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1. Introduction  

NKG2D (nature killer group 2, member D) is a C-type lectin-like activating receptor  

expressed by all human nature killer (NK) cells, most NKT cells, subsets of γδ T cells, and 

CD8 T cells. In mouse, NKG2D is also expressed by all NK cells and subsets od splenic γδ T 

cells and NKT cells, but only expressed by activated mouse CD8 T cells and activated mouse 

macrophages. NKG2D is located on a syntanic region of human choromosome 12 and on 

mouse chromosome 6, clustered with other NKG2 family members (Glienke et al., 1998; Ho 

et al., 1998) (Figure 1). NKG2D serves as an invariant immune activating receptor upon 

engagement by ligands expressed on target cells, transformed or viral infected cells. 

Engagement of NKG2D by its ligands can activate NK cell and co-stimulate CD8 and γδ T 

cells (Bauer et al., 1999; Groh et al., 2001; Wu et al., 2002). The activation signals transmitted 

by NKG2D can override inhibitory signals transmitted by other NK receptors. NKG2D is 

therefore referred as the master activating receptor for NK cells to sense cells under 

abnormal physiological stress. The ligands for NKG2D are not commonly present in normal 

tissues but can be induced under abnormal physiological condition, such as cellular 

transformation or viral infection. The expression pattern of NKG2D ligands in tumor cells 

has been extensively studied. Emerging experimental evidence have indicated that NKG2D-

mediated immunity can be very effective for tumor clerance by activating NK cells, and in 

some cases CD8 T cells. However, it is widely accepted that NKG2D function is subverted in 

cancer patients, due to mechanisms of tumor immunoediting and immune suppressive 

effect of tumor microenvironment (Figure 2). Thus, inventions are in need to overcome 

tumor immune evasion of NKG2D immunity as an effective cancer treatment. In this 

chapter, we will review the basic understandings of NKG2D function in anti-tumor 

immunity and the challenges and advances in NKG2D-based cancer treatment. 

 

D F E C A

NKRP1A CD69 CD94 NKG2

D F E C A

NKRP1A CD69 CD94 NKG2  

Fig. 1. The NKG2 family gene cluster. Except NKG2D, all other members of the NKG2 
family form a heterodimeric complex with CD94. Different from other members, NKG2D 
forms a homodimer on cell surface.  
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2. NKG2D  

2.1 Molecular structure and expression 

NKG2D is a type II transmembering glycoprotein, containing C-type lectin-like domains, 
similar to other known NKG2 family (Eagle and Trowsdale, 2007). Although physically 
clustered with other NKG2 family members, NKG2D only displays 20-30% sequence 
homology with other members of the NKG2 family. NKG2D is highly conserved between 
species. For instance, human NKG2D and mouse NKG2D share 70% amino acid identity 
(Raulet, 2003). NKG2D was originally identified as a key activating receptor of NK cells. 

Subsequently NKG2D is identified on all human CD8 T cells, NKT cells, subsets of γδ T cells. 
In murine, NKG2D was expressed by activated and memory CD8 T cells, a proportion (25%) 

of splenic γδ T cells, and activated macrophages (Diefenbach et al., 2000; Mistry and 
O'Callaghan, 2007).  
 

Pre-

cancerous
normal

malignant

Tumor

NK cell
NK, T cell

NK, T cell

no activation Activation

Anti-tumor 
immunity

NKG2D

MIC

NKG2D

Impairment

Tumor evasion
and progression  

Fig. 2. Tumor cells have developed strategies to evade NKG2D immunity. The ligand of 
NKG2D is generally absent in normal tissues. In pre-cancerous tissues, NKG2D ligand  is 
induced to stimulate NKG2D immunity in NK and T cells and prevents tumorigenesis. In 
malignant tissues, NKG2D function is impaired which allows tumor evade to immunity. 

2.2 Signaling  

The NKG2D molecule contains two β-sheets, two α-helices, four disulfate bonds, and a β-
strand (Mistry and O'Callaghan, 2007). NKG2D forms homodimers on the cell membrane 
(Raulet, 2003). In both human and mouse lymphocytes, stable surface expression of NKG2D 
requires a complex formation of NKG2D homodimer with a Tyr-X-X-Met (YXXM) adaptor 
signaling molecule DAP10 at the cell membrane (Ogasawara and Lanier, 2005). Activated 
mouse NK cells also express a splice variant NKG2D-S, which is 13 aa shorter than normal 
NKG2D and signals through either DAP10 or the immunoreceptor tyrosine-based activation 
motif (ITAM)-containing adaptor molecule DAP12 (Long, 2002). Upon ligand engagement 
of NKG2D, DAP 10 is phosphorylated by src-family kinases (Figure 3), which permits the 
recruitment of the PI3K subunit p85 and the signaling intermediate Grb2-Vav 1 to fully 
activate NK cell cytotoxic pathways. In activated mouse NK cells, NKG2D-s may also 
independently signal through ITAM which, after phosphorylation, recruits ZAP70 (zeta-
chain-associated protein kinase 70) and Syk (spleen tyrosine kinase). In NK cells, NKG2D-
initiated activation signals can bypass signals transmitted through inhibitory receptors, 
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presumably because SHP phosphotases which are usually recruited by activation of NK 
inhibitory receptors do not participate NKG2D signaling (Watzl, 2003). Because of this trait, 
NKG2D is also regarded as the “Master” activation receptor of NK cells. Activation signal 
provided by NKG2D can override inhibitory signals provided by NKG2D inhibitory 
receptors.  
 

 

Fig. 3. NKG2D signalling pathways. Mouse NKG2D associates with both DAP10 and 
DAP12, whereas human NKG2D associates with DAP10 only. Adopted from Champsaur 
and Lanier, 2010.  

3. NKG2D ligands  

Multiple genes encode ligands for NKG2D have been identified in human and mice (Table 
1). In human, expression of NKG2D is mostly restricted to tumor or certain viral infected 
cells and rarely identified in normal tissues. The expression pattern of NKG2D ligand in 
mouse tissues is not well understood. Nonetheless, the regulation of the NKG2D ligand 
expression is a delicate matter. Inappropriate expression of NKG2D ligands in normal 
tissues may induce autoimmune diseases, while failure to sustain surface ligand expression 
in transformed tissues would favor disease development and progression. 

3.1 NKG2D ligands in human 

Two families of NKG2D ligands are identified in humans: the MHC class I chain related 

family molecules A (MICA) and B (MICB) and the family of HCMV(human 

cytomegalovirus) UL16-binding proteins 1-6 (ULBPs 1-6) (Bahram et al., 2005). All these 

molecules are distant HLA class I homologues but not associated with β-2 microglobulin nor 

have roles in antigen presentation (Eagle and Trowsdale, 2007). Althogh highly conserved 

within each family, members of the MIC family share little sequence or structural similarity 

with those of the ULBP family. The expression pattern of the MIC and ULBPs are also 

dissimilar. 

3.1.1 Tumor-associated expression of MIC family NKG2D ligand  

MIC genes are located within the MHC class I region of chromosome 6 (Bahram et al., 2005). 

Seven MIC loci exist, but only two loci encode translated genes ( MICA and MICB) (Eagle 
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and Trowsdale, 2007). Although MICA and MICB transcripts are widely found in normal 

human tissues (Schrambach et al., 2007), MICA and MICB protein are predominantly found 

in epithelial originated tumors, rarely expressed in normal tissue with an exception to 

intestinal epithelium, possibly due to the contact of these cells with intestinal microbes. 

MICA and MICB share over 80% amino acid identity. Both MICA and MICB are highly 

plymorphic. There are 51 identified MICA alleles and 23 identified MICB alleles (Bahram et 

al., 2005; Viny et al., 2010). To some degree, this diversity may provide protection against 

rapidly evolving cancers (Eagle and Trowsdale, 2007). The MIC(A/B) molecule is consisted 

of three extracellular domains (α1, α2, and α3), a trans-membrane region, and a cytoplasmic 

tail (Bahram et al., 1994; Bahram et al., 2005).  

 

Name Alternate Name Cell Surface Attachment 
NKG2D Affinity   

(KD) 

Human    

MICA PERB11.1 Transmembrane 1 μM 

MICB PERB11.2 Transmembrane 0.8 μM 

ULBP1 RAET1I GPI anchor 1.1μM 

ULBP2 RAET1H GPI anchor or not ND 

ULBP3 RAET1N GPI anchor ND 

ULBP4 RAET1E,LETAL Transmembrane ND 

ULBP5 RAET1G Transmembrane or GPI anchor ND 

ULBP6 RAET1L GPI anchor ND 

Mice    

Rae-1α Raet 1a GPI anchor 690nM 

Rae-1β Raet 1b GPI anchor 345nM 

Rae-1γ Raet 1c GPI anchor 586nM 

Rae-1δ Raet 1d GPI anchor 726nM 

Rae-1ε Raet e GPI anchor 20n M 

H60-a n/a Transmembrane 26nM 

H60-b n/a Transmembrane 310nM 

H60-c n/a GPI anchor 8.7μM 

MULT1 n/a Transmembrane 6 nM 

Table 1. NKG2D ligands in human and mouse 

3.1.2 Tumor-associated expression of ULBP family NKG2D ligand  

The ULBPs were named for their ability to bind to the human cytomegalovirus UL16. 
protein Six members of human ULBP gene family are identified to encode functional 
proteins. ULBPs 1-3 and 6 are glycosylphosphatidylinositol (GPI)-linked proteins, 
whereas ULBPs 4 and 5 are type I transmembrane proteins (Mistry and O'Callaghan, 

2007) (Figure 4). Unlike the MICs family, the ULBP family lack the α3 domain and only 

have the MHC class I-like α1 and α2 domains (Mistry and O'Callaghan, 2007). The 
expression pattern of ULBP family members are not well defined. ULBP transcripts 
appear widely expressed in humans (Cosman et al., 2001; Radosavljevic et al., 2002), not 
restrcited to transformed tissues. 
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Fig. 4. Structure of NKG2D ligands in human and mice. MICA and MICB are the only 
known ligands containing three extracellular domains. All others (human and mouse) lack 

the α3 domain and are either transmembrane or GPI-anchored. Adopted from Champsaur 
and Lanier, 2010.  

3.2 NKG2D ligands in mice 

No homologue to human MIC protein was identified in mice. The identified mouse NKG2D 
ligands include family members of: the MHC I-related family members of retinoic acid early 

transcript RAE-1(α, β, γ, δ, and ε) and H60 (a, b, c), and the murine ULBP-like transcript 1 
(MULT1) (Cerwenka et al., 2000; Diefenbach et al., 2003; O'Callaghan et al., 2001; Takada et 

al., 2008). All of these ligands only have the MHC class I-like α1 and α2 extracelluar 
domains. The prototype member of Rae-1 gene family was first discovered as retinoic acid 
(RA) early inducible cDNA clone-1 (Rae-1), which was rapidly induced on F9 
teratocarcinoma cells in response to treatment with retinoic acid (Chalupny et al., 2003; 
Nomura et al., 1994). Presently, there are five known members of the Rae-1 family, named 

Rae-1α, Rae-1β, Rae-1γ, Rae-1δ, and Rae-1ε, which are differentially expressed in various 
mouse strains but highly related to each other (>85% identity). The H60 family comprises 
three members. H60a, the first ligand of the family was initially identified as a minor 
histocompatibility antigen by immunizing C57BL⁄6 mice with MHC-identical BALB.B cells 
(Malarkannan et al., 1998). Two novel members of H60 family were identified, and named 
as H60b and H60c (Takada et al., 2008). MULT1 is the unique member of the ULBP-like 
family of mouse NKG2D ligands and was found by database searching for mouse sequences 
with similarities to human ULBP (Carayannopoulos et al., 2002).  
In mice, NKG2D ligand expression in primary tumorigenesis has not been extensively 
analyzed. Transcripts of mouse NKG2D ligand was found to be expressed in a broad range 
of normal tissues. H60a mRNA was found in multiple tissues, including the spleen, cardiac, 
skeletal muscle, thymus, and skin, whereas H60b mRNA is limited to cardiac and skeletal 
muscles (Zhang et al. 2010). The most recent addition to the H60 family, H60c, is transcribed 
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largely in the skin (Takada et al., 2008; Whang et al., 2009). H60a is productively expressed 
in BALB/c mice but not in C57BL/6 mice, whereas H60b and H60c transcripts are detected 
in both C57BL/6 and BALB/c mouse. MULT1 mRNA is found in the heart, thymus, lung, 
and kidney across most mice strains (Carayannopoulos et al., 2002; Takada et al., 2008). 
However, the expression level of NKG2D ligand on normal tissues seem to be below the 
threshold of inducing activate immune response to cause tissue injury. 

3.3 Regulation of the NKG2D ligand expression 

As NKG2D serves as the master activating receptor on NK cells, expression of NKG2D 
ligand NKG2D be delicatedly regulated in a pathological condition to protect normal tissue 
intergrity and yet maintain the alertness to diseases. The regulation is acheived at multiple 
levels of regulatory mechanisms, each of which will be discussed below.  

3.3.1 Transcriptional regulation 

The known mechanisms which regulate the NKG2D ligand transcription are mainly cellular 

stress, DNA damage, TLR stimulation, and cytokine exposure. The promoter region of the 

MICA and MICB contains contain sequences that are highly homologous to the heat shock 

elements of HSP70 (Venkataraman et al., 2007), a stress induced gene. Viral oncoproteins, 

such as adenoviral E1A protein, or cellular stress-response related products can bind to the 

promoter region of MICA and/or MICB to induce or upregulate its expression 

(Venkataraman et al., 2007). Treatment of hepatocellular carcinoma cells with RA was 

shown to induce the expression of MICA and MICB (Jinushi et al., 2003b). The transcription 

factor AP-1, which is involved in tumorigenesis and cellular stress responses, was found to 

regulate Rae-1 transcription through the JunB subunit (Nausch et al., 2006).  

The DNA damage response pathway is involved in maintaining the integrity of the genome. 

The PI3K-related protein kinases ATM (ataxia telangiectasia, mutated) and ATR (ATM and 

Rad3-related) sense DNA lesions, specifically double-strand breaks and stalled DNA 

replication, respectively. This sensing results in cell cycle arrest and DNA repair or cell 

apoptosis if the DNA damage is too extensive to be repaired. This pathway has been shown 

to be constitutively active in human cancer cells (Bartkova et al., 2005; Gasser and Raulet, 

2006; Gorgoulis et al., 2005). Both mouse and human cells upregulate NKG2D ligands  

expression following treatment with DNA-damaging agents. This effect was dependent on 

ATR function, as inhibitors of ATR and ATM kinases can prevent ligand upregulation in a 

dose-dependent fashion.  

TLR signaling also results in NKG2D ligand transcription in multiple mechanisms 

(Eissmann et al., 2010). Treatment of peritoneal macrophages with TLR agonists in vitro 

and injection of LPS in vivo both resulted in Rae-1 upregulation on peritoneal 

macrophages (Hamerman et al., 2004). TLR agonists increased the transcription of Raet1 

genes, but not MULT1 or H60, in a Myd88-dependent fashion. TLR agonists have a 

similar effect on human cells (Kloss et al., 2008; Nedvetzki et al., 2007). TLR signaling also 

results in NKG2D ligand expression on DCs.  

Cytokines can differentially affect NKG2D ligand expression in different cell types and 

environments. In humans, IFN-α leads to the expression of MICA on DCs (Jinushi et al., 

2003a). IFN-α and IFN-γ treatment can down-regulate H60 expression on mouse sarcoma 

cells(Bui et al., 2006). Treatment of human melanoma cells with IFN-γ can decrease mRNA 
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levels of MICA in STAT-1 dependent fashion (Schwinn et al., 2009). Transforming growth 

factor-β (TGF-β) also decreases the transcription of MICA, ULBP2, and ULPB4 on human 

malignant gliomas (Friese et al., 2004). Macrophages cultured in the presence of IL-10 show 

elevated expression of MICA and MICB and ULBPs 1-3 (Schulz et al., 2010).  

3.3.2 Post-transcriptional regulation 

Various mechanisms are responsible for the post-transcriptional regulation of NKG2D 
ligands. The endogenous cellular microRNAs (miRNAs) that bound to the 3’-UTR 
(untranslated region) of MICA,MICB and ULBP1 can repress the translation of these ligands 
(Stern-Ginossar et al., 2008; Himmelreich et al., 2011). Four miRNAs that suppressed MICA 
expression have been identified (Yadav et al., 2009). In these findings, silencing of Dicer, a 
key protein in the miRNA processing pathway, leads to the upregulation of MICA and 
MICB (Tang et al., 2008). However, miRNA-induced upregulation of NKG2D ligands was 
found to be dependent on the DNA damage sensor ATM, thus suggesting that upregulation 
of NKG2D ligands in the absence of Dicer might be due to genotoxic stress in addition to the 
absence of regulatory miRNAs.  

3.3.3 Post-translational regulation 

Expression of NKG2D ligand can also be regulated post-translationally via various 
mechanisms. The ubiquitination on the lysines in cytoplasmic tail of MULT1 was shown to 
mediate its rapid degradation (Nice et al., 2009). Ubiquitination can be reduced in response to 
heat shock or ultraviolet irradiation through the MARCH family of E3 ligases and thus allow 
upregulation of NKG2D ligand expression, such as MULT1 in mice and MIC (A/B) in humans 
(Nice et al., 2010). The presence of multiple lysines in the cytoplasmic tail of H60a, H60b, 
MICA, MICB, and RAET-1G suggests that this translational control mechanism might be used 
by other NKG2D ligands. KSHV (Kaposi’s sarcoma-associated herpesvirus)-encoded E3 
ubiquitin ligase K5 can down-regulate cell surface expression of MICA and MICB (Thomas et 
al., 2008). The ubiquitination may also redistribute MICA to the plasma membrane, rather than 
target to degradation as observed with MULT1. The sorting/internalization motif in H60a 
may confer the regulation mechanism (Samarakoon et al., 2009). Lastly, one of the most 
commonly described mechanism to regulate surface NKG2D ligand expression in human 
cancer cells is protease-mediated shedding (Fernandez-Messina et al., 2010; Liu et al., 2010). 
This level of regulation will be discussed in details in section 6.1. 

4. NKG2D in anti-tumor immunity  

4.1 Evidence in experimental models 

NKG2D-mediated tumor rejection has been demonstrated very effective in experimental 

animal models. The rejection was mediated primarily by NK cells or through a cooperation 

of NK cells with CD8 T cells. Overexpression of a high level of mouse NKG2D ligands Rae-1 

or H60 in mouse tumor cells of various origin, including the thymoma cell line EL4, the T-

cell lymphoma cell line RMA, and the poorly immunogenic and highly metastatic 

melanoma variant B16-BL6, induced in vivo rejection or retarded tumor growth when 

implanted into syngeneic mice (Cerwenka et al., 2001; Diefenbach et al., 2001). It was also 

found that the rejection of a small dose of Rae-1 or H60-expressing tumors (e.g. 1x104 cells) 

could be achieved by NK cells or CD8 T cells alone whereas inhibition the growth of large 
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dose of Rae-1 or H60-expressing tumor cells (e.g. 1x106 cell) required a cooperation of NK 

cells and CD8 T cells (Diefenbach et al., 2001).  

The significance of NKG2D in controlling tumor growth was further emphasized by in 
vivo NKG2D neutralization in experimental models. When mice (B6 or balb/c 
background) were injected with antibody to neutralize NKG2D, these animals showed 
increased susceptibility to carcinogen MCA-induced fibrosarcoma in comparison to 
control IgG-treated mice (Smyth et al., 2005). Perhaps the most direct genetic evidence to 
demonstrate the role of NKG2D in tumor immunity comes from the NKG2D-deficient 
mice. When TRAMP mice were crossed with NKG2D-deficient mice, the progeny had 4-
time increased frequency of developing poorly-differentiated tumors than NKG2DWT 

counterparts (Guerra et al., 2008).   

4.2 Human cancer  

Although NKG2D ligands are prevalently expressed in tumors of many types of human 
malignancies, there is so far no direct evidence to demonstrate the role of NKG2D in 
controlling tumor growth or progression. Understanding the significance of NKG2D in 
human cancer progression mainly comes from correlative observation in cancer patients. 
Massive clinical data demonstrating impaired NKG2D function in cancer patients was 
mediated by various mechanisms. A number of studies elegantly demonstrating the positive 
correlation of impaired NKG2D function with cancer disease stages. We are one of the first 
groups demonstrating that impaired NKG2D-mediated NK cell function correlated with 
cancer stages in prostate cancer patients (Wu et al., 2004). In this study, circulating NK cells 
were isolated from prostate cancer patients with various stages of diseases. NKG2D 
expression and NK cell function were analyzed in vitro. The result showed a gradually loss 
of NKG2D+ NK population from patients with low grade to high grade of cancer, with 
complete loss of NKG2D expression on NK cells from patients with advanced diseases. As 
an obvious consequence, NKG2D-mediated cytotoxicity of these NK cells against tumor 
cells was severely subverted. Similar observations were demonstrated in the progression of 
other types of cancers, such as multiple myeloma and colon cancer (Doubrovina et al., 2003; 
Jinushi et al., 2008). In gliomas patients, tumor burden was found to be associated with 
deficiency of NKG2D expression on NK and CD8 T cells (Crane et al. 2010). A number of 
studies have also described that dysfunction of NKG2D on CD3+CD56+ NK-like T cells and 

subsets of γδ T cells was associated with poor prognosis of certain cancers (Bilgi et al., 2008; 
Marten et al., 2006; Wang et al., 2008).  

5. Tumor immune evasion of NKG2D immunity 

5.1 Tumor shedding of NKG2D ligand as the immune evasion mechanism 

Expression of NKG2D ligand on tumors should effectively trigger immune response, at least 
NK cell innate response at the  early stage of tumorigenesis, to eradicate tumors in human. 
However, in many types of established tumors of human malignancy, the NKG2D ligand 
MIC was highly expressed (Groh et al., 1999). The very paradoxical question is: how can 
human epithelial tumors develop and persist while the surface MIC molecule should 
identify them as abnormal and flag them for immune destruction? Clinical studies 
demonstrated that most of the human malignancies have developed mechanisms to evade 
NKG2D-mediated anti-tumor immunity. One of the common mechanisms by which human 
cancers evade NKG2D immunity is shedding of the NKG2D ligand MIC from tumor cell 
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surface to release a stable soluble form of MIC (sMIC) to the circulation (Groh et al., 2002). 
This mechanism has been identified in an array of human malignancies, including 
carcinomas of prostate, breast, lung, colon, Kidney, and ovarian, gliomas, neuroblasttomas, 
and melanoma (Groh et al., 2002). Elevated serum levels of sMIC has been shown to be 
correlative with advanced cancer stages (Doubrovina et al., 2003; Holdenrieder et al., 2006a, 
b; Jinushi et al., 2008; Rebmann et al., 2007; Tamaki et al., 2010; Tamaki et al., 2009; Tamaki et 
al., 2008; Wu et al., 2004). Some studies have suggested that serum levels of sMIC may be 
used as a valid prognosis factor for cancer progression (Tamaki et al.,2010 ; Tamaki et al., 
2009). Tumor-derived sMIC can impose several negative imprints on host immune system. 
First, shedding can reduce the density of membrane-bound NKG2D lgand, namely MIC on 
tumor cells and thus reduce the visibility of tumor cells by the immune surveillance. Second, 
sMIC in the circulation can not only mask NKG2D on effector NK, NKT and T cells, but also 
induce NKG2D internalization (Champsaur and Lanier, 2010). Third, sMIC may induce the 
expansion of immune suppressive NKG2D+CD4 T cells in the tumor microenvironment 
(Groh et al., 2003).  

5.2 The alternative hypothesis  

The hypothesis that tumor-derived sMIC is immune suppressive in cancer patients is widely 

accepted. Currently, an alternative hypothesis that chronic exposure to membrane-bound 

ligands also impairs NKG2D function was also proposed, based on several in vitro and in 

vivo studies. This alternative hypothesis raised a concern on the effectiveness and stratege 

on NKG2D-based immune therapy. The in vitro study was conducted by co-culturing 

purified mouse splenic NK cells with RAE-1-overexpressing tumor cells. The investigator 

found that NKG2D expression was down-regulated (Coudert et al., 2005). It was not clear in 

this study whether the down-regulation of prolonged in vitro culture is due to soluble RAE-

1 or membrane-bound RAE-1, as RAE-1 was recently shown to be shed by mouse tumor 

cells (Champsaur and Lanier, 2010). With a different aspect of limitations, the existing 

evidence from in vivo studies was based on enforced ectopic constitutive expression of 

NKG2D ligand on normal mouse, not in the context of tissue-specific expression without 

resembling the feature of NKG2D ligand expression in cancer patients. For example, one 

transgenic mouse model that was created by expressing human MICA under the 

constitutive and ubiquitous mouse MHC class I H-2Kb promoter on a C57BL ⁄6 background 

showed impaired ability of NK cells to reject MICA-transfected RMA tumors in comparison 

to the wild-type counterparts (Wiemann et al., 2005). In other models, NKG2D ligand RAE-

1ε was expressed in normal mice under the constitutive involucrin promoter (inducing 

squamous epithelium expression) or the ubiquitous chicken β-actin promoter; local and 

systemic NKG2D downregulation was noted in these mice in comparison to the wild-type 

counterparts (Oppenheim et al., 2005). Notably, in these transgenic mouse models, NKG2D 

ligand expression was “ectopic” under the direction of a constitutive or ubiquitous 

promoter in somatic cells. Given the magnitude of ligand-induced NKG2D signaling on 

activating NK cell cytoxicity, down-regulation of NKG2D function may be expected in these 

transgenic mice in compare to an otherwise wild type counterpart. This would be a self-

regulatory mechanism in response to “a suicide machinery” to allow normal embryonic 

development. Thus, whether the sustained systemic ligand-induced downregulation of 

NKG2D in these mouse models truly represents the real situation in cancer patients should 

be carefully evaluated.  
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5.3 Does chronic exposure to membrane-bound ligand impair NKG2D function? 

The alternative hypothesis raised a fatal therapeutic concern whether sustaining NKG2D 
ligand on tumor cell surface would be beneficial or detrimental for host anti-tumor immunity. 
To resolve the controversial, we constructed a mutant shedding resistant membrane-restricted 
NKG2D ligand MICB.A2. We overexpressed the native shedding-sensitive MICB and the 
mutant MICB.A2 both of which can be recognized by mouse NKG2D (Wu et al., 2009) 
respectively in a highly tumorigenic mouse prostate tumor cell line TRAMP-C2 and implanted 
these cell lines into SCID mice. Interestingly, expression of the membrane-restricted MICB.A2 
prevented TRAMP-C2 to form tumors in vivo whereas expression of native shedding-sensitive 
MICB did not (Wu et al., 2009). When the mice were injected with purified sMICB prior to 
tumor inoculation to imitate the expression of shedding-sensitive MICB, expression of 
MICB.A2 could not prevent TRAMP-C2 tumor formation. This study provided a proof-of-
principle that tumor-specific membrane-bound ligand does not impair NKG2D function in 
vivo and that only the soluble ligand derived from the membrane-bound ligand as a result of 
shedding induces NKG2D dysfunction to promote tumorigenesis. To provide further evidence 
supporting this notion, we have created double transgenic TRAMP-MICB and TRAMP-
MICB.A2 mice where MICB and MICB.A2 was concurrently expressed with the SV40T 
oncoprotein in the mouse prostate epithelium directed by the prostate-specific probasin 
promoter. Sustained immunity was generated by enforced expression of membrane-restricted 
MICB.A2 to allow long-term tumor-free survival of animals; conversely, enforced expression 
of shedding-sensitive MICB facilitated bound MIC, is immune suppressive to facilitate tumor 
progression and metastasis (Wu, unpublished). Together, these studies have suggested that 
stabilizing membrane-bound NKG2D ligand expression may become valuable avenue for 
tumor immune therapy.   

5.4 Modulation of NKG2D function by tumor microenvironment  

Other soluble components than soluble NKG2D ligands in the tumor microenvironment 
have also been described to facilitate tumors evading NKG2D immunity. One of the widely 

described factors is TGF-β, which can be secreted by regulatory T cells or tumor cells. TGF-β 
was well demonstrated to down-regulate of NKG2D expression in Glioma patients 

(Castriconi et al., 2003; Crane et al., ; Friese et al., 2004). In some cases, TGF-β was also found 
to inhibit the expression of tumor cell surface NKG2D ligand expression at the 
transcriptional level (Friese et al., 2004). Indoleamine 2,3-dioxygenase (IDO), a tryptophan 
(Trp) catabolite, is another well studied component in the tumor microenvironment that 
may negatively regulate NKG2D function. IDO is generally absent or inactive in cells of the 
immune system, but it can be induced or activated in macrophages and subsets of dendritic-
cell (DC) by specific cytokines, in particular IFN-γ. IDO has also been found in various 
tumors of different histotypes. Elevated IDO activity was found to be correlated with cancer, 
such as lung, ovarian, breast cancers, and many other types of malignancies (Ino, 2010; 
Prendergast et al.). There is evidence that IDO can directly down-regulate NKG2D 
expression in vitro in a time and dose-dependent manner (Song et al. 2010). 

6. Interventions to harness NKG2D immunity for cancer treatment 

Ample evidence demonstrating that NKG2D function is impaired in cancer patients and that 
NKG2D dysfunction can facilitate cancer progression to advanced diseases. With the 
understanding of the mechanisms by which NKG2D function was compromised, in this 
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section, rationales and optimal strategies to harness NKG2D immunity for potential cancer 
therapy will be discussed.  

6.1 Mechanisms of MIC shedding  

Studies have been done in many investigators to understand the mechanisms that regulate 
MIC shedding for potential therapeutic interventions. A diverse group of enzymes have 
recently been shown to be involved in MIC shedding. Studies from several groups have 
shown that inhibition of cellular metalloproteinase activity by GM6001 markedly interferes 
with MIC shedding. Specific metalloproteinases, such as ADAM (a disintegrin and 
metalloproteinase)-10 and ADAM-17, were found contributing to MICA shedding 
(Waldhauer et al., 2008) and ADAM-17 protease was found contributing to MICB shedding 
(Boutet et al., 2009). The type I membrane MMP (MT1-MMP, also called MMP14) also 
directly regulates MICA shedding independent of ADAMS (Liu et al., 2010). The thiol 
isomerase ERp5, which catalyzes disulfide bond formation, reduction, and isomerization, 
was shown to be required for MIC shedding (Kaiser et al., 2007). This was presumably 
accomplished by chaperoning conformational alterations of surface MIC through 
disulphide-bond exchange that render MIC susceptible for proteolytic cleavage.  

6.2 Targeting proteases to inhibit MIC shedding   

ADAM-10 and -17 and the thioreductase ERp5 have been proposed to be potential cancer 
therapeutic targets for inhibiting MIC shedding. However, these enzymes are not only 
involved in pathology of diseases, but also involved in many normal physiological 
functions. For instance, ADAM-17 is required for generation of the active forms of 
Epidermal Growth Factor Receptor (EGFR) ligands that is essential for the development of 
epithelial tissues. In addition, although there are many examples of expression or 
upregulation of ADAMs in both tumor tissues and cell lines, the precise pattern of their 
expression within tumors is not always clear (Edwards et al., 2008). Furthermore, targeting 
ADAM-17 has been in clinical trials with a spectrum of inhibitors for over a decade. 
However, no single ADAM-17 inhibitor has passed a Phase II clinical trial because of high 
toxicity and non-specific targeting (DasGupta et al., 2009). As to the possibility of targeting 
ERp5, it has been suggested that disulfide bond exchange with cell surface molecule to 
enable the shedding may be a general mechanism by which ERp5 modulates cell signaling 
(Jordan and Gibbins, 2006). In addition, a wide role of ERp5 in cellular function has been 
implicated, such as in normal platelet activation (Jordan et al., 2005). These studies suggest 
that there are many facets of these enzymes that need to be understood before embarking 
with confidence on targeting them for cancer therapy. Therefore, a more specific and 
feasible target is needed for inhibiting MIC shedding for cancer therapy.  

6.3 Targeting MIC shedding regulatory sequences  

By Mass-spectrometry analyses, we and others have shown that MIC is cleaved at multiple 
sites in the near transmembrane region aa 253-289 in tumor cell lines (Kaiser et al., 2007; 
Waldhauer et al., 2008; Wang et al., 2009), suggesting that targeting the cleavage site(s) for 
inhibiting MIC shedding is not therapeutically feasible. Using genetic approach, a 

dispensable six-aa motif in the α3 ectodomain of MIC (A and B) was identified to be critical 
for regulating MIC shedding (Wang et al., 2009). Mutation in the six-aa motif completely 
prevented MIC shedding but did not interfere with MIC to be recognized by NKG2D. 
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Further study revealed that the six-aa motif is required for MIC to form a physical complex 
with ERp5, a presumable requirement for MIC to be shed. Due to the “non-invasive” feature 
of the six-aa motif, molecules or antibodies targeting this six-aa shedding regulatory motif to 
prevent MIC to interact with ERp5 may be a more feasible therapy.  

6.4 Neutralizing sMIC 

In a clinical trial with a anti-CTLA-4 antibody blockade or vaccines for melanoma therapy, 
patients who generated anti-MICA antibodies during the therapy showed significantly 
better clinical outcome than those who did not (Jinushi et al., 2006). The beneficial effect was 
shown to act through antibody antagonizing sMICA-induced suppression of NK and CD8 T 
cell anti-tumor responses. Although not being discussed in this study, the effect of anti-
MICA antibody in this particular clinical setting may also be due to elimination of sMIC in 
the serum and thus elimination of immune suppressive NKG2D+ CD4 T cells. More, anti-
MIC antibody has also been shown to sensitive tumor cells to antigen-specific T cells by 
enhancing DC cross-priming (Groh et al., 2005). Based on these observations, using anti-MIC 
monoclonal antibody (mAb) to neutralize circulating sMIC and concomitantly to enhance 
DC cross-priming has been proposed as a cancer therapy. However, clinical implication 
using anti-MIC antibody must take into consideration that the antibody will also block the 
interaction of tumor-cell surface MIC with NKG2D and thus block NKG2D-mediated NK 
cell anti-tumor function. Thus, when applying this approach, it is critical to understand 
whether NK cell or T cell play a critical role in a particular stage of a specific cancer type. As 
an alternative approach, phase I clinical trial using adoptively transferred haploidentical NK 
cells to scavenge plasma sMIC has shown some effect in neuropblastoma patients (Kloess et 
al. 2010). If donor NK cells are obtainable, this approach may become an effective therapy 
for many type of cancers. 

6.5 Engineering T cells with chimeric NKG2D  

A new and very interesting mechanism to utilize the NKG2D-mediated immunity in tumor 

therapy is expressing chimeric NKG2D-CD3ζ (chNKG2D) in T cells for adoptive cell 

therapy. By fusing NKG2D with the cytoplasmic signaling domain of CD3ζ chain, NKG2D 

may induce the anti-tumor activation of T cells independent of TCR signaling, when 

NKG2D ligand is present on tumor cells. The chNKG2D expressed on NK cells and T cells 

does not seem to be down-regulated by soluble NKG2D ligand (Zhang et al., 2006; Zhang et 

al., 2005). This approach had been demonstrated to be very effective in controlling tumor 

growth in several experimental animal models (Barber et al., 2011; Barber et al., 2008a; 

Barber et al., 2008b; Zhang et al., 2007). Treatment of mice bearing established ovarian and 

multiple myeloma with T cells expressing the chNKG2D receptor can lead to long-term, 

tumor-free survival and induce host memory responses to tumor antigens. This protection is 

not restricted to the direct effect of chNKG2D-induced activation of T cells upon ligand 

engagement. Sustained long-term protection against tumors in animal models was found to 

be achieved through cytokines secreted by the chNKG2D-engineered T cells to induce a 

proinflammatory environment and re-activate host NK, CD4 and CD8 T cell anti-tumor 

responses. In ovarian mouse models, adoptive transfer of chNKG2D T cells was found to 

not only to induce systemic increase in IFNγ, GM-CSF, and perforin but also to eliminate 

immunosuppressive regulatory CD4 T cells in the tumor microenvironment (Barber and 

Sentman, 2009; Barber et al., 2008a). Adoptive transferring chNKG2D engineered T cells has 
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also been shown effective in our tumor models. However, due to the systemic 

immunoactivation induced by chNKG2D T cells, the long-term safety in clinical application 

has to be evaluated. chNKG2D-engineered autologous T cells is currently in phase I clinical 

trial for treating ovarian cancer patients.   

7. Conclusion  

As emerging evidence demonstrating the significance of sustained NKG2D-NKG2D ligand 
interaction in anti-tumor responses, in particular solid tumors, it is time to develop 
therapeutic interventions to harness the NKG2D immunity for anti-tumor therapy. As 
soluble NKG2D ligands are the culprit for tumor evading NKG2D immunity, interventions 
to enforce NKG2D-mediated anti-tumor response should be focused on preventing tumor 
shedding, removal of soluble NKG2D ligand or counteracting the effect of soluble ligand on 
NKG2D function. More, in the development of tumor vaccines, one should also take into the 
consideration that across-priming by NKG2D ligand may boost the clinical efficiency of 
vaccine-induced immune responses. Last but not least, as tumor microenvironment can 
negatively regulate NKG2D function, co-targeting tumor microenvironment may be 
necessarily in stratifying NKG2D anti-tumor immunity.   
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