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1. Introduction 

It has been 30 years since the original description of acquired immunodeficiency syndrome 

(AIDS) was first reported (Gottlieb et al., 1981). Since this initial discovery, human 

immunodeficiency virus (HIV) and HIV pathogenesis ranks near the top as one of the most 

studied human diseases in the history of medical science. Unfortunately, we are no closer 

now than we were back in the early 1980s at finding a cure. Although there has been 

significant progress in treatment, there continues to be an increase in the numbers of 

infected people and those dying from AIDS throughout the world.  

Current dogma says that HIV type 1 (HIV-1) is the most common HIV virus and that it 

infects immune cells called helper T-cells. HIV can also infect other cells involved in the 

immune response such as monocytes, macrophages and dendritic cells. The virus has an 

envelope that mediates its tropism for immune cells. The viral envelope protein gp120 

first recognizes and binds to the CD4 molecule located on the cell-surface of CD4+ helper 

T-cells (Dalgleish et al., 1984). Although researchers insisted for over a decade that CD4 

was the only cellular receptor required for HIV to infect cells, some in the research 

community were sceptical and aware from clinical and laboratory findings that something 

else must be required for HIV infection. Indeed, in 1996 it was discovered that CD4 does 

not act alone. Another family of cell-surface receptors, the chemokine receptors, were 

shown to be required, in conjunction with CD4, for successful infection with HIV-1 (Feng 

et al., 1996, Alkhatib et al., 1996). These receptors are important for the tropism of the 

virus. Thus, the CXCR4 chemokine receptor, directs infection of T cells by T cell-tropic 

HIV-1, whereas the CCR5 and CCR3 chemokine receptors are responsible for infection of 

monocytes with monocyte-tropic HIV-1 virions. However, as more studies were 

undertaken, it became clear that many other chemokine receptors could support HIV-1 

infection and that the tropism was directed more to the chemokine co-receptor than to the 

cell type. Thus, HIV viruses that require CXCR4 are now known as X4 HIV-1 while virus 

that recognizes CCR5, or other members of this family of chemokine receptor, are now 

known as R5 HIV-1. (Dragic et al., 1996, Littman, 1998).Thus, the current paradigm for 
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HIV infection is that X4 or R5 HIV-1 first binds via its envelope gp120 to CD4 on T-cells 

expressing either CXCR4 or CCR5. The binding to CD4 results in a conformational change 

in the structure of a part of the virus envelope gp120 known as the variable V3 loop. This 

change in conformation of the gp120 exposes a binding site for either chemokine co-

receptor. Following binding of the virus to the chemokine co-receptor, another 

conformational change occurs in the gp120 that exposes another viral membrane protein 

called gp41. It is the gp41 that then is able to cause the fusion of the virus envelope to the 

host cell membrane so that the virus can release its contents into the host target cell and 

begin the infectious process. 

Perhaps not that surprising given the history of HIV/AIDS, the HIV-1 paradigm for 

productive infection continues to change as more studies are undertaken. A role for a family 

of cell-surface-expressed neuropeptide receptors has been proposed to be important for 

productive HIV infection (Branch et al., 2002) and cell-surface-expressed glycosphingolipids 

(GSLs) have been proposed to act as HIV-1 fusion receptors (Fantini et al., 1997; Nehete et 

al., 2002). Thus, despite 30 years of intense research, we continue to find new and surprising 

aspects of HIV pathogenesis that have eluded us over the years. One of these more recent 

findings is the possible therapeutic potential of GSLs in HIV/AIDS. 

2. Glycosphingolipids  

2.1 Biochemistry, biosynthesis and degradation 

GSLs are carbohydrate-lipid conjugates almost exclusively restricted to the outer leaflet of 

the plasma membrane bilayer of mammalian cells. The hydrophobic backbone, ceramide, 

consists of a fatty acid chain linked to a sphingosine base, and is common to all GSLs. The 

alkyl chains of the lipid moiety (ceramide) are embedded in the bilayer and vary in chain 

length, saturation and hydroxylation (Huwiler et al., 2000; Hakomori, 1993) (Figure 1).  
 

 

 

Fig. 1. Different functional domains of GSLs. 
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The hydrophilic core sugar sequence defines the carbohydrate moieties, and these protrude 
into the extracellular space (Stults et al., 1989). The different moieties comprising GSLs have 
different roles in these multifunctional membrane lipids. GSLs are classified as neutral, acidic 
(anionic) and basic (cationic) glycolipids (Hakomori, 1986). Acidic GSLs usually contain either 
a sialic acid, which largely encompass the gangliosides, or a sulphate group. Basic glycolipids 
are very rare, but include plasmalopsychosine or glyceroplasmalopsychosine (Hikita et al., 
2002). For the most part, GSLs are comprised of four groups, characterised by their basic core 

structure: globo- (defined by Gal1-4 Gal), lacto- (Gal1-3GlcNAc), neolacto- (Gal1-4GlcNAc) 

and ganglio- (Gal1-3GalNAc) series.  
The ceramide backbone of GSLs is synthesized on the cytosolic leaflet of the rough ER, 
through condensation of L-serine and fatty-acyl co-enzymeA and subsequent enzymatic 
modification (Huwiler et al., 1998). Ceramide may be converted in the lumen of the ER into 

gala-series glycolipids by addition of galactose, via -glycosidic linkage, producing the first 
in the series, galactosylceramide (GalCer) (Sprong et al., 1998). The addition of a sulphate 
group to the 3-position of the sugar residue on GalCer will give rise to sulphatide (SGC). 
Ceramide may alternatively be transported to the Golgi apparatus where the first sugar 

added is glucose, via -glycosidic link, producing glucosylceramide (GlcCer). The precursor 
for most GSL structures is GlcCer, which is synthesised by glucosyltransferase located in the 
cytosol (Futerman & Pagano, 1991). GlcCer can be then translocated by the flippase function 
of the drug resistance pump, P-glycoprotein (P-gp), to the Golgi lumen (De Rosa et al., 2004, 
Lala et al., 2000). Here subsequent synthesis of all other GSLs takes place through highly 
specific glycosyltransferases (Lannert et al., 1998). The first product that is formed from 

GlcCer is lactosyl ceramide (Gal1-4Glc cer, LC), which can then be sialylated, to give 

monosialoganglioside (sialic acid 2-3 Gal1-4Glc cer, GM3). Alternatively, LC is 

galactosylated to form globotriaosyl ceramide (Gal1-4 Gal1-4Glc cer, Gb3), which can be 

further converted to globotetraosyl ceramide (GalNAc1-3 Gal1-4 Gal1-4Glc cer, Gb4) 
(Figure 2). The major GSLs contain ~5 sugars or less although GSLs containing over 60 sugar 
residues have been described (Miller-Podraza et al., 1993), and more than 400 GSL species 
have been reported (Hakomori, 2008). Newly synthesised GSLs follow anterograde 
vesicular traffic through the Golgi compartments and are directed to the plasma membrane, 
where they are integrated into the outer leaflet. GSLs follow a process of recycling between 
intracellular compartments and the plasma membrane, before final endocytosis and 
transportation through endosomal compartments to the lysosomes (Huwiler et al., 1998). 
Here, highly specific glycosylhydrolases remove the terminal sugar sequentially from the 
GSLs, to release the ceramide backbone, which is subsequently catabolised or recycled. It is 
important to note here, that deficiencies in specific glycosylhydrolases manifest specifically 
as lysosomal storage diseases, where there is an accumulation of GSL in the lysosome 
(Kolter & Sandhoff, 1998). These include: Tay-Sachs disease, which accumulates GM2; 
Gaucher’s disease, which accumulates glucocerebroside; and Fabry’s disease, which 
accumulates Gb3 (Kanfer & Hakomori, 1983). 

2.2 Cellular functions 

The biological functions of GSLs are many and varied, and may particularly relate to the 

distribution pattern within the membrane. One such functional role is attributed to the 

maintenance of membrane structural rigidity, and the ordering of the membrane structure 

in lipid rafts (discussed below).  
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Fig. 2. Biosynthesis of Globotriaosylceramide (Gb3). 

Several GSLs act as cellular antigens or cell-type specific markers, although the functional 
significance of this is not well understood. Perhaps the most well-known cell-type specific 
antigens are the GSLs that comprise the histo-blood group antigens, which include members 
of the Lewis (Le), ABH, I/i and P/P1/Pk blood groups. Differential expression of GSLs is 
also particularly depicted during development. The GSLs Lex (stage-specific embryonic 
antigen 1, SSEA-1), which is also a Lewis blood-group antigen, Gb5 (SSEA-3) and 
monosialyl-Gb5 (SSEA-4) are variably expressed at specific stages of embryonic 
development (Kannagi et al., 1983a, Kannagi et al., 1982, Kannagi et al., 1983b, Solter & 
Knowles, 1978). This differential expression profile has been shown to be important for cell 
adhesion and cell-cell contact, and such (carbohydrate-carbohydrate) interactions may be 
essential in developmental processes (Eggens et al., 1989). Indeed, SSEA-4 is a human 
multipotent stem cell marker. 
Interestingly, cell-specific expression of GSLs is also common during differentiation and this 
is well demonstrated in the haematopoietic cell system. Myeloid cells are characterised by 
Lex, Neutrophils specifically express the GSL marker LC (CDW17) and the major T-cell (and 
monocyte) GSL is ganglioside GM3 (Schwartz-Albeiz et al., 1991, Sorice et al., 2004). 
Furthermore Gb3, which has been defined as CD77, is a marker of germinal centre B cells in 
humans, and thus a marker of differentiation (Mangeney et al., 1991, Wiels et al., 1991). 
Given the role of GSLs in development and differentiation, it is not surprising that GSL 
expression may be aberrant in tumour development, and several have been identified as 
tumour-associated antigens (Hakomori, 1985). Developmentally regulated GSLs may be re-
expressed, or the GSL profile modified, to specifically aid in tumour progression through 
adhesion functions or tumour growth modulation (Hakomori, 1996, Hakomori, 2002). 
It is interesting to note that certain GSLs have been documented to act as cell adhesion 
molecules, and even as functional receptors, on the cell surface. The GSL sialyl 6-sulfo Lex 
acts as an adhesion ligand for selectins on leukocytes and activated endothelial cells, 
facilitating the process termed “rolling”, a critical step in migration of cells from the blood 
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stream during an immune response (Sperandio, 2006) Furthermore, cell-cell interactions can 
take place between GSLs, and these interactions have been documented between GM3-Gg3, 
GM3-LacCer, and SGC-GalCer (Kojima & Hakomori, 1991, Koshy et al., 1999) and more 
recently, between Gb3-GalCer and Gb3-GlcCer (Mahfoud et al., 2010) and between Gg4–
GM1, Gg4-Gg3 and Gg4-LacCer(Emam et al., 2010). GSLs acting as functional receptors 
include sulphated galactolipids (SGC, SGG), which are receptors for hsp70’s (Boulanger et 
al., 1995, Mamelak et al., 2001b); GM1, a co-receptor for FGF2 (Rusnati et al., 2002); and 
nerve cell gangliosides GD1a and GT1b that bind myelin-associated glycoprotein (MAG), 
and inhibit nerve regeneration (Vyas et al., 2002). 
GSLs, particularly gangliosides, may also have an impact on cell growth and motility 

(Hakomori & Igarashi, 1993). In terms of cell growth, several GSLs have been shown to 

interact with growth factor receptors, such as FGFR and EGFR, and modulate growth 

(Bremer, 1994, Weis & Davis, 1990). GM3 interaction with the insulin receptor is important 

in type 2 diabetes (Tagami et al., 2002, van Eijk et al., 2009). While the mechanisms of 

inhibitory or stimulatory effects are not well understood, in many cases receptor-associated 

tyrosine kinases are inhibited. Cell motility is controlled by integrin function, and is 

specifically affected by gangliosides. The GSL, GM3 is able to inhibit motility by interaction 

within a complex of N-glycosylated alpha3 integrin and tetraspanin CD9 (Ono et al., 2001). 

2.3 Lipid rafts 

Biological membrane lipids are not homogeneously distributed but can be organized into 

heterogeneous microdomains or lipid rafts of increased membrane order. Lipid rafts within 

the plasma membrane of eukaryotic cells present different physical assemblies of proteins 

and lipids. Specifically, rafts are comprised of increased concentrations of GSLs, certain 

phospholipids, and cholesterol, as well as scaffold and/or functional membrane proteins 

(Hooper, 1999, Simons & Ehehalt, 2002, Simons & Ikonen, 1997). Several membrane proteins 

preferentially associate with lipid rafts, and these include glycosylphosphatidylinositol 

(GPI)-anchored cell surface proteins within the outer leaflet, and cytosolic palmitoylated 

and myristoylated proteins, and cholesterol- or phospholipid-binding proteins (Rajendran & 

Simons, 2005). The proteins and lipids cooperate to form dynamic membrane assemblies to 

facilitate transmembrane information flow (Lingwood & Simons, 2010) One 

morphologically identifiable raft structure is caveolae, which are flask-shaped invaginations 

of the membrane associated with caveolin scaffolding protein (Kurzchalia & Parton, 1999). 

Lipid rafts are small, highly dynamic and detergent-insoluble, and while these assemblies 

are fluid, they represent a more ordered region within the membrane. This “liquid-ordered” 

domain is more tightly packed than the surrounding bilayer, and this is largely due to the 

saturated hydrocarbon chains of raft-associated GSL and phospholipids (Simons & Vaz, 

2004). Thus, the degree of saturation and hydroxylation of GSLs may greatly affect the 

“liquid-ordered” state of the membrane, as well as the degree of clustering or association 

with membrane proteins (Brown & London, 1997, Hakomori et al., 1998b). Because raft 

formation is dependant on lipid structure, lipids of the appropriate structure are capable of 

forming microdomains in model membranes (Dietrich et al., 2001, Radhakrishnan et al., 

2000). However such model membrane systems do not fully reflect plasma membrane 

microdomains (Kaiser et al., 2009). 

Two fundamental properties of lipid rafts associated with their physical attributes, are their 
capacity to selectively incorporate proteins, and their ability to coalesce to form larger 
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domains. It is not surprising therefore, that lipid rafts play a role in protein sorting, 
membrane trafficking and signal transduction (Brown & London, 2000, Lajoie & Nabi, 2010).  
Because of the thermodynamic formation of lipid rafts, the cell utilizes them as centres or 
“hot spots” for transmembrane signal transduction for a variety of membrane receptors 
(Hakomori & Igarashi, 1995, Simons & Toomre, 2000). Ligand-induced receptor 
dimerization and successive cytosolic phosphorylation cascades occur in microdomains, and 
as such membrane receptors often partition into such domains upon ligation, and may 
subsequently be internalised and traffic through said domains (Dykstra et al., 2001). This 
can result in direct ligand interaction with GSLs (Hakomori et al., 1998a, Iwabuchi et al., 
2000) without necessarily, the involvement of a transmembrane protein (Katagiri et al., 1999, 
Mori et al., 2000). This implies a mechanism of communication between the cell surface and 
the cytosolic lipid bilayer leaflets. Cytosolic signal transduction proteins, such as src-family 
tyrosine kinases and small G-proteins, are often associated with the cytosolic surface of such 
domains in a transient and surface ligand-regulated manner (Dykstra et al., 2001, Hakomori, 
2000, Katagiri et al., 1999). 
Lipid rafts are also involved in internalisation and intracellular trafficking of proteins and 
lipids(Lajoie & Nabi, 2010, Mukherjee & Maxfield, 2000) and likely, their attendant 
signalling. An endocytic role has been established for cavolae and lipid rafts, which may 
translocate and endocytose GPI-anchored proteins in particular (Parton & Richards, 2003). 
Other raft-mediated routes of internalisation have been identified where the GPI-anchor acts 
as a targeting signal in the traffic to an endosomal organelle called the GPI-anchored protein 
enriched early endosomal compartment (Sabharanjak et al., 2002). It is clear therefore that 
several distinct raft-mediated trafficking pathways exist. It is important to note however, 
that lipid rafts are not distributed randomly in the endosomal pathway, but are excluded 
from the degradative compartments, although this is not well understood (Nichols et al., 
2001, Simons & Gruenberg, 2000). 

2.3.1 Defining a new assay for lipid raft formation 

Lipid rafts are isolated from cells from the Triton insoluble fraction separated on a 
discontinuous sucrose ultracentrifuge gradient. Due to their atypical density, the rafts 
separate as a band above the 30% sucrose layer. The majority of proteins sediment to the 
bottom, while components found in this fraction are deemed lipid raft associated. This has 
not been studied for purified (glyco)lipids. We have developed this procedure as a new 
method for examining the ‘raft’ forming capability of glycolipids. Soluble adamantylGb3 

(adaGb3), natural Gb3 or Gb3+cholesterol were mixed with Triton and placed at the bottom 
of the sucrose gradient, below the 30% layer, the lower half of which now contains FITC-
labeled VT1 B subunit. The gradients are centrifuged at 66K rpm for 3 days. Any rafts 
structures formed will float up through the FITC-VT1 B layer and the raft band should thus 
be fluorescently labeled. When this was performed with Gb3 alone, no fluorescent band was 
formed. In contrast, a distinct fluorescent band was formed for Gb3+cholesterol. However 
adaGb3 formed the strongest labeled ‘raft’ band (Mahfoud et al., 2002b). While the 
characteristics of the structures formed by adaGb3 in this band remain to be fully 
characterized, this supports the “raft-like” character of adaGb3. Moreover, this is an 
excellent method for determining the properties and components required for optimal raft 
formation (Nutikka & Lingwood, 2004). We have shown that cholesterol is one requirement.  
A fifty fold molar excess of the SPC3 peptide from the glycolipid binding V3 loop of gp120 of 
HIV, which strongly binds adaGb3 (Mahfoud et al., 2002b) is able to eliminate FITC-VT1 B 
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labeling of the adaGb3 ‘raft” band. The raft band is still formed –seen under visible light- in the 
presence of SPC3. Thus both the SPC3 peptide (and presumably, gp120 and the intact HIV 
virus) and VT1 B selectively bind the same Gb3 containing raft structures. This would correlate 
with the raft requirement for HIV infectivity and VT cytotoxicity (Falguieres et al., 2001). 

2.4 Pathogens and GSL receptors 

GSLs have been shown to play a role in many pathogen interactions with host cells. As 

previously described, several GSLs represent histo-blood group molecules, and there is a 

longstanding association between pathogens and these particular blood groups, which are 

not necessarily limited to expression on erythrocytes. Such interactions have been defined 

both in protective qualities conferred by a specific blood type, and in pathogen interactions 

with blood group antigens (Moulds & Moulds, 2000, Rios & Bianco, 2000 ) 
Several GSLs, including those categorised as blood group antigens, have been identified as 
adherence receptors for bacteria, or bacterial toxins (Lingwood, 1998). The globo-series of 
GSLs expressed on urogenital epithelia, particularly monosialyl-Gb5, are infection sites for 
Escherichia coli (Stapleton et al., 1992). The Leb antigen is required for surface adherence of 
Helicobacter pylori, known to cause gastritis and peptic ulcers, to gastric mucosa, and Group O 
Le (b+) secretors are thus likely most susceptible to this pathogen (Borén et al., 1993). The 
minimal structure of sialyl-lactosylceramide (GM3) is crucial for colonization and adherence to 
epithelium via fimbria-dependant binding of Haemophilus influenzae, which causes a variety of 
diseases from meningitis to upper respiratory infection (van Alphen et al., 1991).Ganglioseries 
GSLs such as asialoGM1(Gg4), are binding targets for the pili of certain Pseudomonas aeruginosa 
strains, which are opportunistic pathogens that target and colonize epithelial cells of the lung 
(Comolli et al., 1999). These GSLs are not receptors for these organisms (Emam et al., 2006) but 
can assist host cell invasion (Emam et al., 2010). Finally, bacterial toxins, which are soluble 
proteins, often bind to GSLs to elicit their effects. Glycolipid receptors include ganglioside 
GM1, bound by cholera toxin (De Haan & Hirst, 2004) from Vibrio cholerae, and Gb3, which is 
utilized by Escherichia coli elicited verotoxins (VT) (Petruzziello et al., 2009), susceptibility to 
cholera toxin (and E. Coli LT) is blood group O related.  
The involvement of GSLs in the host cell attachment of viruses, and also fusion in terms of 

enveloped viruses, has long been recognised (Haywood, 1994). The initial step of viral 

attachment to the susceptible cell is crucial in the process of establishing an infection. The 

sialic acid motif, which is widely presented on acidic GSLs, is perhaps the most broadly 

recognised adhesion component utilised by viruses, from small non-enveloped DNA 

polyomaviruses to larger enveloped RNA influenza viruses (Gilbert & Benjamin, 2004, 

Miller-Podraza et al., 2000, Tsai et al., 2003). The GSL neolactotetraosylceramide (nLc4Cer) is 

a key receptor for the enveloped Dengue virus, an infectious agent transmitted by 

mosquitoes (Aoki et al., 2006). The ganglioside GD1a has been identified as a critical 

component for viral binding of Sendai virus, and fusion of this enveloped virus with its 

target is abolished if GD1a is not present for initial contact (Epand et al., 1995).  

2.5 Pathogens and lipid rafts  

GSLs and lipid rafts themselves are important for many microbial pathogens and often form 
preferential sites for pathogen interactions (Lafont et al., 2002, Samuel et al., 2001, van der 
Goot & Harder, 2001, Vieira et al., 2010). Pathogenic interactions may be vast and varied. For 
example, lipid rafts serve as key platforms for entry of parasitic agents, such as Plasmodium 

www.intechopen.com



 
Understanding HIV/AIDS Management and Care – Pandemic Approaches in the 21st Century 

 

246 

falciparum, which causes malaria. Following attachment of the P. falciparum merozoite to 
erythrocytes, the membrane invaginates taking up the parasite within a parasitophorous 
vacuolar membrane (PVM) (Haldar et al., 2002). Lipid rafts are critical for the formation of 
the PVM, as are the raft-associated proteins internalized with the vacuole (Lauer et al., 2000). 
Indeed, even ‘non-classic’ infectious agents require lipid rafts, as demonstrated by the 
requirement for the prion proteins which partition into rafts during the conversion of PrPc to 
infectious PrPsc (Simons & Ehehalt, 2002). 
Bacteria often favour lipid rafts during host-cell interactions (Heung et al., 2006),. Raft 
association may provide a platform for colonisation, through signalling, cytoskeleton 
rearrangements and membrane ruffling (Manes & Martinez, 2004). Intracellular bacteria rely 
on lipid rafts to enter host-cells, which provides protection from degradation and immune 
detection. This is demonstrated by Mycobacterium spp., which exploits rafts to generate 
phagosomes in which to survive within the cell, allowing the bacterium to evade antigen 
processing (Gatfield & Pieters, 2000). Toxins produced by non-intracellular bacteria, are 
particularly dependant on rafts for host-cell interaction, which mediates oligomerization, 
internalization and intracellular trafficking (Fivaz et al., 1999). Cholera toxin binding 
ganglioside GM1 is the current “gold standard’ for identification of such rafts (Lencer, 2001) 
Lipid rafts are integral in the retrograde transport of cholera toxin to the Golgi (Lencer & 
Saslowsky, 2005).VT is also dependant on the organization of its receptor, Gb3, into rafts for 
intracellular routing (Falguieres et al., 2001) and cytopathology (Khan et al., 2009). 
Lipid rafts are also fundamental in viral infection, predominantly in the process of viral 
entry, both for enveloped and non-enveloped viruses (Manes et al., 2003). In the case of non-
enveloped viruses, lipid rafts are important in the process of viral attachment and 
subsequent internalization and trafficking to the appropriate sub-cellular niche. Caveolae 
lipid rafts are required for non-enveloped simian virus 40 (SV40) interactions with MHC-I 
and viral entry, a process that can be inhibited with cholesterol chelators (Norkin, 1999). 
Lipid rafts facilitate the traffic of SV40 to the ER through the Golgi (Parton, 1994). 
Interestingly, rafts appear to be involved in a sorting process in viral trafficking, as other 
viruses, such as the echovirus, enter by caveolae but do not traffic to the ER(Marjomaki et 
al., 2002). Enveloped viruses are particularly dependant on lipid raft domains for the 
process of viral/cell membrane fusion. Cholesterol and sphingolipids, which define these 
domains, have been identified as critical in the process of fusion for alphaviruses, such as 
the Semliki-forest virus (Ahn et al., 2002). Interestingly, disrupting raft formation by 
replacing cholesterol with androstenol did not hinder envelope glycoprotein insertion, but 
replacing sphingolipids with dipalmitoylphosphatidylcholine was inhibitory, emphasizing 
the importance of GSLs in the process of fusion (Waarts et al., 2002). Finally, lipid rafts are 
critical in the process of enveloped virus assembly and budding for many viruses, including 
influenza, measles, filoviruses and HIV (Bavari et al., 2002 , Luo et al., 2008, Manie et al., 
2000, Scheiffele et al., 1999 ). Membrane rafts are an efficient system of concentrating viral 
proteins in a specific region, may provide a specific lipid composition for the virus, and also 
exclude/include host-proteins from the viral envelope (Manes et al., 2003). 

3. Globotriaosylceramide 

3.1 Characteristics and expression 

The neutral glycolipid, globotriaosylceramide (Gb3), is defined by the trisaccharide core unit 

(Gal1-4Gal1-4Glc) linked to a ceramide backbone, and as such belongs to the globo-series 
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of GSLs. Gb3 shares the amphipathic characteristics of all GSLs, and their fatty acid chain 
length, saturation and hydroxylation, may vary yielding various Gb3 isoforms. Gb3 may also 
partition into lipid-rafts and interact with raft-associated proteins. Gb3 is widely expressed 
in a variety of tissues, but is a major GSL of human renal cortex(Boyd & Lingwood, 1989), 
heart, spleen and placenta; (Kojima et al., 2000). Moreover, it has been described in a 
number of epithelial and endothelial cell lines. Gb3, or CD77, is expressed as a 
differentiation antigen on a subset of tonsillar B lymphocytes in the germinal center, where 
expression is very specific, and only occurs at a restricted stage (Mangeney et al., 1991, Wiels 
et al., 1991). It is interesting to note that human Burkitt lymphoma cells, which are 
characteristically derived from B cells, also express Gb3 (Wiels et al., 1981; Kim et al., 2011). 
Finally, human erythrocytes are characterized by two major globo-series GSLs, Gb3 or Pk, 
being one, the other being Gb4, or P. Gb3 is also upregulated in many human tumours 
(Devenica et al., 2010) 
 

 

Fig. 3. Chemical structure of globotriaosylceramide. 

3.2 Function 

Gb3 expressed on B-lymphocytes, has specifically been implicated in signal transduction 

resulting from CD19 engagement (Maloney & Lingwood, 1994). Indeed, the extracellular 

domain of CD19 presents a Gb3 binding site, (with sequence similarity to the Gb3-binding 

VT1B subunit of Escherichia coli). Gb3 is crucial for CD19 induced homotypic adhesion of B 

cells and this suggests a potential role for Gb3 in adhesion during B cell development 

(Maloney & Lingwood, 1994). Gb3 has further been shown to mediate CD19 directed 

apoptosis of B cells, which may be important during B cell selection (Khine et al., 1998). This 

occurs following CD19 ligation, where Gb3 mediates targeting and intracellular traffic of 

CD19 to the ER and nuclear envelope (Khine et al., 1998). 

Gb3 expression has also been shown to affect the binding capacity of IFN-ǂ for its receptor, 

ǂ2 interferon receptor IFNAR1, on B lymphoid cells (Ghislain et al., 1992). The amino 
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terminus of IFNAR1 is able to bind to Gb3, sharing sequence similarity with the VT1B 

subunit (Lingwood & Yiu, 1992) and binding to Gb3 likely affects the subsequent signaling. 

Gb3 has thus been shown to be critical for IFNAR1-dependant ǂ2IFN induced growth 

inhibition, mediated by short chain fatty acid Gb3 isoforms (Khine & Lingwood, 2000). 

Furthermore, Gb3 is important in ǂ2IFN IFNAR1 signaling to induce antiviral activity, 

which is mediated by long fatty acid isoforms of Gb3 (Khine & Lingwood, 2000). Gb3 has 

been implicated in angiogenesis and is found in tumour neovasculature (Heath-Engel & 

Lingwood, 2003), and can promote tumour metastases (Kovbasnjuk et al., 2005) 

3.3 Blood group antigens 

Gb3 belongs to the P1PK and GLOB blood group system, that have red cell phenotypes 

termed P/P1/Pk (Table 1) and whose expression profile is not limited to erythrocytes. The 

structure galabiose (Gal1-4Gal) is the terminal structure of Pk, also known as Gb3, and P1 

blood group antigens, whilst it is the precursor for P antigen, also known as globoside or 

Gb4, which terminates with 1-3GalNAc(Spitalnik & Spitalnik, 1995). P1 and P2 are the two 

common P/P1/Pk-related blood group phenotypes. P1 individuals (~80% of Caucasians but 

only ~20% of Asians)(Daniels, 2002) express P and P1 but only expose low amounts of Pk 

antigens on their cell surfaces. P2 individuals (~20% of Caucasians and ~80% of 

Asians)(Daniels, 2002) express only P and low amounts of Pk antigens. There are also rare 

phenotypes defined by a deficiency in one or more of the P/P1/Pk blood group antigens. 

Individuals deficient in P antigen have mutations in the B3GALNT1 gene causing lack of 

functional Gb4 synthase (ǃ3GalNAc transferase) (Hellberg et al., 2002, Hellberg et al., 2004), 

and consequently express high amounts of unmodified precursor, Pk. These individuals may 

express P1 antigen (P1k phenotype) or not (P2k). Although uncertain for many years 

(Hellberg et al., 2005; Iwamura et al., 2003), the molecular basis for P1/P2 has recently been 

elucidated (Thuresson et al., 2011). Individuals who do not express any P/P1/Pk antigens 

have mutations in the A4GALT gene, causing lack of functional Gb3 synthase (ǂ4Gal 

transferase), and have the rare p blood group phenotype (Furukawa et al., 2000, Hellberg et 

al., 2002, Hellberg et al., 2003, Steffensen et al., 2000). Similar to the ABO blood group 

system, naturally occurring antibodies are formed against the P/P1/Pk antigens when 

missing (Spitalnik & Spitalnik, 1995). Recent studies show anti-Pk is present in all normal 

sera (Pochechueva et al., 2010) 

 
Phenotype Frequency Red Blood Cell Antigens Serum Antibodies 

P1 75% P1, P, Pk None 

P2 25% P, Pk Anti-P1 

P1k Rare P1, Pk Anti-P 

P2k Rare Pk Anti-P1, anti-P 

P Rare None Anti-P1, anti-P, anti-Pk 

Table 1. Red Blood Cell Phenotypes in the P1Pk and GLOB Blood Group System (Spitalnik 
& Spitalnik, 1995; Branch, 2010) 
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4. Relationship to disease 

The P1PK and GLOB blood group system antigens are of particular interest, with many 
defined pathogen interactions. Both Pk (or Gb3) and P (or Gb4) are receptors for P pili of 
uropathogenic E. coli (Leffler & Svanborg-Eden, 1981). Pk has been shown to act as a receptor 
for the porcine bacteria Streptococcus suis (Haataja et al., 1994). Indeed, Pk is also known to 
act as a receptor for bacterial toxins, Shigella or Verotoxins specifically, produced by Shigella 
dysenteriae and Enterohemorrhagic E. coli (Bitzan et al., 1994, Pellizzari et al., 1992) but no 
association with P blood group status has been found (Jelacic et al., 2002). Viruses have also 
been shown to have interactions with blood group antigens. In terms of the P blood group 
system, Parvovirus B19 utilizes the P antigen as its receptor to infect cells, and individuals 
with the p phenotype lacking P are resistant to the virus (Brown et al., 1994). More recently, 
the P1PK and GLOB blood group system antigens, specifically, Pk, has been implicated as 
having a role in HIV infection (Branch, 2010)(see below). 

4.1 Verotoxin-induced disease 
Enterohemorrhagic Escherichia coli induce disease, characteristically haemolytic uremic 
syndrome (HUS), by the production of verotoxins (VT). VTs are capable of binding to Gb3, 
thus Gb3 contributes to the pathology of VT-induced disease (Lingwood, 2000, Lingwood et 
al., 1987 ) VT is comprised of a single toxic ‘A’ subunit and non-covalently associated 
pentameric ‘B’ subunits responsible for receptor (Gb3) binding. Only cells with Gb3 surface 
expression are sensitive to VT toxicity (Okuda et al., 2006, Waddell et al., 1990). VT 
interaction with the sugar moiety of Gb3 is dependant on the lipid moiety in its membrane 
environment (Arab & Lingwood, 1996, Kiarash et al., 1994, Pellizzari et al., 1992), which is 
crucial in internalization and subcellular targeting of VT (Arab & Lingwood, 1998 , Smith et 
al., 2006). The intracellular routing of VT thus is also dependant on the organization of Gb3 
into lipid rafts (Falguieres et al., 2001). Indeed, VT binding to cell surface Gb3 within lipid 
microdomains has been shown to activate cytosolic raft-associated src kinase ((Katagiri et 
al., 1999, Mori et al., 2000)) indicating Gb3 can mediate transmembrane signals. Furthermore, 
Gb3 containing cells where Gb3 is not present in rafts are insensitive to VT cytotoxicity 
(Falguieres et al., 2001, Ramegowda & Tesh, 1996). In cells sensitive to VT cytotoxicity, the 
toxin is internalized via both clathrin independant/dependant pathways(Lauvrak et al., 
2004) and undergoes retrograde transport via the reverse of the secretory system to the 
Golgi and ER/nucleus (Arab & Lingwood, 1998, Khine & Lingwood, 1994, Sandvig et al., 
1994) Highly VT sensitive cells contain higher levels of short fatty acid containing Gb3 
isoforms and retrograde transport the VT/Gb3 complex to the ER/nucleus. Less VT 
sensitive cells have longer fatty acid containing Gb3 isoforms and retrograde transport VT to 
the Golgi only (Arab & Lingwood, 1998). Interestingly, Gb3 is maintained in lipid rafts 
during retrograde transport (Smith et al., 2006). 

4.2 Fabry disease 

Fabry disease is an X-linked lysosomal storage disorder, as a result of a genetic defect in the 
lysosomal enzyme ǂ-galactosidase A, which results in reduced enzyme activity (Brady, 
1967). This enzyme is normally responsible for the removal of the terminal Gb3 galactose 

residue, through hydrolysis of the 1-4 glycosidic linkage. Thus, Gb3, and potentially other 

-galactose terminal lipids accumulate in the lysosomes to abrogate their normal function 
and the function of these organelles. Clinical manifestations of the disorder are related to the 
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cell-type-specific expression of Gb3 (Huwiler et al., 2000). Thus patients with Fabry disease 
typically experience renal dysfunction, myocardial and skin lesions, and joint pain, which 
relate to the major tissue distribution of Gb3 (Hakomori, 1986). 

5. HIV and GSLs 

5.1 GSL receptors 

Initial contact of HIV with the host cell surface must occur before the virus can initiate 
infection. HIV envelope glycoprotein gp120 targets CD4 and CCR5 or CXCR4 chemokine co-
receptors on monocytes and T-cells respectively, as the major HIV-host cell interaction 
(Alkhatib et al., 1996, Dalgleish et al., 1984, Feng et al., 1996). GSLs have been implicated in 
HIV infection since the original description of the binding of GalCer and sulfatide (3’ 
sulfogalactosyl ceramide, SGC) by the HIV adhesin gp120 (Bhat et al., 1993, Bhat et al., 1991) 
and indeed gp120 binding to these species is considered the primary mechanism by which 
non-CD4 expressing cells are ‘infected’ by HIV(Dorosko & Connor, 2010, Harouse et al., 
1995, Magerus-Chatinet et al., 2007, Ullrich et al., 1998). GSLs bound by gp120 include 
GalCer, SGC, Gb3 and the ganglioside GM3 (Delezay et al., 1996, Hammache et al., 1998a). It 
has been suggested that GM3 is bound only by gp120 from R5 strains whereas Gb3 is bound 
by both X4 and R5 strains (Hammache et al., 1999). GSL analogues have been shown to 
inhibit HIV infection(Fantini et al., 1997, Faroux-Corlay et al., 2001, Garg et al., 2008, Lund et 
al., 2006, Weber et al., 2000)and the efficacy of such analogues depends on the nature of both 
the carbohydrate and lipid moieties. In addition, GalCer binds to gp120 associated gp41 
(Alfsen & Bomsel, 2002), the fusion heptad repeat C-terminal peptide of which, mediates 
viral/host membrane fusion (Shnaper et al., 2004). Nevertheless, the exact role of the GSLs 
in HIV infection remains unclear. Early suggestions were that GSL binding within lipid rafts 
facilitated a simultaneous recognition of CD4 and chemokine receptor by gp120(Fantini, 
2003). However, the fact that the GSL-binding site (Delezay et al., 1996), defined as 2 alpha 
helixes with a central aromatic amino acid sequence(Mahfoud et al., 2002a), responsible for 
gp120-GSL binding, is contained within the same V3 loop as amino acids crucial for 
chemokine receptor binding (Xiao et al., 1998), suggest that the binding of GSLs within the 
V3 loop would more likely provide an inhibitory, rather than stimulatory effect on 
chemokine receptor binding. To address this potential dichotomy the unusual membrane 
properties of GSLs must be considered.  

5.1.1 GSL conformation and lipid heterogeneity 

A single glycosphingolipid (i.e. a single carbohydrate species with a heterogeneous 
ceramide moiety) can differentially recognize two or more ligands, specific for the 
carbohydrate sequence. This can be based on differential recognition of the hydroxyl groups 
within the sugar sequence as has been shown for Verotoxin variants and monoclonal anti-
Gb3 (Chark et al., 2004). Differential binding of anti-GM1 and cholera toxin to GM1 lipid 
isoforms has also been reported (Iglesias-Bartolome et al., 2009). This is consistent with 
differential ligand recognition of GSL lipid isoforms by ligands which bind the same 
carbohydrate sequence. The oligosaccharide moiety of glycolipids shows considerable 
flexibility in conformation and nine potential energy minima have been defined by 
molecular modeling (Nyholm & Pascher, 1993). This potential for differential carbohydrate 
conformation which can be regulated by the relative plane of the plasma membrane may 
therefore reflect the lipid composition and its membrane microenvironment. Indeed, 
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cholesterol can induce a fatty acid-dependent GSL conformational change (Lingwood et al., 
2011). The identification of a family of fatty acyl co-A selective ceramide synthases (Stiban et 
al., 2010, Teufel et al., 2009) provides the metabolic means to regulate the differential 
synthesis of such GSL fatty acid isoforms. 
As indicated, cell membrane GSLs can be organized into cholesterol enriched 
microdomains. Such microdomains are typically correlated with resistance to detergent 
extraction in vitro (Lingwood & Simons, 2007). While this procedure can induce domain 
pooling and the relationship between detergent resistance and natural cell membrane GSL 
domains has yet to be established (Westerlund & Slotte, 2009), detergent resistance indicates 
stronger lateral membrane interactions. Detergent resistant, cholesterol enriched plasma 
membrane domains have been shown to be important for HIV infection by most studies 
(Del Real et al., 2002 , Gummuluru et al., 2003, Liao et al., 2001 , Manes et al., 2000, Nguyen 
& Hildreth, 2000 , Popik et al., 2002 , Raulin, 2002) but not all (Percherancier et al., 2003).  

5.1.2 GSLs and HIV infection 

The role of GSLs in HIV infection must be considered both in terms of GSL species generally 
distributed in the membrane or restricted to lipid microdomains. Several studies have 
shown that the binding of the gp120 HIV adhesin to GSL is dependent not only on the 
carbohydrate, but also the lipid moiety of the GSL (Mahfoud et al., 2009, Mahfoud et al., 
2002b, Villard et al., 2002 ).  
 The interaction of GSLs with cholesterol is modulated by the fatty acid chain length and the 
binding of HIV gp120 to Gb3/cholesterol vesicles has been shown to be a function of the 
fatty acid composition in that C16 fatty acid Gb3 was bound but C17, C18 and C20 Gb3 were 
not. C22 and C24 fatty acid containing Gb3s were bound(Mahfoud et al., 2009). The Gb3 fatty 
acid isoforms not recognized by gp120 in this context, have fatty acid chain lengths which 
are of the order of the dimensions of the cholesterol molecule, suggesting that these fatty 
acid isoforms have the minimum ‘hydrophobic mismatch’ (Niemela et al., 2009) and 
therefore interact more effectively with cholesterol. The interaction of GSLs with cholesterol 
has been shown in modeling studies to induce a conformation change in the headgroup to 
become parallel to the plane of the cholesterol containing membrane rather than 
perpendicular, as seen in the absence of cholesterol (Hall et al., 2010, Lingwood et al., 2011, 
Yahi et al., 2010 ). In such a membrane parallel carbohydrate format, the accessibility of the 
carbohydrate to carbohydrate binding ligands, such as gp120, will be restricted (but lateral 
interaction with the membrane may be enhanced). In GSL/cholesterol model detergent 
resistant membranes separated by sucrose gradient centrifugation, the major GSL fraction 
was not recognized by gp120 (GSLs –sulfatide, galactosyl ceramide and Gb3) (Mahfoud et 
al., 2010). Only a minor fraction of smaller vesicles were bound. Such smaller vesicles may 
display the GSL in a more disperse format, even in the presence of cholesterol, and thereby 
defray the effect of this potential cholesterol-induced conformational change. Moreover, the 
fatty acid isoforms of Gb3 negative for gp120 binding were dominant negative in mixtures of 
saturated Gb3 fatty acid isoforms, whereas addition of the unsaturated C24:1 Gb3 was 
dominant positive, suggesting that membrane fluidity in these vesicles could be a key factor 
in determining availability of the GSL carbohydrate for gp120 binding(Mahfoud et al., 2009). 
Thus the interaction of gp120 with membrane GSLs is extremely complex depending also, 
on the membrane bilayer organization and perhaps curvature and fluidity. In addition, host 
cell GSLs taken up into the viral membrane at the time of plasma membrane budding may 
also play a direct role in HIV dendritic cell targeting (Hatch et al., 2009) and T cell infection. 
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This differential availability of cell membrane Gb3 for example, is dramatically highlighted 
by the differential binding of various monoclonal antibodies to Gb3 and verotoxin B subunit 
to lymphoid cells which synthesize Gb3 (Kim et al., 2011), despite the fact that these 
antibodies show similar efficacy to detect the Gb3 once extracted from the cells and 
separated by TLC. Gb3 positive cells which do not bind any Gb3 ligands have been 
reported(Sekino et al., 2004). 
The masking of membrane GSL is also dependent on the relative cholesterol concentration. 
In model GSL membranes, the thickness of the carbohydrate layer was an inverse function 
of the cholesterol concentration, suggesting that the sugar can adopt intermediate 
conformations between the membrane perpendicular (thickest) and parallel (thinnest) 
conformation according to membrane cholesterol content (Lingwood et al., 2011), extending 
the potential for conformational regulation of GSL receptor function. 
The differential expression of membrane GSLs within and without cholesterol enriched lipid 
rafts may provide the explanation for the differential function ascribed to GSLs in HIV 
infection; first as promotors of fusion/infection (Puri et al., 1998, Puri et al., 2004) and then 
as inhibitors of these functions (Lund et al., 2009, Ramkumar et al., 2009). It is conceivable 
that different GSL carbohydrate conformers can play different roles at different (or the 
same) times in infection. 
Amino acids within the gp120 V3 loop defined by mutational analysis as crucial for 
chemokine receptor binding(Xiao et al., 1998) coincide with 3 amino acids of the concensus 
GSL binding site at the V3 loop apex (Delezay et al., 1996), together with 2 distinct amino 
acids, one in the base of each alpha helix comprising the V3 loop(Xiao et al., 1998). The GSL 
hexapeptide binding domain has been synthesized as a separate peptide and shown to bind 
the same GSLs in vitro as observed for the intact gp120 (Delezay et al., 1996). The V3 loop 
must open following CD4 -gp120 binding to allow the chemokine receptor to bind (Wang et 
al., 1999) whereas gp120 -GSL binding is observed in the absence of CD4 (Mahfoud et al., 
2009). Thus GSL binding to the apex of the V3 loop could well alter the alpha helix 
conformation at the base of the V3 loop to modulate chemokine receptor binding. It is 
possible that binding of different GSLs, or different lipid isoforms of the same GSL, could 
differentially alter the conformation of the V3 loop to enhance or inhibit CCR5 binding.  
This concept is consistent with NMR studies which indicate that the N terminus of CCR5 
binds within the base of the V3 loop (Huang et al., 2007). In combination, soluble CD4 and 
CCR5 reduced proteolytic susceptibility of the V3 loop of gp120, consistent with binding. A 
model was proposed (Huang et al., 2007) by which the CCR5 N terminus bound to the base 
of the V3 loop (via tyrosine sulfate) and then the second extracellular loop of CCR5 
associated with the V3 loop apex. Alternatively, the extracellular CCR5 loop associated with 
the V3 loop apex first, followed by CCR5 N terminus binding to the V3 loop base. The 
binding of the CCR5 N terminus to the V3 loop base was found to cause a conformational 
change to rigidify the V3 loop. Such a conformation change might be impeded or promoted 
by GSL binding within the GSL binding site at the V3 loop apex (Figure 4).  
If the first GSL sugar is primarily responsible for binding, it is possible that the effect on V3 
conformation could be dependent on the number and character of additional sugar residues. 
In the absence of the gp120 conformational change induced by CD4 binding, V3 loop 
binding to GSLs via this apical binding site could mediate a less effective mechanism for 
HIV internalization. Cell membrane GSLs undergo a natural process of internalization and 
recycling and GSLs function in receptor mediated endocytosis of appropriate GSL binding 
ligands. This could thereby provide a basis for the observed association of galactosyl 
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Fig. 4. Conformational change in gp120 induced by CCR5 binding and relation to GSL 

binding. The NMR structure of the V3 loop alone (A) or with bound CCR5 N terminus (B) is 
shown according to Huang et al., 2007. The amino acids of the GSL binding site at the loop 
apex are boxed in (A). The V3 loop initially disorganized, becomes more rigid on binding of 
the CCR5 N terminus to the V3 loop base. Gb3 has been arbitrarily placed and oriented with 
its glucose moiety stacked over the phenylalanine of the CCR5 unbound loop (C) to 
illustrate the potential of GSL binding to affect this V3 loop conformational change. 

ceramide in gastroepithelial/neuronal/renal cells targeted by HIV (Harouse et al., 1995). 

Infectious HIV utilizes GSLs and lipid rafts to traverse the host mucosa and access 

underlying susceptible target cells during transmission. This process is called transcytosis, 

whereby “receptors” mediate the transcellular traffic of the virus across the tight epithelial 

cell barrier, rather than productive infection (Bomsel and Alfsen 2003). Thus uptake of the 

virus occurs at one pole of the cells and infectious virus is released at the opposite pole, 

gaining access to the submucosa. GalCer has been shown to bind to both HIV-gp120 and 

gp41 (Alfsen and Bomsel 2001). However, HIV binding to GalCer in epithelial cells does not 

result in HIV/host cell fusion necessary for productive infection but rather mediates HIV 

transcytosis (Bomsel, 1997), Bomsel and David 2002). This has been demonstrated in 

epithelial cell lines, where HIV ‘hijacks’ the vesicular pathway in order to cross the cell. The 

process of transcytosis via GalCer has also been shown to occur in primary intestinal 

epithelial cells, specifically for R5 HIV-1 strains, and is particularly dependant on lipid rafts, 

as disruption of rafts substantially reduces uptake (Meng Wei 2002). It has further been 

suggested that transcytosis may occur across specialized M cells, which provide an 

epithelial barrier, to lymphoid Peyer’s patches in the gastrointestinal tract (Fotopoulos 2002). 

Mucosal dendritic cells express GalCer which can mediate HIV uptake and transfer to T 

cells (Magerus-Chatinet et al., 2007). To date, the vast majority of evidence suggests 

transcytosis is a process that facilitates HIV transmission across the gastrointestinal mucosa, 

and limited data has been shown for vaginal mucosal transmission 
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5.2 Membrane fusion 

For productive infection, HIV enters cells directly via plasma membrane penetration, which 
requires fusion of the viral envelope with the host cell membrane (Marsh & Helenius, 1989). 
Membrane fusion is particularly dependant on lipid rafts, which have a central role in HIV 
infection. Depletion of cholesterol, a key component of lipid rafts, renders cells resistant to 
infection and membrane fusion, a phenotype rescued upon re-introduction of cholesterol 
(Manes, del Real 2000, Liao, Cimakasky et al 2001). GSLs, important components of lipid 
rafts, have also been shown to play a role in membrane fusion. Complete lack of GSLs 
protects CD4 positive cells from HIV infection (Hug et al., 2000, Puri et al., 2004, Rawat et 
al., 2003).Interestingly, reconstitution of GSL deficient cells with Gb3, and to a lesser extent 
GM3, was able to restore membrane fusion in these model systems (Hug et al., 2000, Puri et 
al., 1998, Puri et al., 1999). However, no other GSLs were able to rescue this phenotype. This 
impediment could also be overcome by the over-expression of CD4 and CXCR4, suggesting 
the role for GSLs is facilitative (Hammache et al., 1999, Puri et al., 1998, Puri et al., 1999, 
Rawat et al., 2003). These findings have been supported by reports that both Gb3 and GM3, 
when introduced into the cell membrane of CD4+ T lymphocytes, have the potential to 
enhance HIV-1 fusion and entry of a broad range of isolates (Hug et al., 2000). It has also 
been shown that non-human cells expressing CD4, ordinarily not permissive to HIV-1 
infection, become permissive to membrane fusion upon introduction of Gb3 (Puri et al., 
1998). Our studies using a different glucosyl ceramide synthase inhibitor are conssitent with 
an inhibitory role for GSLs(Gb3)(Ramkumar et al., 2009) and HIV resistance is also 
conferred by high GM3 levels (Rawat et al., 2004). 
For membrane fusion to proceed, HIV-gp120 binding to CD4 and chemokine co-receptor, must 
initiate conformational change in gp120 and the associated transmembrane gp41 (Freed et al., 
1992, Jones et al., 1998). At physiological levels, CD4 and the co-receptors are not physically 
associated in the membrane in the absence of HIV-1 (Jones, korte et al 1998). However, CD4 
and CCR5 are both present in lipid rafts, albeit separate rafts, and their associations with rafts 
have been shown to be required for infection. Indeed, both CD4 and CCR5 may interact with 
lipid rafts containing GM3 and Gb3 (Hammache et al., 1999, Hammache et al., 1998b, Manes et 
al., 2001, Millan et al., 1999, Sorice et al., 1997). Interestingly, CXCR4 is not normally associated 
with rafts, and is separated from CD4, which is ordinarily associated with GM3 rafts. Upon 
HIV-gp120 interactions with CD4 however, CXCR4 is physically recruited into these rafts for 
membrane fusion (Sorice et al., 2000, Sorice et al., 2001). 
CD4 has been shown to insert into Gb3 or GM3 monolayers, as has HIV-gp120 (Hammache 
et al., 1999). Since both CD4 and chemokine receptors are found in, or are recruited to, lipid 
rafts for HIV infection, it was proposed that CD4 binds GSLs in rafts to promote gp120/GSL 
interactions (Fantini et al., 2000). GSL within rafts may then function to promote the 
migration of the CD4-gp120 complex to an appropriate, initially distal, coreceptor 
(Hammache et al., 1999). This would in turn promote clustering and thus co-operative 
interactions between the CD4-GSL-chemokine coreceptors (Rawat et al., 2006). HIV-gp120 
binding interactions within the GSL-containing domain could then induce the 
conformational changes necessary to effect membrane fusion. Indeed, the fusion complex 
has specifically been shown to assemble in lipid rafts (Manes, et al., 2000 ).  

5.3 Infectivity and viral egress 

It is interesting to note that there appears to be an overall role for GSL containing lipid rafts 
in HIV infection (Manes et al., 2000, Popik et al., 2002). More specifically, HIV not only 
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requires lipid rafts in the process of entry, but in immune evasion, suppressing host-cell 
signalling during replication, and egress of the virus from the host (Manes et al., 2000, 
Nguyen & Hildreth, 2000, Peterlin & Trono, 2003) 
HIV Nef is a myristoylated protein that is associated with rafts, and this association is 
necessary for its function. Nef is involved in down-regulation of CD4 and MHC-I molecules, 
crucial for viral infectivity and immune evasion. These functions are dependant on the Nef 
targeting and trafficking function, through clathrin coated pits and early endosome 
associations, and are thus dependant on lipid raft (Bresnahan et al., 1998 , Piguet & Trono, 
1999). Interestingly, Nef has been shown to inhibit Gb3 retrograde transport (Johannes et al., 
2003). 
GSL-enriched lipid rafts are required for viral egress in addition to entry. Assembly and 
incorporation of envelope glycoproteins in the virion envelope is regulated by an interaction 
between the gp41 cytoplasmic tail and the MA domain of the Gag precursor peptide 
(Hourioux, Brand 2000). During post-transctiptional modification, the MA domain of Gag is 
myristoylated, and the envelope precursor gp160 is palmitoylated. These modifications 
target these proteins to lipid rafts, which promote the assembly of budding virions (Ono & 
Freed, 2001) . Furthermore, because HIV selectively buds from lipid rafts, the viral envelope 
is enriched in lipid raft components, including cholesterol and GlcCer (Brugger et al., 2006, 
Nguyen & Hildreth, 2000). The viral membrane GSL content can affect infectious potential 
(Hatch et al., 2009) 

5.4 Clinical links to GSL 

Increased Gb3 and GM3 synthesis can be detected at an early stage in HIV-1 infected 
individuals. In addition, antibodies to these GSLs have been detected in HIV patients 
(Fantini et al., 1998b). These GSLs have important functions within the immune system, with 
regards to cell growth, signalling and motility. They are of particular importance as markers 
in lymphocyte differentiation, where Gb3 is a marker of B cell development (Wiels et al., 
1991)and GM3 of monocytes and T-cells. In addition, GM3 containing microdomains are 
functional in T cell motility (Gomez-Mouton et al., 2001) and signalling (Sorice et al., 2000). 
Thus, perturbations in GSL expression, and antibodies produced to GSL in HIV-1 infection 
may be immunosuppressive.  
It is of interest to note that HIV infected patients are more prone to haemolytic uremic 
syndrome (HUS) (Turner et al., 1997). HUS is characterised by thrombotic microangiopathy 
of the renal glomeruli mediated by verotoxin/Gb3 binding(Muthing et al., 2009). It is thus 
interesting that transgenic mice, in which the HIV genome has been incorporated into the 
germ line, show renal Gb3 synthesis is selectively upregulated to induce renal disease (Liu et 
al., 1999) 

5.5 Inhibiting HIV at the membrane level 

In the quest for new drug targets, such as the entry inhibitors, and subsequent potential 
microbicide candidates, attention has been turned to HIV interactions with lipid rafts and 
GSLs. Several studies have investigated cholesterol-depletion as a means of disrupting lipid 
rafts to prevent HIV-1 fusion and entry (Liao et al., 2001; Liao et al., 2003) It has also been 
proposed that increasing ceramide levels in CD4+ lymphocytes and monocyte-derived 
macrophages may block HIV infection, perhaps inhibiting HIV fusion by disrupting normal 

lipid raft organization and function (Finnegan & Blumenthal, 2006).These studies have used 
several mechanisms to increase ceramide, including pharmacological agents, such as N-(4-
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hydroxyphenyl) retinamide and fenretinide, treatment with sphingomyelinase or addition 
of long-chain ceramide. Lipid-raft altering compounds may have dual efficacy in treatment 
of HIV/AIDS. Microorganisms causing opportunistic infections in AIDS patients often rely 
on lipid-raft mediated mechanisms to elicit their effect, thus HIV treatments altering lipid-
rafts may be protective.  
As GSLs are critical in the process of HIV infection and pathogenesis, targeting of these 

molecules may give rise to the development of novel therapeutics. Not only are GSLs key 

components of lipid rafts, but they also play several roles during HIV binding and host cell 

fusion. The efficacy of inhibiting HIV infection by targeting GSLs has already been 

demonstrated in vitro. Peptide analogues of the V3 loop of gp120, including those that define 

the GSL binding site, are effective as inhibitors of HIV-membrane fusion (Delezay et al., 1996, 

Savarino et al., 2003). Furthermore, analogues of galactosyl ceramide have been found to be 

protective against T cell infection in vitro, where the hydrophobic aglycone moiety of GalCer 

played an important role (Fantini, 2000, Fantini et al., 1997, Faroux-Corlay et al., 2001) 

6. Generation of GSL mimics 

Given the importance of GSLs in HIV infection, and the demonstrated anti-HIV potential of 

GalCer analogues, it is particularly advantageous to develop soluble GSL analogues. GSL 

binding and receptor function is significantly regulated by lipid modulation (Lingwood, 1996). 

Despite the fact that the carbohydrate moiety of the GSL defines the specificity of binding 

interactions, the lipid-free sugar shows minimal binding activity (Boyd et al., 1994, Mamelak et 

al., 2001a). Thus, gp120 binding to the GSL receptors is abrogated if the lipid moiety, that is the 

anchor to the cell membrane, is removed (Faroux-Corlay et al., 2001, Mylvaganam & 

Lingwood, 1999b, Villard et al., 2002).In the membrane bilayer, GSLs comprise three domains - 

the external aqueous sugar domain, the internal liquid crystalline domain and the “interface” 

between them. The “interface” region modulates the receptor function of the carbohydrate in 

response to the liquid crystalline domain, and likely plays a role in lipid raft organization. 

In order to generate GSL analogues and maintain the interface character, an adamantane frame 
was used to replace the fatty acid (Mylvaganam & Lingwood, 2003). This rigid, globular, cage-
like hydrophobic structure close to the interface region perturbs the lateral packing of the 
glycolipid, and thus bilayer structure formation, thereby promoting solubility. The Gb3 
analogue, adamantylGb3 (adaGb3), was shown to preferentially partition into water in an 
organic/aqueous solvent system (Mylvaganum & Lingwood, 1999a). This compound, unlike 
the lipid-free Gb3 sugar, maintained its receptor function and was able to inhibit VT/ Gb3 
binding, protecting cells against this toxin (Mylvaganam & Lingwood, 1999a). 
We utilized the same strategy to develop a soluble analogue of SGC and GalCer. We 
substituted the fatty acid of SGC with an adamantane or with a norbornane (smaller) frame 
and, as with the Gb3 case, the conjugates partitioned into water (although adamantylGalCer 
was significantly less soluble), rather than the organic phase (Whetstone & Lingwood, 2003). 
AdamantylSGC retained its receptor activity (Mamelak et al., 2001a, Whetstone & 
Lingwood, 2003) 

6.1 AdaGb3 as a mimic of lipid rafts: a ‘superligand’ for HIV gp120 

We have found that adaGb3 has a variety of additional unusual physical properties which 

indicate that adamantyl-glycolipids may have unusual biological effects, particularly in 
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modulating host/microbial interactions. In collaboration with Fantini’s group , we showed 

that gp120 can insert into a Gb3 monolayer at the water/air interphase in a Langmuir trough 

(Mahfoud et al., 2002b). However, there was a 2 hour lag-phase prior to binding/insertion 

which then proceeded at a sigmoidal rate. AdaGb3, although water-soluble, also can form a 

monolayer at a water/air surface interface. Binding and insertion of gp120 into such a 

monolayer was exponential and immediate. Thus adaGb3 is by far (>1000x), a superior 

ligand for gp120 than the native Gb3. These results were duplicated using the SPC3 peptide 

from the V3 loop of gp120 which contains the GSL binding domain (Delezay et al., 1996). In 

the studies with the peptide, the lag-phase prior to Gb3 binding/insertion was even more 

exaggerated, being three hours as compared to immediate insertion into adaGb3. The lag phase 

observed for gp120 insertion into Gb3 monolayers was removed if the monolayer is formed 

with 20% cholesterol. This suggests that the gp120 may be interacting with Gb3 containing 

lipid rafts or microdomains (of which cholesterol is a key component). The lag phase seen in 

the absence of cholesterol, may be a function of the ability of Gb3 to organize into suitable 

microdomains for gp120 binding and the sigmoidal curve suggests a cooperative effect, once a 

few domains have been formed. The immediate binding and insertion into adaGb3 monolayers 

suggests that this organization required for gp120 insertion is already present in the adaGb3 

monolayer. Interestingly, although gp120 binds SGC, we found no evidence for gp120 

insertion into SGC monolayers, even in the presence of cholesterol. Similarly, no gp120 

insertion into adamantylSGC monolayers was seen(Mahfoud et al., 2002b). Our recent work 

showing that 50% cholesterol can mask membrane Gb3 from gp120(Mahfoud et al., 2010) 

indicates a bimodal concentration dependent cholesterol effect. 

SGC was shown to inhibit HIV infection of CD4 negative HT29 cells (Fantini et al., 1998a) 
without inhibition of HIV cell binding. In these studies, SGC was incorporated into the host 
cell membrane thereby increasing HIV binding, since gp120 binds SGC(Bhat et al., 1993), but 
fusion with the host cell membrane was inhibited(Fantini et al., 1998a). Although these 
studies also implicated GalCer in these cells as mediating HIV infection, HT29 cells are Gb3 
positive. Thus, this is consistent with a role for Gb3 rather than SGC, in HIV–cell fusion. It is 
possible that in addition to forming microdomains poorly itself, SGC could interfere with 
rafts containing other GSLs. AdamantylSGC (Whetstone & Lingwood, 2003) is a soluble 
inhibitor of gp120-SGC binding and may prove more effective than the poorly soluble SGC. 

6.2 AdaGb3 inhibits HIV infection 

Comparison of the “compressibility” of Gb3 and adaGb3 monolayers shows that the adaGb3 
structure is more rigid and able to withstand greater increases in surface pressure without 
collapsing (Mahfoud et al., 2002b). This is consistent with a microdomain format for the 
adaGb3 monolayer. If adaGb3 is a “superligand” for gp120 as our studies indicate, adaGb3 
might be able to interfere with the process of HIV infection even for (T) cells which do not 
express Gb3 (Akashi et al., 1988). We therefore tested whether adaGb3 was able to modify 
HIV infectivity in vitro. 200µM adaGb3 was able to reduce HIV infectivity in Jurkat T cells 
using a multiplicity of infectivity ratio of 0.6 (60x higher than standard practice) by ~70% 
over a 4 day infection period (figure 9) as monitored by ELISA of host cell production of 
viral nucleoprotein p24gag. Amino adamantane itself showed no inhibition. Thus, this 
approach does represent a novel basis for the control of HIV infectivity. Moreover, in our studies to 
use adaGb3 to protect mice against VT, we have shown that adaGb3 itself (4mg/kg) shows 
no side effects in vivo. 
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In collaboration with Blumenthal’s group at NIH we have found that adaGb3 is also able to 

inhibit gp120/CD4/chemokine coreceptor dependent host cell fusion irrespective of gp120 

type (R5 or X4 tropic, HIV-1 or HIV-2) as monitored in an indicator system in which gp120 is 

transfected into one indicator cell and the chemokine receptor into another (Lund et al., 2006). 

6.3 FSL-Gb3 

Recently, additional GSL analogues have been shown to act to inhibit HIV-1 infection in 
vitro. A completely synthetic water soluble analogue of Gb3 termed Functional head 
Spacer Lipid tail-Gb3 (FSL-Gb3) was shown to inhibit X4 and R5 HIV-1 infection with a 
similar 50% inhibitory activity (IC50) as adaGb3 (Harrison et al., 2010). This Gb3 analogue 
was unique in that the lipid tails were replaced with phosphatidylethanolamine and a 
spacer region containing multiple ionic residues allowed for complete solubility in aqueous 
media. A novel synthetic process maintains the carbohydrate moiety of Gb3 coupled to 
phosphatidylethanolamine through a phosphate linker. This molecule gains its solubility 
through the insertion of charged nitrogen and phosphate containing groups that are located 
between the glycone and aglycone moietites. The molecule is completely synthetic, completely 
soluble in aqueous solutions, and available in large quantities for testing. In addition. animal 
studies have shown no toxicity at millimolar quantities systemically. The unusual tail also 
allows for this analogue to insert itself into cell membranes and convert an HIV-permissive 
Gb3-negative T-cell into a Gb3-positive T-cell that resists HIV infection (Harrison et al., 2010). 
Harrison et al. (2010) have used the FSL-Gb3 to show that it can inhibit HIV infection by two 
different mechanisms. First, as with adaGb3, mixing the FSL-Gb3 with either X4 or R5 HIV-1 
results in inhibition of HIV infection with approximately the same IC50 as with adaGb3 
(Harrison et al., 2010). This was shown both for laboratory strains of HIV-1 as well as for 
clinical isolates of R5 HIV-1 viruses. In addition, FSL-Gb3, apparently due to its particular 
hydrophobic tail structure, was shown to insert itself into cell membranes, retaining proper 
cell-surface conformation of the carbohydrate moieties. Cellular insertion of FSL-Gb3 was 
able to result in conversion of a human CD4+ T-cell that completely lacked Gb3 expression 
into a T-cell that highly expresses Gb3. This property of FSL-Gb3 to convert a permissive 
HIV target cell into a less permissive cell for HIV infection is a major finding; thus, 
providing acquired resistance to HIV-1 infection as a possible therapeutic approach. The 
following: “In addition, preliminary work has shown potential for soluble Gb3 analogues, 
including FSL-Gb3, to act as microbicides to inhibit mucosal HIV transmission (Harrison et 
al., 2011). FSL-Gb3 shows great promise as a possible therapeutic, in vivo, as it would be 
potentially capable of inhibiting HIV infection both systemically to reduce viremia but also 
by its insertion into CD4+ T cells resulting in inhibition of HIV infection by blocking viral 
entry into its normal primary host targets.  

6.4 Multimeric GSLs 

The finding that a soluble GSL analogue was capable of inhibiting HIV infection soon led to 
other studies where the investigators used a series of C-glycoside synthetic analogues of 
GalCer (Garg et al., 2008). These investigators showed that two of six analogues were able to 
bind gp120 and inhibit X4 and R5 strains and dual-tropic HIV-mediated fusion and entry in 
the absence of any significant cytotoxicity. In addition to HIV, these investigators also 
showed that soluble GSLs may inhibit additional enveloped viruses such as vesticular 
stomatitis virus (VSV) (Garg et al., 2008). 
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Rosa Borges et al. (2010) found that if the synthesized analogues utilized multimeric Gb3 
sites, increased efficacy for inhibition of HIV-1 could be achieved. These investigators 
covalently attached multiple head groups of either Gb3 or GM3 to a dendrimer core to 
produce multivalent dendrimeric compounds that were water soluble and showed a much 
lower IC50 for inhibition of HIV-1 infection, compared to either FSL-Gb3 or adaGb3 (Rosa 
Borges et al., 2010). Thus, soluble Gb3 analogues have important therapeutic potential to 
block HIV from interacting with CD4+ target cells (Figure 5D). 

7. Pharmacologic modulation of Gb3 expression  

1-Deoxygalactonojirimycin (DGJ) is an alkylated imino sugar with a galactose head and a one-

carbon side chain. It was found to be highly tolerable in vivo and established as a potent 

competitive inhibitor of α-galactosidase A (ǂ-Gal A)(Hamanaka et al., 2008). DGJ has been 

proposed as a specific chemical chaperone for treatment of diseases including Fabry (Fan et al., 

1999). Studies have indicated that oral administration of DGJ to transgenic mice expressing a 

human mutant ǂ-Gal A substantially elevated enzyme activity in major organs (Fan et al., 

1999). Because Gb3 has now been suggested by the studies of Lund et al. (Lund et al., 2006). as 

an important component for prevention of the HIV entry mechanism, the use of DGJ to 

pharmacologically increase Gb3 expression may be useful for HIV prevention strategies. 

Recent studies (Ramkumar et al., 2009) used DGJ to increase the cell-surface expression of 

Gb3 on the monocyte cell line, THP-1, which is infectable with X4 HIV-1. DGJ used at 100 

μM was able to increase the cell-surface expression of Gb3 of THP-1 cells by approximately 

20-fold. Subsequent X4 HIV-1 infection was decreased significantly.  

To inhibit Gb3 expression in these cells, these investigators used the compound, D-threo-1-

phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4) which inhibits GlcCer synthase, the 

enzyme responsible for producing GlcCer (Inokuchi & Radin, 1987). This is a key enzyme in 

the biosynthesis of GSLs because most are glucosylceramide-based. P4 is the most potent 

inhibitor of this glycosyltransferase (Lee et al., 1999). Using 2 μM P4, Ramkumar et al 

(Ramkumar et al., 2009) were able to completely inhibit Gb3 expression with subsequent X4 

HIV-1 infection increased up to 20-fold. DGJ had little effect on the infection of a Gb3-

negative subclone of THP-1 cells and FACS analysis indicated that after DGJ treatment, CD4 

and HIV co-receptor levels were similar in the Gb3 expressing and non-expressing THP-1 

cell lines by these two compounds. Also, as DGJ was found to be non-toxic in the THP-1 

cells up to concentrations of 300 µM, the inhibitory effect was not a result of cytotoxicity of 

DGJ treatment. The authors concluded that their results indicated that the difference in HIV 

infection was due solely to the modulation of the expression of the levels of Gb3.   

To examine the effects of DGJ and P4 treatment on subsequent infection with R5 HIV-1 

virus, the glioblastoma cell line, U87, that had been transfected to express CD4 and the 

chemokine co-receptor, CCR5, was used. Ramkumar et al. (Ramkumar et al., 2009) again 

found that treatment of these cells with DGJ resulted in a significant inhibition of R5 HIV-1 

infection while treatment with P4 caused a doubling in the infection. They concluded that 

pharmacologically increasing Gb3 expression using DGJ treatment or inhibition of Gb3 

expression using P4 demonstrates a linear relationship between Gb3 expression and 

infection with either X4 or R5 HIV-1. In addition, their studies suggest that 

pharmacologically increasing Gb3 is an effective and novel means to prevent HIV-1 infection 

in vitro and that this approach should be explored for in vivo treatment of HIV infection.  
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8. HIV infection of CD4 negative cells 

The current paradigm indicates that infection with HIV-1 depends entirely on the 
recognition of its primary and co-receptors for viral fusion and entry into a target cell. 
Unfortunately, this paradigm is insufficient to completely explain the pathogenesis of HIV-
1. This is because there are many instances of HIV-1 infection where either the primary 
and/or co-receptors are missing from the infected cell. Indeed, HIV-1-infected CD4 
negative- cells have been identified in vivo, including various brain cells (Pumarola-Sune et 
al., 1987, Ward et al., 1987, Wiley et al., 1986)epithelial cells (Nelson et al., 1988), 
cardiomyocytes (Barbaro et al., 1998), CD4 negative- lymphocytes (Livingstone et al., 1996, 
Saha et al., 2001a), renal tubular epithelial cells(Marras et al., 2002, Wyatt & Klotman, 2007), 
hepatocytes (Fromentin et al., 2011) and thymocytes (Kitchen et al., 1997). HIV-1 has also 
been shown to infect CD4-negative neural and epithelial cells in vitro, although not 
productively (Clapham et al., 1989, Tateno et al., 1989). However, it has been shown that 
HIV-1 can productively infect CD4-CD8+ T lymphocytes in vitro (Saha et al., 2001b). 
Our own work supports the idea of HIV infection of CD4-negative cells. Using kidney-
derived cell lines such as ACHN and 293 as well as a colon-derived cancer cell line called 
Caco-2, we have been able to show transient infection with an X4 virus (Figure 5). We have 
also shown that soluble Gb3 can inhibit the infection of CD4-negative Caco-2 epithelial cell 
lines (Figure 6) as well as human CD4-negative cell lines derived from the cervix or 
endometrium (Harrison et al., 2011). Although, the infection of these cell lines is not robust  
 

 

Fig. 5. HIV can infect CD4-negative epithelial cells. HIV infection of ACHN kidney-
derived cell line and Caco-2 colon cancer derived epithelial cell line. Trypsin is used to 
insure that the p24 antigen being used as a measure of productive HIV infection is not 
derived from external virions sticking to the cell membranes but from budding virions 
indicating a round of replication of the virus. 
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and appears transient, these infected cells could serve as reservoirs of latent HIV provirus 
and may become activated under certain conditions to produce a round of progeny virions 
which would have the potential to infect other cells such as CD4+ T-cells and maintain or re-
establish an active infection.  
Several hypotheses have arisen to explain the infection of CD4-negative cells within the 

current paradigm of only CD4 and chemokine co-receptors playing a role. A popular theory is 

that the availability of CXCR4 in CD4-negative cells is sufficient for viral fusion and entry. 

However, the evidence addressing this idea is contradictory. In support, human CD4-CCR5-

CXCR4+ pre-T cell lines can be infected with HIV-1 (Borsetti et al., 2000). Furthermore, 

CD4+CXCR4- human megakaryocytic cells are fully resistant to HIV-1 infection until they are 

transfected to over-express CXCR4 (Baiocchi et al., 1997). In contradiction, the CD4-negative 

human B-cell line Raji is not permissive to HIV-1 infection, even though it expresses functional 

CXCR4 (Speck et al., 1999). Therefore, the absolute dependence of HIV-1 on CXCR4, even in 

the absence of CD4, does not completely account for the ability of HIV-1 to infect CD4- cells. 

 

 

Fig. 6. Inhibition of HIV infection of epithelial cells by soluble Gb3. Caco-2 CD4-negative 
epithelial cells are infected by HIV but the infection can be inhibited using soluble adaGb3. 
adaNH2 is a control soluble GSL for adaGb3 

Taken together, the current paradigm that requires the availability of both a primary CD4 

receptor plus a co-receptor, either CXCR4 or CCR5, in order for HIV to infect a target cell is 

not sufficient to explain other cell infections were either the primary receptor and/or the co-

receptor are not present, or where there is a lack of infection when both receptors are 

present. Indeed, there is ample evidence that these receptors are not always sufficient for 

viral infection. Further examples include human CD4-negative astrocytes that express 

functional CCR5 and CXCR4 and are resistant to infection by HIV-1 strains (Boutet et al., 

2001) and CD4+CXCR4+ cells, also resistant to infection with HIV-1 (Moriuchi et al., 1997). 

This was shown by infecting U937 monocyte-derived cell lines that were shown to be either 

permissive or nonpermissive for infection by HIV-1. All but one of these cell lines expressed 

3
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both functional CXCR4 and CD4. One of these cell lines that was nonpermissive lacked 

CXCR4, but when this receptor was transfected back into this cell line, it remained 

nonpermissive to infection 1 (Moriuchi et al., 1997). 

9. Summary 

Studies have indicated that human PBMCs with an intracellular or cell-surface accumulation 

of Gb3 were less susceptible to HIV infection (Lund et al., 2005, Lund et al., 2009).These 

PBMCs were derived from patients with Fabry disease and from healthy P1k blood group 

phenotype individuals having a pathologic or natural, respectively, elevation of Gb3. 

AdaGb3, FSL-Gb3, and multivalent dendrimeric-Gb3, all soluble Gb3 analogues, have been 

shown to be effective inhibitors of HIV regardless of strain or tropism, and also to inhibit 

drug resistant HIV strains and prevent HIV infection of CD4-negative epithelial cells. 

Therefore, Gb3 may be a natural host resistance factor and increasing its expression in vitro 

using soluble analogues, such as FSL-Gb3, that can insert into T-cells that do not naturally 

express Gb3, and/or the use of a pharmacologic agent, such as DGJ, to increase Gb3 

expression, may decrease HIV-1 susceptibility. Importantly, the further development of 

soluble Gb3 analogues, especially multivalent analogues expressing multiple Gb3 sugar 

moieties having increased affinity and avidity for the V3 loop of HIV gp120, may provide 

for novel and highly effective HIV therapeutics to prevent or treat HIV/AIDS (Figure 7). 

 

 

Fig. 7. Potential novel HIV therapeutic. Soluble Gb3 analogues may be able to bind to HIV 
gp120 protruding from the HIV envelop and prevent HIV from interacting with the primary 
and/or co-receptors for HIV; thus, preventing HIV infection. 
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