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1. Introduction 

Cancer is a class of diseases characterized by uncontrolled growth of abnormal cells 
anywhere in the body and the ability of these cells to invade other locations in the body, 
either by direct growth into adjacent tissue or by migration of cells to distant sites. This 
unregulated growth is caused by damage to DNA, resulting in mutations to genes that 
encode proteins controlling cell division. To prevent this unregulated growth various 
anticancer drug (Chen et al., 2011; Kim & Dass 2011) have been developed. But these drugs 
have severe toxicity and are not well tolerated in the patient. Therefore, the major goal in 
anticancer drug discovery process is to discover and develop innovative therapies that 
exhibit a real improvement in effectiveness and/or tolerability. In cancer therapy, 
continuous effort has been made to explore the new targets. Cancer research is largely 
focused on prospective targets identified by basic science such as the oncogenic signal 
transduction pathway, oncogenes, tumor suppressor genes, and genes involved in the 
regulation of the cell cycle and apoptosis or programmed cell death (Gridelli et al., 2003; 
Hochhaus et al., 2004; Lau et al., 2011; Minna et al., 2004). Proteins mediating their effects are 
obvious targets for cancer therapy because, by definition, these proteins are involved in the 
primary transformation of normal cells. Proteins that transmit abnormal growth signals 
offer enticing points of intervention for the treatment of cancer. One potential target is the 
Ras family of proteins, which are mutationally activated in a wide range of human tumor 
types and are important contributors to the neoplastic phenotype (Barbacid et al., 1987; Biagi 
et al., 2010; Bollag et al., 1991; Bos et al., 1989). 

2. Ras protein 

Ras proteins have been the subject of intense research investigation by the biomedical 
research community since 1982 (James et al., 1996). Ras is the name of a protein, the gene 
that encodes it, and the family and superfamily of proteins to which it belongs. Ras proteins 
are guanine nucleotide–binding proteins that play pivotal roles in the control of normal and 
transformed cell growth. The Ras superfamily includes the Ras, Rho, and Rab families. 
There are three Ras proto-oncogenes: the H-ras gene (Harvey murine sarcoma viral 
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oncogene homolog, Fig. 1), the K-ras gene (Kirsten murine sarcoma viral oncogene 
homolog), and the N-ras gene (neuroblastoma oncogene homolog) (Boguski et al., 1993; Ellis 
et al., 1981; Marcos et al., 2003; Ruta et al., 1986; Shimizu et al., 1983). The ras oncogenes 
encode four low molecular weight (21 kDa) proteins, Ras (H-Ras, N-Ras, and K-Ras4A and 
K-Ras4B, resulting from two alternatively spliced K-ras gene products) (Morgillo et al., 
2007), that, in normal untransformed cells, cycle between an inactive guanosine 5'-
diphosphate (GDP)-bound state and active guanosine 5'-triphosphate (GTP)-bound state at 
the inner surface of the plasma membrane in mammalian cells. 
 

 

(a) 

 
(b) 

Fig. 1. a. Structure of the HRAS protein (Elaine 2009), b. Ribbon diagram of H-ras  
(Elaine 2010). 

The highly conserved nature of the variable region across mammalian species indicates that 
Ras proteins serve specific functions. They are very important molecular switches for a wide 
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variety of signal pathways that control such processes as cytoskeletal integrity, proliferation, 
cell adhesion, apoptosis, and cell migration (Zhao et al., 2011). The final four amino acids 
play an important role in specifying subcellular localization of the Ras protein. All Ras 
proteins have a specific amino acid sequence motif at the carboxyl (C) terminus, commonly 
referred to as the CAAX sequence (C, cysteine; A, aliphatic amino acid; X, any amino acid 
usually methionine or serine) which signals for posttranslational modifications (Cadinanos 
et al., 2003; Epifano et al., 2007; Roberts et al., 2008; Rowinsky et al., 2006). 
Ras is a G protein and functions as a molecular switch cycling between GTP- bound "on" 
and GDP-bound "off" states (Seki et al., 1996). It is activated by guanine exchange factors 
which are themselves activated by mitogenic signals and through feedback from Ras itself. It 
is inactivated by GTPase-activating protein, which increases the rate of GTP hydrolysis, 
returning Ras to its GDP-bound form, simultaneously releasing an inorganic phosphate. Ras 
is synthesized in the cytoplasm as a biologically inactive cytosolic propeptide (Pro-Ras) and 
undergoes a series of closely linked posttranslational modifications by the covalent addition 
of a non-polar farnesyl group to the COOH-terminal, thereby increasing its hydrophobicity 
(Kyathanahalli & Kowluru, 2011). The C-termini triplet of amino acids is cleaved off, leaving 
a farnesylated, methylated cysteine residue at the carboxyterminus. Ras is then localized to 
the inner surface of the plasma membranes (Gibbs et al., 1993; Hancock et al., 1989, 1990; 
Jackson et al., 1990; Salaun et al., 1999), in which Ras cycles from an inactive GDP-bound 
state to an active GTP-bound state. Once in its GTP-bound form, Ras activates several 
downstream effector pathways that mediate increased gene transcription and rapid cell 
proliferation (Fig. 2). The most critical step, farnesylation, adds a 15-carbon farnesyl 
isoprenoid group to H-, K-, and N-Ras through a thioether bond and is catalyzed by 
Farnesyl transferase (FTase) (Kho et al., 2004; Ljuca et al., 2011). 
 

 

Fig. 2. Ras-dependent signal transduction with Farnesyltransferase inhibitor (FTI) target. 
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3. Mutations of Ras in human cancers 

Ras is mutated to an oncogenic form in cancer, so the Ras and Ras-related proteins are often 
deregulated, leading to increased invasion and metastasis, and decreased apoptosis. In part 
of the human tumors, one of the three ras genes harbored a point mutation, they result in a 
permanently active GTP-bound form of Ras (Le Moulec et al., 2009; Lowry & Willumsen et 
al., 1993).  
Mutant Ras proteins transform cells because they continuously activate the downstream 
effector pathways, including those involved in cell proliferation, in the absence of any 
upstream growth factor stimulation. Mutations of ras occur in approximately 30% of all 
human cancers, including a significant proportion of pancreatic and colorectal carcinomas 
(Clark et al., 1995; Khosravi-Far et al., 1994; Shimoyama, 2011; Widemann et al. 2006). With 
regard to the three ras genes, mutation of K-ras is most commonly found in human tumors, 
whereas N-ras mutations are encountered less often and H-ras mutations rarely. The type of 
ras mutation seems to correlate with tumor type. Although activating ras mutations are 
mainly involved with myeloid malignancies and carcinomas of the breast, colon, pancreas, 

lung, and thyroid, they have also been detected in many other types of cancer (Beaupre et 
al., 1999; Zheng et al., 2010).  

4. Post-translational modification of Ras 

Ras proteins are tethered to the inner face of the membrane by posttranslational 
modifications that make them more hydrophobic (Ageberg et al., 2011), which involve 
prenylation (addition of a lipid moiety) of the protein. After its synthesis as cytoplasmic Pro-
Ras, Ras is sequentially modified by farnesylation of the cysteine residue, proteolytic 
cleavage of the AAX peptide by proteases, and carboxymethylation of the new C-terminal 
carboxylate by carboxymethyl transferase. As the first step in this sequence, farnesylation is 
the most critical part of the process (Casey et al., 1989; Cox & Der, 1997; Gibbs & Oliff, 1997; 
Gelb et al., 1997; Kato et al., 1992; McCormick et al., 1993; Omer et al., 1997; Schafer et al., 
1989; Yamane et al., 1990), in which a 15-carbon farnesyl isoprenoid group is transferred 
from farnesyl diphosphate (FDP) to form a thioether bond with the cysteine moiety in the C 
terminal tetrapeptide sequence of the Ras protein (Fig. 3). 
 

O
P

O
P

O

O O

O O

Farnesyl diphosphate (FDP)

FTase
Ras-Cys-A1-A2-X

S

Ras-Cys-A1-A2-X

SH

 

Fig. 3. The first step in Ras posttranslational modification is mediated by FTase, which 
transfers a farnesyl moiety from FDP to the cysteine moiety in the CAAX motif at the 
carboxyl terminus of Ras. 
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In addition, there are other prenyltransferase enzymes, including geranylgeranyl 
transferases which transfer one or two 20-carbon geranylgeranyl isoprenoid lipid moieties to 
proteins, again facilitating membrane incorporation. Both farnesylation and 
geranylgeranylation result in more hydrophobic proteins. The potential for cross-
prenylation of proteins such as Ras suggests that geranylgeranyltransferase could restore 
the function of these proteins if FTase was inhibited (Kim et al., 2010; Marks et al., 2007). 
However, not all Ras proteins are prenylated by geranylgeranyltransferase, and it is not 
clear that the function of geranylgeranylated Ras is the same as that of farnesylated Ras, as 
suggested by the fact that geranylgeranylated normal Ras may be inhibitory. Strategies that 
are capable of blocking FTase and preventing farnesylation may be expected to inhibit the 
maturation of Ras into a biologically active molecule, thus turning off signal transduction 
(Appels et al., 2011; Geryk-Hall et al., 2010). 

5. Farnesyl transferase 

Farnesyl transferase is located in cell cytosol. FTase is one of the three enzymes in the 
prenyltransferase group that catalyzes most prenylation reactions and differs in their 
isoprenoid substrates and protein targets (Fig. 4). FTase adds a 15 carbon (Subramanian et 
al., 2008)  isoprenoid lipid called a farnesyl group to proteins bearing a CAAX motif and its 
targets include members of the Ras superfamily of small GTP binding proteins critical to cell 
cycle progression. 
FTase is a zinc metalloenzyme that exists as a heterodimer. This heterodimer has two 
distinct subunits denoted as ǂ and ǃ, having molecular weights of 48 kDa and 46 kDa 
respectively (Machida et al., 2011; Zhang & Casey, 1996). The X-ray crystal structure of 
FTase reveals that it has binding sites for both the CAAX peptide and the FDP (Kauh et al., 
2011; Park et al., 1997; Wei et al., 2011). It has been shown that geranylgeranyltransferase can 
prenylate some of the substrates of FTase and vice versa. 
 

 

Fig. 4. Structure of Farnesyltransferase (Berman et al., 2000) 
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6. Farnesyltransferase inhibitors 

The introduction of the first ‘anti-Ras’ agents, the farnesyl transferase inhibitor (FTI), which 
were proposed to interrupt the crucial post-translational modification of Ras, led to much 
anticipation of their potential therapeutic benefits (Niessner et al., 2011). The detailed kinetic 
information about the FTase reaction and the physicochemical nature of FTase substrates has 
led to the rational design of FTI (Heimbrook & Oliff, 1998; Sebti & Hamilton, 1998). FTI 
comprise a novel class of antineoplastic agents recently developed to inhibit FTase with the 
downstream effect of preventing the proper functioning of the Ras protein, which is 
commonly abnormally active in cancer (Babcock & Quilliam, 2011; Hourigan & Karp, 2010; 
Kohl et al., 1999). FTIs interfare with bipolar spindle formation during transition from 
prophase to metaphase in mitosis (Ashar et al., 2000; Crespo et al., 2001). 
Currently known FTIs can be divided into three categories based on their mechanism of 
action: FDP competitive inhibitors, CAAX competitive inhibitors and compounds that 
inhibit both CAAX and FDP (so-called “bisubstrate analogues”) (Crul et al., 2001; Wasko et 
al., 2011). The second class of compounds in particular has shown promising results. This 
group can be divided into two subclasses comprising peptidomimetic and 
nonpeptidomimetic agents, respectively. The high-throughput screening of natural products 
or compound libraries also led to the discovery of some FTIs which possess good activity.  
A number of specific inhibitors have been developed in each of these categories, and 
subjected to rigorous testing in pre-clinical studies. In the laboratory setting, FTIs revealed 
the ability to inhibit growth of a wide range of human tumour cell lines, as well as in 
xenograft and transgenic models (Appels et al., 2005). The anti-tumour outcome has been 
linked with pleiotropic effects on apoptosis, angiogenesis and the cell cycle. 

6.1 FDP analogs 

FDP analogs were the first reported active inhibitors of FTase and were designed based on 
the farnesyl moiety of the FDP substrate. FDP based inhibitors of FTase offer several 
advantages over bisubstrate analogs or CAAX peptidomimetics in that they are small and 
non-peptides. Although the compounds that competed with FDP and inhibited Ras 
processing showed no antitumour activity in animal models (Rowinsky et al., 1999). 
However, the use of FDP inhibitors in chemotherapy raises several concerns about toxic side 
effects, since FDP is involved in several biological pathways including cholesterol 
biosynthesis (Patel et al., 1995). Therefore clinically useful compounds need to be much 
more selective for FTase than other FDP using enzymes in the cell. 

6.2 Peptidomimetics 

Development of peptidomimetic inhibitors was initiated upon discovering that FTase 
activity can be inhibited by a tetrapeptide having the CAAX motif. This was followed by the 
finding that introduction of an aromatic residue such as phenylalanine at the second ‘‘A’’ 
position of the CAAX tetrapeptide destroys the ability of the peptide to serve as a substrate 
while maintaining its ability to inhibit FTase reaction (Goldstein et al., 1991). 
When this modification contains an aromatic residue at the terminal A position, the 
tetrapeptide is a non-substrate inhibitor, and this aroused interest in developing low-
molecular-weight CAAX peptidomimetics as a principal strategy for FTase inhibition 
(Brown et al., 1992; Duque et al., 2011; Symons, 1995). Some chemical structures of peptide 
CAAX peptidomimetics is given in Fig. 5.  
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Fig. 5. Peptide CAAX peptidomimetics. 

6.3 Nonpeptidomimetic  

The molecules of this class are potentially able to inhibit almost selectively the farnesylation 
of different target proteins involved in malignant cell signalling processes. These class of 
inhibitors constitute a heterogeneous group of FTIs with different action profiles for each 
target cell type (Manne et al., 1995). R115777 and SCH66336 (Fig. 6), both of which are orally 
active nonpeptidomimetic, have now entered clinical development (Castaneda et al., 2011). 
R115777 is an imidazole-containing heterocyclic compound (Epling-Burnette & Loughran 
2010; Skrzat et al., 1998), initially developed as antifungals and possess high enzyme 
specificity and interesting levels of growth inhibition (End et al., 1998; Smets et al., 1999). In 
vitro tests of human tumor cell lines showed 80% overall sensitivity to R115777. SCH66336 is 
a tricyclic halogeneted compound, which inhibits the growth of several tumour cell lines as 
well as K-ras-transformed xenografts in vivo (Bishop et al., 1995). BMS-214662 is an example 
of a new class of nonpeptide imidazol FTIs, showing high affinity for FTase over 
geranylgeranyltransferase and it exhibits complete tumour regressions in various tumor 
xenograft models after both oral and intraperitoneal administration. This compound has 
recently entered clinical studies. 

6.4 Bisubstrate analogs  

Bisubstrate analog inhibitors of FTase combine the features of FDP analogues and non-

peptide CAAX peptidomimetics and are highly potent in vitro. The bisubstrate analog BMS-

186511 (Fig. 6), which is 3-log-fold more selective for FTase than for 

geranylgeranyltransferase, inhibits Ras signalling and transformed growth with a minimal 

effect on normal cells. Cytotoxic effects were not seen (Manne et al., 1995; Yan et al., 1995). 

6.5 Natural products 

A variety of compounds with inhibitory activities against FTase have been identified by 
screening of natural products isolated from microorganisms (Hara et al., 1993), plants (Khan 
et al., 2010) and soils. This led to the identification of manumycin, chaetomellic acids, 
actinoplanic acid A, pepticinnamins, fusidienol, cylindrol A, preussomerin, gliotoxin, 10'-
desmethoxystreptonigrin and related analogues as inhibitors of FTase (Singh et al., 1993, 
1994, 1995a, 1995b; Tamanoi & Mitsuzawa 1995). Natural compounds, such as Manumycin, 
which is isolated from Streptomyces sp., act on the FDP-CAAX complex (Leonard et al., 
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Fig. 6. Nonpeptide CAAX peptidomimetics and Bisubstrate inhibitor. 

1997). Some natural products, including the chaetomellic acids, actinoplanic acid A, and 
manumycin analogs, compete with FDP, whereas other inhibitors, such as the 
pepticinnamins, compete with the Ras CAAX tetrapeptide (Kainuma et al., 1997). Other 
natural products, such as fusidienol, preussomerin, gliotoxin, 10'-desmethoxystreptonigrin, 
and cylindrol A, inhibit FTase noncompetitively.  

7. Clinical development of FTIs 

The FTIs entered in clinical development, so far, are R115777 (Zarnestra) (Tomillero & Moral 
2010), SCH-66336 (Sarasar), L-778, 123 and BMS-214662 (Eskens et al., 2000; Yasui et al., 
2002). Among these, R115777 is the most advanced in the clinical development (Fig. 9) since 
some phase III studies have been already completed (Tsimberidou et al., 2010). BMS-214662 
and L-778, 123 are administrated intravenously, whereas the two other agents, R115777 and 
SCH66336, are given orally with different schedules (Widemann et al., 2011). Dose-limiting 
toxicities have included myelosuppression, gastrointestinal disorders, peripheral 
neuropathy and fatigue. Because of cardiac conduction abnormalities, the clinical 
development of L-778, 123 has been discontinued. The results from Phase I studies are 
encouraging. R115777 has given evidence of clinical activity in a minority of patients 
including those with non small cell lung cancer (NSCLC), colorectal cancer and pancreatic 
cancer (Zujewski et al., 2000). Phase I studies showed that myelosuppression and 
neurotoxicity were dose-limiting toxicities. Gastrointestinal toxicities and fatigue were also 
observed (Crul et al., 2002; Punt et al., 2001; Schellens et al., 2000). A phase II trial in breast 
cancer with R115777 showed a modest activity with a low toxicity profile and achieving a 
response rate of 11% and disease stabilization in 35% of patients (Johnston et al., 2003). 
Other trials are conducted in patients with malignant glioma and haematological 
malignancies and interesting results are documented (Kurzrock et al., 2003). A phase III 
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study was conducted in patients with advanced refractory colorectal cancer who had failed 
two prior chemotherapy regimens. R115777 is currently under study in acute myeloid 
leukemia (Baer & Gojo, 2011; Robak et al., 2011).  Because of its relatively low toxicity 
profile, R115777 provides an important alternative to traditional cytotoxic approaches for 
elderly patients who are not likely to tolerate or even benefit from aggressive chemotherapy. 
SCH66336 is orally active (Field et al., 2008) and its first phase I trial was started in 1997. 
SCH66336 has shown to inhibit the in vitro anchorage-independent growth of many human 
tumour cell lines and the growth of a number of human xenografts in a dose-dependent 
manner (Castaneda et al., 2011). In the first phase I study with SCH66336, 5% NSCLC 
patient experienced a partial response, disease stabilization in 40% were also described for 
5-10 cycles (Adjei et al., 1999). Phase II study of SCH66336 in patients with chemorefractory, 
advanced squamous cell carcinoma of the head and neck was well-tolerated at a dose of 200 
mg twice daily (Hanrahan et al., 2009, Raza et al., 2011). In the phase II study in transitional 
cell carcinomas, myelosuppression was dose limiting with patients experiencing additional 
toxicities. Despite significant toxicities, no responses were observed (Winquist et al., 2005). 
Also, in a second phase II study investigating the effect of SCH66336 in patients with 
metastatic colorectal cancer, no responses were observed. Phase III studies with SCH66336 
have just been started. 
 

Drugs  Trial Stage 

R115777 (Zarnestra)  Phase III (leukemia, refractory colorectal) 
Phase II (bladder, brain, breast, malignant 
glioma, colorectal, leukemia, lymphoma, 
melanoma, myeloma, pancreatic, sarcoma, 
haematological malignancies)  

SCH-66336 (Sarasar) Phase II (brain, breast, genitourinary, head 
and neck) 

BMS-214662  Phase II (leukemia) 

L778, 123a  Phase I 

a Denotes agents which have been withdrawn because of concerns over demonstrated or potential 
toxicity 

Table 1. FTIs in clinical development 

BMS-214662 is administered intravenously and has shown significant activity against 
several tumour lines in preclinical models as well as potent cytotoxic effects in vitro and in 
human tumour xenografts (Rose et al, 2001). The oral formulation exhibits dose-dependent 
gastrointestinal toxicity, which limits its oral dosing (Camacho et al., 2001). BMS-214662 is 
unique in inducing apoptosis in hematopoietic stem cells. BMS-214662 significantly and 
selectively induced apoptosis in chronic myeloid leukemia stem cells compared with normal 
cells [Pellicano, et al 2009]. Phase I clinical trial of the BMS-214662 has shown promising 
suggestions of single agent activity in patients with advanced solid tumors. There are 
currently no published phase II trials with this agent. [Eder et al., 2006] 

8. Combination with other anticancer drug 

As multiple pathways are important for the proliferation, invasion, and metastases of 
malignant cells, and because combination therapies are often far more effective than are 
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single-agent regimens, the FTase inhibitors may complement other anticancer agents that 
may or may not affect Ras-mediated pathways. FTIs target different downstream effectors 
according to host–tumor interactions, histological tumor type and stage of the tumor and 
their anti-tumor effects are quite heterogeneous from a prominent anti-angiogenic to an 
anti-proliferative and an apoptotic effect in different tumors (End et al., 2001). Moreover, 
resistance to FTIs is reported probably by overexpression of antiapoptotic proteins. Thus, as 
a single agent, FTIs appear to have modest clinical effects that are not sufficient to induce a 
long-term tumor inhibition. Additionally, although FTIs demonstrated the capacity to 
rapidly reduce and nearly ablate large tumors in preclinical studies (rather than simply 
prevent tumor growth), residual tumors proliferated after withdrawal of the agents. 
Therefore, combination with other well-chosen targeted therapy might synergize with FTIs 
and may reduce the need for protracted therapy (David et al., 2010). The overlapping 
antitumor spectra and nonoverlapping toxicity profiles of FTIs and cytotoxic agents provide 

a rationale for assessing the efficacy and feasibility of combination regimens. Pre-clinical 
studies confirm that FTIs can be useful in combination therapy and have showed that 
combination with cisplatine, taxanes or gemcitabine can improve response (Adjei et al., 
2006; Sun et al., 1999 Weber et al., 2011). Although the choice of chemotherapeutic agents to 

be evaluated in combination with FTIs will ultimately be dependent on the logistics and 
appropriateness of the agents for the particular clinical setting, the selection may also be 
based on a unique mechanistic rationale (Table 2). For example, the combination of FTI L-
744,832 and taxanes is sustained by the fact that FTIs sensitize tumor cells to paclitaxel-
induced mitotic arrest (Moasser et al., 1998).  
 

Therapy  Trial Stage 
 
 Cytotoxic chemotherapy 
 Alkylating agents  I/II  Glioblastoma 
 Antimetabolites   I/II  Breast 
 Taxanes    I/II  Breast 
 Topoisomerase Inhibitors I  AML advanced solid tumours 
 Endocrine therapy 
 Aromatase inhibitors  II  Breast 
 Anti-oestrogen   II  Breast 
 Targeted therapy 
 Trastuzumab   I  Breast 
 Sorafenib   I  Advanced solid tumours 
 Bortezomib   I/II  Myeloma 
 Imatinib   I  CML 
 Ionizing radiation 
 External beam radiotherapyI  Pancreas/lung/ glioblastoma 

Table 2. Current combination studies employing FTIs (R115777 or SCH66336) 

SCH66336 potentate the activity of temozolomide and radiation for orthotopic malignant 
gliomas (Chaponis et al., 2011). Combination of SCH66336 with paclitaxel has been reported, 
which demonstrated either synergistic or additive activity against a broad panel of human 
tumor cell lines, except for one breast cancer cell line against which the combination 
demonstrated antagonism (Khuri et al., 2004; Sharma et al., 2000). Promising preliminary 
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evidence of efficacy was documented with 38% patients demonstrating partial response 
(Khuri et al., 2000). The study revealed that the inhibitor SCH66336 did not sensitise cells to 
all anticancer drugs; whereas the combination with cisplatin was synergistic, for melphalan 
was additive and no potentiation was observed with 5-FU. Moreover this study reported 
that the synergism between cisplatin and SCH66336 was cell lines specific and did not 
appear to correlate with the status of Ras. In addition, in many models the effect of 
SCH66336 was additive to the effect of cytotoxic agents such as vincristine and cytoxan (Shi 
et al., 1999). Docetaxel- SCH66336 combination therapy in refractory solid tumors was 
tolerated in all cohorts with the exception of a 28% incidence of diarrhea (Kauh et al., 2011). 
Coadministration of continuous and intermittent SCH66336 enhanced the antitumor activity 
of docetaxel in a panel of prostate cancer models (Liu et al., 2009). In phase II when 
SCH66336 was given with imatinib, 33% patients had a clinical response or improvement 
with combination therapy (Druker et al., 2003). Responses were encouraging also in another 
study of SCH66336 combined with gemcitabine in patients with advanced urothelial tract 
cancer (Theodore et al., 2005).  
The combination of R115777 with cytotoxic agents such as cisplatin and paclitaxel induced 

additional antiproliferative activity against human breast, pancreatic, and melanoma cells 

growing in tissue culture and as well-established tumor xenografts. The interaction between 

R115777 and paclitaxel was additive irrespective of the order of drug administration, and 

the duration of the response to R115777 was not enhanced by paclitaxel. The addition of 

R115777 to irinotecan failed to enhance the antitumour effect of this topoisomerase inhibitor 

(Skrzat et al., 1999). The R115777 was combined with 5-fluorouracil and leucovorin in 

patients with advanced colorectal and pancreatic cancers (Peeters et al., 1999; Verslype et al., 

2001)). Phase I study of R115777 with imatinib mesylate combination is well tolerated and 

demonstrates antileukemia activity (Verslype et al., 2001). Phase II trial of R115777 and 

radiation in children with newly diagnosed diffuse intrinsic pontine gliomas offered no 

clinical advantage over historical controls (Haas-Kogan et al., 2011; Poussaint et al., 2011; 

Zukotynski et al., 2011).  The combination of R115777 with bortezomib, a proteosome 

inhibitor, in patients with advanced leukemias was well-tolerated, demonstrated relevant 

target inhibition, promoted synergistic death, overcomes de novo drug resistance and was 

associated with signals of clinical activity in patients with advanced and refractory acute 

leukemias (Lancet et al., 2011; Yanamandra et al., 2011). Sorafenib, a vascular endothelial 

growth factor receptor kinase inhibitor, combined with R115777 is well tolerated and active 

against thyroid cancer (Hong et al., 2011). A phase I-II study of R115777combined with 

idarubicin and cytarabine for patients with newly diagnosed acute myeloid leukemia and 

high-risk myelodysplastic syndrome showed a better complete remission (Jabbour et al., 

2011). R115777 was well tolerated when given with radiation therapy and temozolomide in 

patients with newly diagnosed glioblastoma (Nghiemphu et al., 2010).  

BMS-214662 in combination with imatinib mesylate or dasatinib, potently induced apoptosis 

of both proliferating and quiescent chronic myeloid leukemia stem/progenitor cells 

(Copland et al., 2008). Also combination with PD184352, a MEK inhibitor, improves the 

ability of BMS-214662 to selectively target chronic myeloid leukemia cells (Pellicano et al., 

2011). BMS-214662 and taxol combination have shown 33% response in larynx and prostate 

cancer, with neutropenia, nausea as dose limiting toxicity (Bailey et al., 2001). One phase I 

combination study has been reported for the BMS-214662 (Dy et al., 2005; Bailey et al., 2007), 

in combination with paclitaxel and carboplatin, in patients with advanced solid tumors. This 
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combination was well tolerated, with broad activity in solid tumors. In parallel, combination 

of FTI with radiotherapy is under investigation. ras oncogenes have been reported to confer 

resistance to ionizing radiation (Cengel et al., 2005; Kim et al., 2004; McKenna et al., 1990).  

Presently, many other combinations in phase I/II trials are ongoing, the results of which will 
hopefully soon be reported. FTIs are a promising class of novel antineoplastic agents. As 
single agents have significant activity in myeloid leukemias, but in solid tumors their 
activity seems to be modest and these drugs probably need to be studied in combination 
with cytotoxic agents, ionizing radiation and other novels targeted drugs, such as 
antiangiogenic agents. 

9. Conclusion 

FTIs are a new class of agents and have been developed rapidly as potential cancer 
therapeutic drugs. They can be quoted as the rolling stones to some of the current 
generation of cancer research. They have shown promise in early preclinical and clinical 
studies as a novel anticancer agent. Combinations with other signal transduction inhibitors 
may be an additional strategy that merits further research. However, FTIs represent one of 
the first small molecule signal transduction inhibitors to enter the clinic and show promise 
for the future. 

10. List of abbreviations 

GDP =   Guanosine 5'-diphosphate  
GTP =   Guanosine 5'-triphosphate  
CAAX    =    “C” cysteine, “A” any aliphatic amino acid, “X” any amino acid 
FTase =   Farnesyl transferase  
FTI =   Farnesyltransferase inhibitor 
FDP =   Farnesyl diphosphate 
NSCLC =   Non small cell lung cancer 
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