic inhibitors along with PDT 
treatment enhanced the PDT effectiveness. Currently, anti-angiogenesis agents are being 
developed to target different growth factors and molecular pathways that play a major role 
in tumor angiogenesis. 
This chapter evaluates expression of VEGF after PDT and also the efficacy of PDT by 
combining monoclonal antibodies (angiogenesis inhibitors) against VEGF and epidermal 
growth factor receptor (EGFR) to improve the overall bladder tumor responsiveness. The 
following approaches were adapted in this study:  (i) evaluating the expression of VEGF 
after PDT, (ii) targeting the VEGF pathway using monoclonal antibody, Avastin, to inhibit 
tumor angiogenesis and also to study the effect of Avastin on other angiogenic growth 
factors; (ii) targeting the EGFR pathway, using the monoclonal antibody Erbitux to inhibit 
tumor angiogenesis and to assess its effect on the EGFR pathway and finally (iii) combining 
both Avastin and Erbitux with PDT to assess the importance of blocking the two major 
angiogenic pathways, VEGF and EGFR, to improve treatment outcome.  
PDT followed by Avastin inhibited VEGF expression and other important growth factors to 
improve tumor response in bladder carcinoma xenografts. In a similar way, PDT and 
Erbitux suppressed growth factors related to the EGFR pathway to produce better treatment 
outcome. It was noticed that PDT induced tumor destruction can be maintained and 
significantly enhanced by the administration of Erbitux. VEGF and EGFR pathways play a 
major role in angiogenesis of bladder tumors. Combining angiogenic inhibitors with PDT 
protocol to block VEGF and EGFR pathways has proven to be effective in controlling tumor 
regrowth. Therefore, antiangiogenesis agents may augment the activity of PDT by inhibiting 
its counterproductive upregulation of VEGF and EGFR. The success achieved by combining 
angiogenic inhibitors with PDT can provide information for potential target mechanisms, 
which can be translated into clinical studies with better response rate, less local and systemic 
toxicity and improved overall survival in patients. 

2. Photodynamic therapy induced VEGF 

Vascular endothelial growth factor is one of the most important regulators of angiogenesis 
that acts as a switch to trigger tumor recurrence by promoting proliferation, migration and 
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tube formation of endothelial cells. Moreover, VEGF binds to the tyrosine kinase receptors, 
VEGFR-1 and VEGFR-2 thus initiating a downstream signaling cascade that promotes 
angiogenesis (Kowanetz & Ferrara, 2006). In vitro studies have clearly demonstrated that 
VEGF is a potent mediator of angiogenesis as it helps in the proliferation and migration of 
the endothelial cells to form tube like capillaries (Bernatchez et al., 1999). Studies have 
reported that hypoxia plays a major role in the expression of VEGF in tumor tissue (Robbins 
et al., 1997). It has also been reported that PDT produced significant increases in VEGF 
within treated lesion (Ferrario & Gomer, 2006). The expression of VEGF in areas 
surrounding tumor necrosis has also suggested that hypoxia within tumors played a major 
role in angiogenesis (Senger et al., 1986; Shweiki et al., 1992). 
Photodynamic therapy can produce a significant effect on the expression profile of VEGF in 
serum and tumors. Experiments were conducted in a xenograft model to evaluate VEGF 
expression at 24 h, 48 h and 72 h after treatment to understand the initiation of regrowth 
post hypericin PDT (Bhuvaneswari, Gan et al., 2007). Controls in the experiments were 
animals with untreated tumors. As human nasopharyngeal carcinoma cells was used as 
xenografts in a mouse model, both human and mouse VEGF were estimated in serum and 
tumor tissue. The decrease in mouse VEGF in serum immediately post treatment was not 
significant, but it reached control levels within 72 h. Greater amount of mouse VEGF 
compared to human VEGF in serum could indicate the involvement of host environment in 
modulating the PDT response of the tumor (Figure 1). At 24 h post PDT, both the mouse and 
human VEGF levels in tumor tissue decreased compared to the control group but elevated 
by 72 h (Figure 2). The decrease of VEGF observed at 24 h post PDT could be explained 
through the postulation that the residual tumor cells from the initial PDT treatment could be 
reoxygenated after 24 h following PDT (Uehara et al., 2001) or may be due to reversal of 
temporary vascular occlusion (Tsutsui et al., 2002). Downregulation of VEGF immediately 
after PDT and its subsequent upregulation at 72 h could indicate that regrowth in tumors 
after PDT begins as early as 72 h. It can be argued that both tumor angiogenesis and 
recurrence may therefore be mediated by PDT via the enhancement of VEGF expression 
within the treated tumor mass (Tsutsui et al., 2002).  
 
 
 

 

 

 

 

 

 

 

 
                                            (a)                                                                  (b) 

Fig. 1. Concentration of (a) mouse VEGF and (b) human VEGF in serum in the control and at 
24 h, 48 h and 72 h post PDT. Error bars represent the standard error of the mean 
concentration of mouse VEGF in serum at 24 h, 48 h and 72 h, n = 8. The mouse VEGF in 
serum decreased at 24 h and 48 h post treatment compared to the control group. However at 
72 h post PDT the mouse VEGF levels increased and were comparable to the control group. 
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Mouse VEGF levels were found to be significantly lower than human VEGF in the tumor 
tissue and this could be attributed to the number of host cells versus the number of tumor 
cells present within the treated region. Similar observations were reported by Gomer et al. 
(Gomer et al., 2006). Detection of VEGF has long been known as a potential serum 
diagnostic marker for malignant diseases. Increased serum VEGF concentrations have been 
measured in various types of cancer, including brain, lung, renal and ovarian cancer (Kondo 
et al., 1994). High serum VEGF has been strongly associated with poor clinical outcome in 
lymphoma patients (Salven et al., 2000). Overexpression of VEGF is known to be common in 
NPC, which is related to hypoxia up-regulated expression involving a HIF-dependent 
pathway, and is associated with poor prognosis. Targeting the hypoxia pathway may be 
useful in the treatment of NPC (Hui et al., 2002). Patients with nasopharyngeal carcinoma 
having high VEGF levels in serum have been associated with a worse progression-free 
survival. A recent study has also shown increased microvessel density in oral cancer tissues 
in VEGF-positive tumors and indicated that upregulation of VEGF was correlated with 
tumor angiogenesis and disease progression (Shang et al., 2007). 
 
 

 

 

 

 
 
 
 
 
 
 
 

                                                (a)                                                                              (b) 

Fig. 2. Concentration of (a) mouse VEGF and (b) human VEGF in tumor tissue in control and 
at 24 h, 48 h and 72 h points post PDT. Error bars represent the standard error of the mean 
concentration of human VEGF in tumor tissue at 24 h, 48 h and 72 h, n = 8. Mouse and 
human VEGF were significantly higher in the tumor tissue (320-1700 pg/ml) compared to 
serum (33-110 pg/ml).  Mouse VEGF in tumor tissue increased at 48 h and 72 h post PDT. 
The increase in VEGF levels from 24 h to 72 h was found to be statistically significant 
(p<0.05) (Figure 2b). Controls were animals with untreated tumors. 

Immunofluorescence results also confirmed the increased expression of VEGF post PDT in 
the tumor tissue (Figure 3). Several groups have reported the upregulation of VEGF 
following PDT (Bhuvaneswari, Gan et al., 2007; Ferrario et al., 2006; Uehara et al., 2001; Yee 
et al., 2005). Ferrario et al. revealed that PDT-mediated hypoxia and oxidative stress could 

be involved in photofrin-mediated PDT induced expression of HIF-1α and also increased 
protein levels of the HIF-1 target gene VEGF, in treated mouse mammary carcinoma 
xenografts (Ferrario et al., 2000). In a similar study, the same group also reported significant 

overexpression of HIF-1α and VEGF after photofrin-mediated PDT in a xenograft model of 
Kaposi's sarcoma (Ferrario et al., 2006). Increased expression of VEGF was noticed from 0 h 
to 6 h in tumors treated with haematoporphyrin mediated PDT compared to control tumor 
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Fig. 3. Immunofluorescence was performed to confirm the expression of VEGF in tumor 
tissue at different time points post PDT.  In the confocal images, the green FITC fluorescence 
staining indicated the expression of VEGF. (a) control, (b) 24 h post PDT, (c) 48 h post PDT 
and (d) 72 h post PDT. Magnification: 200X, scale bar = 50 mm. Around 13% and 15% (IF 
score 2) of scattered staining in certain regions of the cytoplasm was observed in the control 
(Figure 3a) and at 48 h post PDT (Figure 3c). Minimum VEGF expression of 5% (IF score 1) 
was observed at 24 h post PDT (Figure 3b). Maximum VEGF staining of 26% (IF score 3) was 
noticed at 72 h time point (Figure 3d).   

in a mouse squamous cell carcinoma model (Uehara et al., 2001). Similar observations were 

noted by Jiang et al. whereby VEGF levels significantly increased after photofrin-PDT in 

intracranial glioblastoma xenografts (Jiang et al., 2008). In earlier studies, the same research 

group had reported increased VEGF levels in normal rat brain that induced the formation of 

aberrant new vessels following treatment with high dose PDT.  In another study it was 

demonstrated that low dose PDT increases endothelial cell proliferation and VEGF 

expression in nude mice brain (Zhang et al., 2005). In addition, the upregulation of VEGF in 

photofrin mediated PDT was also observed in the brain tissue adjacent to tumor in a dose 

dependent manner (Jiang et al., 2004). Solban et al. investigated the effect of subcurative 

PDT using photosensitizer benzoporphyrin derivative (BPD) in an in vivo orthotopic model 

of human prostate cancer that demonstrated increased VEGF secretion 24 h following PDT 

and suggested vascular damage and/or a direct effect of BPD to be responsible for this 

  50 μm 50 μm

50 μm 50 μm
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increase (Solban et al., 2006). Kosharskyy et al. observed increases in not only VEGF 

secretion but also incidences of lymph node metastases after subcurative PDT in an 

orthotopic model of prostate cancer (LNCaP), that created conditions favorable for 

enhanced tumor growth and metastasis (Kosharskyy et al., 2006).  The same group also 

investigated the use of an optical molecular imaging strategy to monitor VEGF expression in 

vivo and effectively labeled and imaged bound VEGF released from the extracellular matrix 

in response to photodynamic therapy (Chang et al., 2008).  Increased secretion of HIF-1α 

and its target gene VEGF has been observed in hypericin-mediated PDT in both 

nasopharyngeal and bladder carcinoma (Bhuvaneswari, Gan et al., 2007; Bhuvaneswari, 

Yuen et al., 2007). Moreover, cellular mediated long drug light interval (DLI) hypericin-PDT 

induced greater expression of pro-angiogenic growth factors compared to vascular 

mediated short drug light interval PDT in bladder carcinoma (Bhuvaneswari et al., 2008).  

Zhou et al. (Zhou et al., 2005) demonstrated that the expression of HIF-1α and VEGF 

increased in PDT-treated tumor samples collected 24 h post-PDT in a mouse model of 

human nasopharyngeal carcinoma. Mono-L-aspartyl chlorin e6 (NPe6) PDT of cytokine-

overexpressing Lewis lung carcinoma (LLC/IL-2) tumors revealed that the expression of 

GADD-5alpha and VEGF are induced after PDT and in particular the expression levels were 

much higher as compared with those in LLC tumors, 12 h after PDT (Ohtani et al., 2008). 

However, the application of ALA-PDT resulted in a lowered rate of metastatic spreading 

and decreased VEGF level in blood serum of 3LL-bearing mice that has been attributed to 

vascularization disturbances in tumor tissue (Lisnjak et al., 2005). Hypocrellin mediated 

PDT in human brain tumor cells induced expression of proangiogenic VEGF and of 

antiangiogenic SFH-1, angiostatin, p43, allograft inflammatory factor-1 and connective 

tissue growth factor suggesting favorable and deleterious effects of hypocrellin-PDT on 

tumor outgrowth (Deininger et al., 2002). Based on the above studies, it can be inferred that 

PDT using photosensitizers i.e., photofrins, hypericin, hypocrellins and chlorin e6 increases 

VEGF concentrations within the tumor tissue and acts as a key regulator of angiogenesis 

and tumor recurrence post treatment.  

3. PDT in combination with Avastin 

Combination of anti-angiogenic agents with the PDT regime has been shown to be effective 

in inhibiting tumor regrowth and improving tumor response (Bhuvaneswari et al., 2009).  

Studies have reported that transplantable BA mouse mammary carcinoma treated with PDT 

and non-specific antiangiogenic peptides, IM862, a dipeptide and EMAP-II, a single chain 

polypeptide, increased tumor regression by inducing apoptosis and inhibiting VEGF 

production. However, the anti-angiogenic agents by themselves did not produce the desired 

outcome (Ferrario et al., 2000). Use of novel antiangiogenic monoclonal antibodies, MF1 and 

DC101 along with PDT against vascular endothelial growth factor receptors VEGFR-1 and 

VEGFR-2, respectively, reduced the tumor volume significantly and prolonged the survival 

time of glioma-implanted animals (Jiang et al., 2008). PDT followed by administration of an 

antiangiogenic agent, TNP-470, abolished the increase in VEGF levels caused by subcurative 

PDT and reduced local tumor growth in an orthotopic model of prostate cancer (LNCaP) 

(Kosharskyy et al., 2006). Synthetic RTK inhibitors SU5416 and SU6668 when combined with 

hypericin PDT significantly extended survival of tumor-bearing host mice (Zhou et al., 

2005). Combining PDT with humanized monoclonal antibody Avastin (bevacizumab) 
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resulted in significant increase in long-term responsiveness of treated Kaposi’s sarcoma 

tumors when compared to monotherapies (Ferrario et al., 2006). Chang et al. (Chang et al., 

2008) used an in vivo optical imaging technique that produces wavelength-resolved 

fluorescence hyperspectral images to study changes in tumoral VEGF concentration 

following PDT and Avastin treatment. The in vivo antigen blocking experiment showed that 

Avastin pretreatment before imaging blocked the tumoral VEGF, and also that VEGF-

specific contrast agent labeling decreased in tandem with the pretreated Avastin dose, 

demonstrating that VEGF-specific contrast agent specifically binds to the VEGF protein. 

Since VEGF and its receptors represent central molecular targets for antiangiogenic 
intervention, addition of Avastin (bevacizumab) along with PDT can increase the treatment 
efficacy. Avastin is a recombinant, partially humanized, monoclonal IgG1 antibody that binds 
to and inhibits the biological activity of human VEGF thus preventing interaction with its 
receptors. Avastin along with chemotherapy has been approved in the United States of 
America (USA) for the treatment of colorectal cancer and NSCLC and in other countries for the 
treatment of breast cancer, prostate cancer and renal cell carcinoma (Shih & Lindley, 2006).  
In this study, the potential of combining anti-angiogenic agent Avastin that is specific to 
VEGF, with photodynamic therapy to enhance treatment efficacy by improving the tumor 
responsiveness was investigated. As Balb/c nude mice are immunocompromised, human 
bladder carcinoma cells were injected to establish subcutaneous tumor grafts. Subcutaneous 
models were used for our experiments because of the simple inoculation procedure, 
reproducibility of tumor growth and easy accessibility of the tumor for measurement and 
treatment. MGH bladder tumors form vascularized solid tumors.  
The tumor regression experiments conducted in the xenograft model clearly indicated that 
combining Avastin with PDT can impede the angiogenesis process and improve the 
response of treated tumors. This has been demonstrated by the significant decrease in the 
tumor volume of the combination therapy group of PDT + Avastin compared to the control 
and high dose PDT groups (Figure 4). This demonstrates that by targeting the VEGF 
pathway, post-PDT angiogenesis can be reduced. It should be noted that Avastin is a 
monoclonal antibody that targets human VEGF and not mouse VEGF. The tumor volume of 
high dose PDT treated group was significantly greater than the low dose PDT group and 
this could be due to the difference in fluence rates administered. High fluence rate can 
deplete tumor oxygen to a greater extent, thereby reducing the primary cytotoxic processes 
of PDT and affecting tumor control. On the other hand, low fluence rate treatments can be 
more effective in decreasing vascular lesions even if the same overall fluence is maintained. 
Other studies have concluded that lower fluence rate treatments can preserve the status of 
oxygen for a more effective PDT (Chen et al., 2002; Sitnik et al., 1998; Tromberg et al., 1990) 
and it is well recognized that light fluence rates play a major role in the tumor oxygenation 
status during PDT exposure. But we should also understand that oxygen-conserving low 
fluence rate PDT cannot always be effective if it is unable to produce the desired tumor 
damage and it is essential to estimate the lower limits of fluence rate that would be required 
for effective treatment thus potentially allowing the tailoring of treatment to specific 
situations (Henderson et al., 2006; H. W. Wang et al., 2004). The group of animals that were 
administered only Avastin showed greater tumor response compared to the high dose PDT 
and control groups, this could be due to the fact that Avastin by itself can target and bind to 
human VEGF. Though not statistically significant, better tumor response was observed in 
the combination therapy group compared to Avastin only and low dose PDT groups, 
however a greater sample size would be required to establish these findings. Complete cure 
was not achieved in these groups by end of 30-day post treatment, as Avastin does not 
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target mouse VEGF produced by the host environment. Tumors were excised to analyze the 
expression of VEGF and other angiogenic proteins at the end of the 30-day tumor growth 
experiments. This time point was chosen to study the long-term effect of Avastin on the 
expression profile of angiogenic proteins.  
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Tumor volume charted against days, to assess the tumor response in various 
treatment groups. The combination therapy group of PDT and Avastin exhibited greater 
tumor response in comparison with other groups. Each group represents the mean (bars, SE) 
of 10 animals. 

Next, circulating human VEGF concentrations in mice was investigated to analyze tumor-
derived VEGF. A low but detectable amount of human VEGF was observed in most tumors 
(Figure 5). It has been shown that high fluence rates during PDT can influence the 
inflammatory responses associated with PDT (Henderson et al., 2004). In the same way, the 
results also suggest that high dose PDT could have triggered inflammatory responses within 
the treated tumors that may enhance VEGF secretion. Though it was expected that Avastin 
would specifically bind to the circulating human VEGF, measurable amount of VEGF was 
documented in the animals that received Avastin alone. One of the reasons for detecting 
circulating VEGF in all the treatment groups could be the extended period of VEGF 
transcriptional activation, (Liang et al., 2006) and it is likely that low level of VEGF can be 
generated, continuously or in pulses, during the angiogenesis process that could vary 
significantly from tumor to tumor. Also, the data did not seem to exhibit any correlation 
between VEGF secretion and tumor volume. The smaller tumors in the Avastin only group 
expressed relatively greater amount of VEGF compared to the tumors in the control and 
high dose PDT treated groups, this observation can be attributed to multiple factors such as 
tumor vascularization, tumor invasiveness, tumor infiltrating macrophages and the 
production of cytokine IL-1α that has been shown to influence the secretion of VEGF (Borg 
et al., 2005).  
Immunohistochemistry was performed to detect VEGF and this method has been used in 

earlier studies for quantifying VEGF (Harper et al., 1996; Saito et al., 1999). As VEGF is a 
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secreted protein, it was observed mainly in the cytoplasm and the extracellular matrix 

(Figure 6). These data demonstrate that tumors under oxidative stress express greater 

amounts of VEGF. Also, significantly lower occurrence of VEGF was observed in the 

combination therapy of PDT and Avastin. These results are consistent with an earlier report 

by Solban et al. (Solban et al., 2006) on subcurative PDT performed on an orthotopic model 

of prostate cancer that showed increased VEGF secretion and also demonstrated that VEGF 

induction can be abolished by administering p38 MAPK inhibitor along with PDT.  

 

 

Fig. 5. Relative concentration of human VEGF measured in pg/ml in serum for various 
treatment groups. Greater expression of VEGF was observed in the high dose PDT group 
compared to the combination therapy group of high dose PDT + Avastin. Each group 
represents the mean (bars, SE) of 10 animals. 

The effect of different treatment regimes on the expression profiles of angiogenic proteins 
was also investigated. The study established differential expression of proteins in the 
angiogenesis pathway as different PDT combinations were administered (Figure 7). The 
protein angiogenin initiates cell migration, proliferation and induces neovascularization in 
vivo (Hartmann et al., 1999). In our experiments it was upregulated in high-dose PDT 
treated tumors compared to all other groups and this may be due to hypoxia induced 
production of angiogenin. Similarly studies have established positive correlation between 
hypoxia and angiogenin expression in human malignant melanoma, (Hartmann et al., 1999) 
and human primary breast carcinoma (Campo et al., 2005). A study on gastric carcinoma 
cancer has shown angiogenin expression in cancer tissues to be positively correlated with 
VEGF (Chen et al., 2002) and our results show that blocking the VEGF pathway using PDT 
with Avastin does downregulate the expression of angiogenin. Both bFGF and VEGF seem 
to differentially activate the Raf pathway in the angiogenesis process (Alavi et al., 2003) and 
as bFGF has shown to promote angiogenesis indirectly by the upregulation of VEGF in 
endothelial cells, (Pepper et al., 1992) the reduced expression of bFGF in the combination 
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Fig. 6. VEGF expression was assessed in tumors treated with various treatment regimens 
using immunohistochemistry  A - Control (untreated tumor), B - Low dose PDT, C - High 
dose PDT, D - Avastin only,  E -Low dose PDT + Avastin and F - High dose PDT + Avastin. 
VEGF, a secreted protein was observed in the cytoplasm and extracellular matrix. 30% 
Immunostaining for VEGF was observed in high dose PDT treated tumors. Control, low 
dose PDT and Avastin only groups exhibited <5% of staining. Minimal staining of less that 
2% was observed in the combination therapy groups of PDT and Avastin. All sections are 
shown at a magnification of × 630. 

therapy groups could mean that inhibiting VEGF may possibly attenuate bFGF expression 
as well. Amplication of bFGF by a HIF-1α-dependent pathway, (Calvani et al., 2006) may be 
one of the reasons for the upregulation of bFGF in PDT treated tumors. Similary EGF, a key 
EGFR ligand that promotes angiogenesis (Ciardiello, 2005) and was upregulated in high 
dose PDT treated tumors, is known to be HIF-1α regulated (Vaupel, 2004). We observed 
downregulation of EGF in the combination therapy groups suggesting that VEGF and EGFR 
pathways are closely related, sharing common downstream signaling pathways. (Tabernero, 
2007) PlGF-1 is expressed in placental tissues, colon and mammary carcinomas and it 
belongs to the VEGF family (Cao et al., 1996). No PIGF expression was noted in the low dose 
PDT treated group as the oxidative stress in these tumors was expected to be minimal due to 
low fluence rate administered during PDT. However, the Avastin only and combination 
therapy treated tumors expressed minimal PIGF, which may suggest that Avastin, which 
binds to VEGF, has negligible effect on PIGF. Furthermore as PIGF binds only to VEGF 
receptors, it has been documented that PIGF can be downregulated by blocking the VEGFR-
1/FLT1 receptor pathway (Ahmed et al., 2000). As both EGF and PIGF was not observed in 
the control tumors and induced only post PDT treatment, we conjecture that these proteins 
may not play a major role in angiogenesis of MGH bladder tumors, based on our 
experimental data that show increased tumor volume in control groups. After PDT 
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treatment, the tumors are in hypoxic condition which is one of the factors causing cytokine 
expression (Gomer et al., 2006). The role of IL-6 in angiogenesis is mediated through the 
induction of VEGF (T. Cohen et al., 1996). The increased expression of interleukins in the 
control and PDT treated groups may have resulted due to greater tumor volume and PDT 
induced inflammation, respectively. Compared to high dose PDT group, the tumors in 
combination therapy group produced lower levels of cytokines and this we theorize to be 
the role of Avastin in reducing angiogenesis by binding to VEGF, thus reducing the 
expression of post PDT inflammatory proteins. Expression of IL-6 was elevated in most of 
the treatment groups compared to IL-8 suggesting its importance in PDT-induced 
inflammation.  
 

 

Fig. 7. Antibody arrays were used to analyze the expression of angiogenic proteins in the 
treated tumors.  Density of proteins was plotted and normalized against the positive control 
Actin, (a) Angiogenin and bFGF, (b) EGF and PIGF, (c) TIMP-1 and TIMP-2, (d) VEGF and 
VEGF-D and (e) IL-6 and IL-8. Each group represents the mean (bars, SE) of 5 tumors (i.e. 
one membrane was used per tumor). Statistical analysis was performed using one-way 

ANOVA with Bonferroni's multiple comparison tests. ∗ = p<0.001, ∗∗  =p<0.01 when high 
dose PDT group was compared with the combination therapy groups of low dose PDT + 
Avastin and high dose PDT + Avastin. 
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On the other hand, TIMPs are natural inhibitors of MMPs. A stimulatory role of TIMP-1 in 
angiogenesis has been proposed in an earlier study (Wurtz et al., 2005) which reports that by 
inhibiting MMPs, TIMP-1 may prevent angiostatin and endostatin production, thus playing 
a positive role in tumor angiogenesis. In contradiction to an earlier report (Ferrario et al., 
2004) that PDT suppresses TIMP-1 expression in mouse mammary carcinoma, we noticed 
upregulation of TIMP-1 in the high dose PDT treated tumors. Nevertheless, this 
dissimilarity can be attributed to the different tumor systems and the PDT protocol 
administered. VEGF which is also known as VEGF-A is involved in angiogenesis and 
lymphangiogenesis and VEGF-D, a secreted protein stimulates lymphangiogenesis and 
metastasis in tumors (Hoeben et al., 2004). Reports have shown that subcurative PDT in an 
orthotopic model of prostate cancer increases VEGF secretion and also cause lymph node 
metastasis. It was also demonstrated that the administration of anti-angiogenic agent TNP-
40 abolished this increase and reduced tumor growth (Kosharskyy et al., 2006). In our study 
VEGF was not detected in low dose PDT group and that could be due to lower oxidative 
insult to the tumor tissue compared to the high dose PDT group. Furthermore, 
downregulation of VEGF levels was observed in the PDT + Avastin treated tumor as the 
combination treatment effectively suppressed the VEGF signalling cascade. However, we 
noticed minimal expression of VEGF using IHC and ELISA and this we attribute to the 
different tumor microenvironment as tumors were collected from different animals though 
they were treated with the same treatment protocol. In conclusion, the results demonstrate 
that by targeting the VEGF pathway, post-PDT angiogenesis can be inhibited. Furthermore, 
suppressing the VEGF pathway can also downregulate other angiogenic mediators. 

4. PDT in combination with Erbitux 

Erbitux was approved by the US Food and Drug Administration (FDA) for use in 

combination with irinotecan for the treatment of metastatic colorectal cancer and it is also 

being used for the treatment of metastatic squamous cell carcinoma of the head and neck 

(SCCHN) (Wong, 2005). Results of a large phase II study on irinotecan-refractory, colorectal 

cancer patients have shown a significant response of 22.9% when Erbitiux was combined 

with chemotherapy agent, irinotecan (Cunningham et al., 2004). In another study, the 

response rate was significantly improved when Erbitux was combined with cisplatin in the 

first-line treatment of recurrent or metastatic SCCHN (Burtness, 2005). A randomized trial 

that compared radiotherapy plus Erbitux with radiotherapy alone in patients with stage III 

or IV non-metastatic SCCHN, demonstrated significantly longer locoregional control with 

radiotherapy plus Erbitux than with radiotherapy alone; moreover, progression-free 

survival were significantly longer and the overall response rate was significantly better with 

the combination therapy (Griffin et al., 2009). Erbitux given concurrently with radiotherapy 

yields a significant clinical benefit over radiotherapy alone without any increase in 

radiotherapy-associated toxicity, this was demonstrated in the results of a recent phase III 

randomized study (Bernier & Schneider, 2007).  

In the in vivo tumor regression study, we demonstrate that the combination therapy of Erbitux 
with PDT can improve the tumor response by attenuating the angiogenic process (Figure 8). A 
similar study conducted on a mouse model of human ovarian cancer in which C225 (Erbitux) 
was combined with PDT regimen produced synergistic reductions in mean tumor burden and 
significantly greater median survival (del Carmen et al., 2005). In this study, PDT treated 
tumors did not exhibit significant tumor regression compared to combination therapy groups 
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and this could be attributed to the high fluence rate that was administered during PDT. High 
fluence rate can deplete tumor oxygen to a large extent, thereby stimulating the production of 
stress induced survival molecules that reduce the effectiveness of PDT and affect tumor 
control (Henderson et al., 2004). More importantly, the use of high light dose for this 
experiment was to test our hypothesis that combining PDT with Erbitux can improve tumor 
control and also to evaluate the effectiveness of Erbitux in reducing EGFR concentrations. The 
investigations have indicated that Erbitux alone as monotherapy was not effective in 
controlling tumor growth. One of the possible reasons for this observation could be the fact 
that tumors overexpressing EGFR might not be sensitive to Erbitux. Although we would 
assume that tumors overexpressing EGFR would respond well to anti-EGFR therapy, studies 
have demonstrated that the level of EGFR expression does not have any impact on tumor 
response rates as a significant number of EGFR-positive tumors could be resistant to Erbitux 
(Ellis & Hoff, 2004; Vallbohmer et al., 2005).  The group that received the combination therapy 
of PDT and Erbitux exhibited accelerated growth a week after PDT which could  be due an 
increase in the expression of angiogenic growth factors either due to hypoxia induced by 
oxygen depletion during PDT light irradiation or incomplete treatment. Our earlier results 
have shown increased expression of angiogenic growth factor VEGF at 72 h post PDT 
(Vallbohmer et al., 2005). In this study, the regular administration of Erbitux after PDT 
treatment could have blocked the EGFR pathway and reduced angiogenesis. Therefore, our 
data supports the hypothesis that combination therapy of PDT and Erbitux would be more 
effective in preventing angiogenesis compared to monotherapy alone.  
 

 

Fig. 8. Mean tumor volume charted against number of days post treatment, to assess the 
tumor response in various treatment groups. The combination therapy group of PDT and 
Erbitux exhibited greatest tumor response in comparison with all other groups. Each group 
represents the mean response (bars, SE) of 10 animals. 

To further substantiate our results we performed western blotting and 
immunohistochemistry to determine the EGFR levels in all the treatment groups. EGFR 
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immunoreactivity was localized mainly in the cell membranes and to a lower extent in the 
cytoplasm as well (Figure 9). It has been well established that the core of solid tumors is 
hypoxic, and that hypoxic tumor environment is sufficient to trigger EGFR expression in 
tumors (Franovic et al., 2007). Previous studies have reported the downregulation of EGFR 
after PDT (Ahmad et al., 2001; Tsai et al., 2009); in marked contrast our results demonstrated 
an increase in EGFR expression post hypericin-mediated PDT. This observation could be 
attributed to numerous reasons such as the light/drug dosage, the complexity of tumor 
microenvironment and the properties of the photosensitizer (Henderson et al., 2004). 
Combined antitumor activity of Erbitux with standard chemotherapy and radiotherapy is 
well documented in the treatment of different types of tumors and is reported to be more 
efficacious than individual monotherapies (E. E. Vokes & Chu, 2006). In this study, 
combination modality of PDT and Erbitux was effective in reducing the expression of EGFR 
and that could have lead to the regression of tumors in this group.  
 

 

Fig. 9. EGFR expression was assessed in tumor sections using immunohistochemistry.  The 
brown colored membrane staining indicates EGFR positive immunoreactivity. (A: Control, 
B: PDT, C: Erbitux and D: PDT +Erbitux).  PDT and Erbitux (D) resulted in significant 
reduction of EGFR expression of 4-6% (EGFR score 1) compared to monotherapy (B: PDT 
and C: Erbitux) and control groups (A). Maximum EGFR tumor cell membrane staining of 
21-24% (EGFR score 3) noticed in the untreated tumors. The monotherapy groups of PDT 
only and Erbitux only, exhibited 15-17% (EGFR score 2) and 11-13% (EGFR score 2) staining 
respectively. Magnification: 630X. 

In the current study, we have also shown that PDT plus Erbitux increased apoptosis in the 

treated tumors compared to PDT only and inhibitor only monotherapies (Figure 10). Erbitux 

has been known to increase apoptosis in various tumor models by different mechanisms, 

including upregulation of pro-apoptotic Bax protein (Mahtani & Macdonald, 2008), decrease in 

the expression of anti-apoptotic molecule Bcl-2 (S. M. Huang et al., 1999) and the activation of 
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pro-apoptotic caspases (Iwase et al., 2008). Hypericin-PDT is also known to induce apoptosis 

in a dose-dependent manner with higher doses leading to necrosis. Based on the lack of tumor 

inhibition in the monotherapy groups, it can be noted that tumors treated with PDT alone and 

Erbitux alone induced limited apoptosis in bladder carcinoma tumors. Therefore in this 

investigation, we observe that the combination therapy has significantly increased tumor cell 

apoptosis and inhibited tumor progression. Preclinically, many studies have shown that 

treatment with Erbitux in combination with radiotherapy or chemotherapy enhances apoptotic 

cell death than individual therapies. In a similar manner, PDT induced apoptosis, could have 

been enhanced by the combination of Erbitux to the treatment regime. 
 

 

Fig. 10. The tunnel assay was performed on the tumors that were harvested from the 
animals at the end of the treatment. Few isolated positive nuclei were noticed in (A) 
untreated tumors, (Apoptotic index (AI) – 6%). Both (B) PDT only (AI - 14%) and (C) Erbitux 
only (AI - 16%) treated tumors showed increased apoptosis compared to control. High levels 
of apoptotic nuclei were clearly exhibited by tumors treated with the (D) PDT plus Erbitux 
combination therapy (AI - 32%, p <0.001). Magnification: 630X. 

By using EGF phosphorylation antibody array membranes, we examined the relative level of 
phosphorylation of specific sites for human EGFR receptors. Interestingly, we noted the 
phosphorylation of Threonine 686 site of ErbB2 in all the groups. Studies have suggested that 
the dysregulation of cellular protein kinase C (Ouyang et al., 1996) and protein kinase A 
(Monje et al., 2008) activity could phosphorylate ErbB2 on Thr-686 for the activation and 
proliferation of tumor cells (Figure 11). However, our findings suggest that ErB2 on Thr-686 
may not be essential for regulation of tumor proliferation, as tumor control was observed in 
the PDT + Erbitux treated group. Phosphorylation of EGFR tyrosine 845, only noticed in 
control tumors, is implicated in the stabilization of the activation loop, providing a binding 
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surface for substrate proteins and is capable of regulating receptor function and tumor 
progression (Cooper & Howell, 1993). c-Src is known to be involved in the phosphorylation of 
EGFR at Tyr845 (Biscardi et al., 1999). The major autophosphorylation sites of ErbB2 are 
Tyr1248 and Tyr1221/1222 that lead to Ras-Raf-MAP kinase signal transduction pathway 
(Kwon et al., 1997). In control tumors, ErbB2 was phosphorylated at tyrosine 1221/1222 and is 
associated with high tumor grade and with shorter disease-free survival and overall survival 
(Frogne et al., 2009). Similarly, ErbB4 is able to induce phosphorylation of phosphatidylinositol 
3-kinase regulatory subunit which is a pro-survival protein that prevents apoptosis (B. D. 
Cohen et al., 1996; Gallo et al., 2006). Our data suggests that dephosphorylation of ErbB4 
tyrosine 1284 is critical for tumor regression in the dual treatment group.  
 

 

Fig. 11. Phosphorylation statuses of EGFR sites were determined using antibody arrays. 
Increased phosphorylation of ErbB2(Thr686), ErbB2(Ser1113) and limited phosphorylation 
of EGFR(Thy845), ErbB2(Tyr1221/1222), ErbB3(Tyr1289) and ErbB4(Tyr1284) sites was seen 
in the control group.  In the monotherapy groups, ErbB2(Thr686), (Ser113) and 
ErbB4(Tyr1284) sites were phosphorylated. Inhibition of most of the EGFR phosphorylation 
sites was observed in combination therapy groups except for ErbB2(Thr686) and (ser1113). 
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EGFR-mediated Ras-Raf-MEK-ERK and PI3K-PTEN-AKT pathways play an important role 
in transmission of signals from membrane receptors to downstream targets that regulate 
apoptosis, cell growth and angiogenesis. Components of these pathways include genes such 
as Ras, B-Raf, PI3K, PTEN and Akt that can be mutated or aberrantly expressed in human 
cancer. Though we did not investigate these genes, it should be noted that they could cause 
resistance to anti-EGFR therapy. Numerous studies have reported Kras mutations as a 
predictor of resistance to Erbitux therapy and are associated with poor prognosis in 
colorectal cancer (Lievre et al., 2006) and non-small cell lung carcinoma (Riely et al., 2009).  
In a similar way, Braf mutation is also known to cause resistance to anti-EGFR therapy in 
colorectal cancers (Li et al., 2006) and primary lung adenocarcinomas (Schmid et al., 2009). 
Mutation of PTEN tumor suppressor gene in human cancer cells leads to activated EGFR 
downstream signaling including PI3-kinase/AKT and have been linked to resistance to anti-
EGFR targeted therapies (M. Y. Wang et al., 2006). However, in this study we investigated 
the role of EGFR target genes cyclin D1 and c-myc that are involved in cell proliferation. Our 
RT-PCR results showed downregulation of cyclin D1 and c-myc in the tumors treated with 
the combination therapy (Figure 12). Amplification of cyclin D1, a key cell cycle regulatory 
protein, appears to be an important event in bladder cancer and is often associated with cell 
proliferation and poor prognosis in human tumors (Le Marchand et al., 2003). In our study, 
downregulation of EGFR also resulted in reduction of cyclin D1. This observation could be 
due to the administration of Erbitux, that is known to cause cell cycle arrest in the 
G(1)/G(0)-phase, also increases the expression of cyclin-dependent kinase inhibitors 
(Huether et al., 2005). c-myc, another EGFR target gene that can obstruct the induction of 
apoptosis in tumor cells and lead to uncontrolled cell growth was reduced in the PDT + 
Erbitux treated tumors. Over-expression and amplification of c-myc can play an important 
role in metastatic progression that indicates poor prognosis in different cancers (Peng et al., 
1997). These results suggest that EGFR target genes could play a role in tumor inhibition in 
bladder cancer by arresting cell cycle growth and inducing apoptosis. 
 

 

Fig. 12. The effect of EGFR inhibition on target genes cyclin-D1 and c-myc was evaluated at 
the RNA level. Cyclin D1 is an important regulator of G1 to S-phase transition and 
overexpression of cyclin D1 has been linked to the development and progression of cancer. 
c-Myc is activated in a variety of tumor cells and plays an important role in cellular 
proliferation, differentiation, apoptosis and cell cycle progression. Downregulation of 
cyclin-D1 and c-myc was observed in the tumors treated with PDT and Erbitux (p<0.05) 
when compared with the other groups. 
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5. PDT in combination with Avastin and Erbitux  

In this study, the potential of combining anti-angiogenic agent Avastin that is specific to 
VEGF and Erbitux that targets EGFR along with PDT to improve bladder tumor response 
was investigated. To achieve this, the inhibitory effect of the anti-angiogenic compounds 
was tested using angiogenic assays. Cell migration is a highly integrated multistep process 
that is essential for invasion and metastasis of tumors. Directed cell migration is normally 
initiated in response to extracellular cues such as chemoattractants, growth factors and the 
extracellular matrix (Ridley et al., 2003). In this study, stimulation with VEGF, a 
proangiogenic protein, increased the migration of tumor cells. On the other hand, 
antiangiogenic agents, Avastin and Erbitux reduced the migratory potential of the tumor 
cells. Avastin is known to significantly reduce proliferation and migration capacity, and 
increase apoptotic rates in endothelial cells (Carneiro et al., 2009). A similar study has 
reported 40-60% inhibition of cell migration of SCC cells when incubated with Erbitux in a 
dose dependent manner (S. M. Huang et al., 2002).  One of the most important and crucial 
events in cancer metastasis is the invasion of basement membrane. The invasion assay 
results in this study have clearly demonstrated the stimulatory effect of VEGF on 
endothelial cell migration (Figure 13). VEGF plays an important role in tumor invasion and 
metastasis through its specific action on endothelial cells in tumor tissue (Khosravi Shahi & 
Fernandez Pineda, 2008). In vitro studies have clearly demonstrated that VEGF is a potent 
mediator of angiogenesis as it helps in the proliferation and migration of the endothelial 
cells to form tube-like capillaries (Bernatchez et al., 1999). Tumor cells exposed to hypoxia 
induced by PDT triggers the expression of VEGF mRNA that in turn releases the VEGF 
protein (Dvorak et al., 1995; Shweiki et al., 1992). 
Endothelial barrier disruption by VEGF-mediated Src activity has been shown to 
potentiate tumor cell extravazation and metastasis (Weis et al., 2004). Another study has 
reported that interference with VEGF function could be sufficient to abrogate tumor 
invasion (Skobe et al., 1997). Reduced invasion of endothelial cells through the basement 
membrane was observed in the Avastin and Erbitux treated cells, suggesting their role in 
preventing the disruption of the basement membrane. Another important step in 
angiogenesis is the formation of a functional vascular system for tumor growth and 
metastasis. Endothelial cell tube formation is a consequence of various biological 
activities, including cell migration, vacuolization, cell-cell junction formation and cell 
elongation. It is well established that VEGF plays an important role in the process of 
angiogenesis by facilitating endothelial cell migration and tube formation similar to the 
observations in this study (Ferrara, 2004). Another report has also identified Hedgehog 
signaling as an important component of the molecular pathway leading to vascular tube 
formation (S. A. Vokes et al., 2004). Avastin and Erbitux were used successfully to reduce 
and inhibit tube formation, thus signifying their role in blocking major angiogenic 
processes. Similarly, another study demonstrated that bevacizumab could significantly 
impair tube formation capabilities in tumor derived endothelial cells and also noted a 
continuing effect after 14 days of treatment even after omitting the antibody (Grau et al., 
2011). Treatment with Cetuximab has also shown to reduce cell-to-cell interaction of 
human umbilical vascular endothelial cells (HUVEC), resulting in disruption of tube 
formation (S. M. Huang et al., 2002). Further substantiating these in vitro findings, Avastin 
and Erbitux also inhibited angiogenesis in a mouse plug matrigel assay, as evaluated by 
haemoglobin content levels. 
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Fig. 13. Effect of angiogenesis stimulator and inhibitors on HUVECs in vitro. (a) control, (b) 
VEGF, (c) Avastin (d) Erbitux and is (e) Avastin + Erbitux. (A) High invasion of endothelial 
cells through basement membrane were noticed in VEGF treated wells Avastin and Erbitux 
inhibited the migration of endothelial cells. The figures are representative of the results from 
three separate experiments. (B) The invasion index was calculated based on the number of 
cells in the test samples compared to the control samples. Calculations for each group were 
performed in triplicate. Invasion index for VEGF was high and was lowest for the 
combination of angiogenesis inhibitors (*=p<0.001). Error bars represent the standard error 
of the mean invasion index in comparison to control in all the groups, n = 6. 

Avastin and Erbitux monotherapies and also Avastin + Erbitux remarkably suppressed the 
sprouting of endothelial cells and induction of new blood formation in the matrigel plugs 
(Figure 14). It has been demonstrated that the effects of blocking angiogenesis can be 
observed on tumor transplanted onto animals (O'Reilly et al., 1994). The antiangiogenic 
activities of Avastin and Erbitux may be explained by their inhibitory action on the 
proliferation, migration and differentiation of the tumor cells, by inhibiting VEGF and EGFR 
respectively.  
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Fig. 14. (A) Endothelial cell tube formation was assessed using VEGF, Avastin and Erbitux. 
(a) control, (b) VEGF, (c) Avastin (d) Erbitux and (e) Avastin + Erbitux. VEGF induced tube 
formation and Avastin and Erbitux decreased growth inhibited tube formation of 
endothelial cells. Combining Avastin and Erbitux, almost completely abrogated tube 
formation (B) The total tube length of each treatment group was quantified by the software, 
Datinf Measure (Tubingen, GmbH, Germany). The figures are representative of the results 
from three separate experiments. Error bars represent the standard error of the mean 
invasion index in comparison to control in all the groups, n = 8. 

The tumor regression data demonstrated that combining Avastin + Erbitux with PDT can 

impede the angiogenic process and improve the response of treated tumors (Figure 15). The 

tumor volume of the PDT treated group was significantly greater than the Avastin treated 

and Erbitux treated groups as high fluence administered during treatment can deplete 

tumor oxygen to a large extent, releasing stress induced survival molecules that reduce the 

effectiveness of PDT and affect tumor control (Gomer et al., 2006). Although tumor 

regression was also observed in Avastin + Erbitux only treated group, complete cure was 

not observed. Thus targeting EGFR and VEGF without PDT treatment might not be 

sufficient to cause regression of most bulky tumors. One of the possible explanations for this 

observation may be related to pericytes that respond to angiogenic stimuli and promote 
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endothelial stability through matrix deposition, and have macrophage-like function (Lu et 

al., 2007). Also, the tumors overexpressing EGFR might not be sensitive to Erbitux. 

Although it is normally assumed that tumors overexpressing EGFR would respond well to 

anti-EGFR therapy, studies have demonstrated that the level of EGFR expression does not 

have enough impact on tumor response rates as a significant number of EGFR-positive 

tumors could be resistant to Erbitux (Ellis et al., 2004; Vallbohmer et al., 2005). Complete 

cure was noted in tumors treated with PDT and continued Avastin + Erbitux therapy. Thus 

the data from the present study supported the hypothesis that Avastin and Erbitux are 

capable of binding and neutralizing secreted VEGF and EGFR respectively, thus causing 

regression of tumor vessels, and preventing tumor recurrence. 

 

 

Fig. 15. Tumor volumes were charted against days to assess the tumor response in various 
treatment groups. The combination therapy groups of PDT + Avastin, PDT + Erbitux and 
PDT + Avastin + Erbitux exhibited greater tumor response in comparison with other 
groups. Each group represents the mean (error bars, SE) of 10 animals. 

VEGF and EGFR expression was suppressed in the tumors treated with PDT and inhibitors 
(Figure 16). The data in this study demonstrate that tumors treated with PDT expressed 
greater amounts of VEGF, which is consistent with an earlier report by Solban et al. (Tortora 
et al., 2008) on subcurative PDT performed on an orthotopic model of prostate cancer that 
showed increased VEGF secretion. Also, significantly lower occurrence of VEGF was 
observed in the combination therapy of PDT and Avastin. On the other hand, previous 
studies have reported the downregulation of EGFR after PDT (Ciardiello et al., 2006), in 
marked contrast the results of this study demonstrated an increase in EGFR expression post 
hypericin-mediated PDT. This observation could be attributed to numerous reasons such as 
the light/drug dosage, the complexity of tumor microenvironment and the properties of the 
photosensitizer (Henderson et al., 2004). Combined antitumor activity of Avastin and 
Erbitux with standard chemotherapy and radiotherapy is well documented in the treatment 
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of different types of tumors and is reported to be more efficacious than individual 
monotherapies (Press & Lenz, 2007).  
 

 

Fig. 16. (A) Expression of EGFR and VEGF was detected in the treatment groups using 
western immunoblot analysis. Expression of actin was used to monitor protein loading. (B) 
Ratio of EGFR and VEGF density was plotted against actin. 

In this study, combination modality of PDT + Avastin + Erbitux was effective in reducing 

the expression of VEGF and EGFR which could have led to the greater tumor regression in 

this group. Combination of Avastin and Erbitux with PDT also improved treatment efficacy 

by suppressing angiogenic proteins. Though immediate tumor inhibition was noticed in the 

groups treated with both the inhibitors and PDT, the overall outcome post 90-day treatment 

for both single agent and double-agent inhibition remained the same. Although tumor 

regression was also observed in Avastin + Erbitux only treated groups, complete cure was 

not observed. Thus targeting EGFR and VEGF without PDT treatment might not be 

sufficient to cause regression of most bulky tumors. One of the possible explanations for this 

observation may be related to pericytes that respond to angiogenic stimuli and promote 

endothelial stability through matrix deposition, and have macrophage-like function. Also, 

the tumors overexpressing EGFR might not be sensitive to Erbitux. Although it is normally 

assumed that tumors overexpressing EGFR would respond well to anti-EGFR therapy, 

studies have demonstrated that the level of EGFR expression does not have enough impact 

on tumor response rates as a significant number of EGFR-positive tumors could be resistant 

to Erbitux. Complete cure was noted in tumors treated with PDT and continued Avastin + 

Erbitux therapy. 
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6. Conclusion 

In conclusion, it has been demonstrated that VEGF is upregulated due to hypoxic conditions 
induced by hypericin-mediated PDT.  Also, VEGF acts as a potent angiogenesis-stimulating 
factor that has potential as a tumor biomarker to determine the outcome of photodynamic 
therapy. Combination treatment of PDT with Avastin that binds to VEGF and blocks 
receptor binding improved the tumor response of bladder carcinoma xenografts and 
suppressed the VEGF pathway by causing the downregulation of important angiogenic 
mediators. In the similar way, the regular administration of Erbitux, an EGFR inhibitor after 
PDT treatment can block the EGFR pathway and reduce angiogenesis. Therefore, the 
combination therapy of PDT and Erbitux was more effective in preventing angiogenesis 
compared to monotherapy alone. In another study the combination of both Avastin and 
Erbitux with PDT was capable of binding and neutralizing secreted VEGF and EGFR 
respectively, thus causing regression of tumor vessels, normalizing surviving mature 
vasculature and preventing tumor recurrence. 
To summarize, combining angiogenesis inhibitors with PDT increased therapeutic efficacy 
and this method is a promising approach to cancer therapy. The challenge is to choose the 
appropriate anti-angiogenic agent in combination with optimal light dosimetry PDT for 
potential clinical application. The success seen with the combination of inhibitors with 
conventional treatments can provide information for potential target mechanisms, which 
may translate into better response rate with less local and systemic toxicity and improved 
overall survival rates. 
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