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Self-Similar Hydrodynamics  
with Heat Conduction 

Masakatsu Murakami 
Institute of Laser Engineering, Osaka University 

Japan 

1. Introduction 

1.1 Dimensional analysis and self-similarity 

Dimensional and similarity theory provides one with the possibility of prior qualitative-
theoretical analysis and the choice of a set for characteristic dimensionless parameters. The 
theory can be applied to the consideration of quite complicated phenomena and makes the 
processing of experiments much easier. What is more, at present, the competent setting and 
processing of experiments is inconceivable without taking into account dimensional and 
similarity reasoning. Sometimes at the initial stage of investigation of certain complicated 
phenomena, dimensional and similarity theory is the only possible theoretical method, 
though the possibilities of this method should not be overestimated. The combination of 
similarity theory with considerations resulting from experiments or mathematical 
operations can sometimes lead to significant results. Most often dimensional and similarity 
theory is very useful for theoretical as well for practical use. All the results obtained with the 
help of this theory can be obtained quite easily and without much trouble.  
A phenomenon is called self-similar if the spatial distributions of its properties at various 
moments of time can be obtained from one another by a similarity transformation. 
Establishing self-similarity has always represented progress for a researcher: self-
similarity has simplified computations and the representation of the characteristics of 
phenomena under investigation. In handling experimental data, self-similarity has 
reduced what would seem to be a random cloud of empirical points so as to lie on a single 
curve of surface, constructed using self-similar variables chosen in some special way. Self-
similarity enables us to reduce its partial differential equations to ordinary differential 
equations, which substantially simplifies the research. Therefore with the help of self-
similar solutions researchers have attempted to find the underlying physics. Self-similar 
solutions also serve as standards in evaluating approximate methods for solving more 
complicated problems.  
Scaling laws, which are obtained as a result of the dimensional analysis and other methods, 

play an important role for understanding the underlying physics and applying them to 

practical systems. When constructing a full-scale system in engineering, numerical 

simulations will be first made in most cases. Its feasibility should be then demonstrated 

experimentally with a reduced-scale system. For astrophysical studies, for instance, such 

scaling considerations are indispensable and play a decisive role in designing laboratory 

experiments. Then one should know how to design such a miniature system and how to 
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judge whether two experimental results in different scales are hydrodynamically equivalent 

or similar to each other. Lie group analysis (Lie, 1970), which is employed in the present 

chapter, is not only a powerful method to seek self-similar solutions of partial differential 

equations (PDE) but also a unique and most adequate technique to extract the group 

invariance properties of such a PDE system. Lig group analysis and dimensional analysis 

are useful methods to find self-similar solutions in a complementary manner. 
An instructive example of self-similarity is given by an idealized problem in the 
mathematical theory of linear heat conduction:  Suppose that an infinitely stretched planar 
space (−∞ < ݔ < ∞) is filled with a heat-conducting medium. At the initial instant ݐ = Ͳ and 
at the origin of the coordinate ݔ = Ͳ, a finite amount of heat ܧ	is supplied instantaneously. 
Then the propagation of the temperature Θ is described by  
 ߲Θ߲ݐ = ߢ ߲ଶΘ߲ݔଶ ,  (1)

 

where ߢ is the constant heat diffusivity of the medium. Then the temperature Θ at an 
arbitrary time t and distance from the origin x is given by  
 Θ = ݐߢߨͶ√ܿܧ expቆ− ቇݐߢଶͶݔ , (2)

 

where c is the specific heat of the medium. As a matter of fact, it is confirmed with the 
solution (2) that the integrated energy over the space is kept constant regardless of time: 
 න ܿ Θሺݔ, ஶݔሻ݀ݐ

ିஶ = (3) ܧ

 

The structure of Eq. (2) is instructive: There exist a temperature scale Θ଴ሺݐሻ and a linear scale ݔ଴ሺݐሻ, both depending on time, 
 Θ଴ሺݐሻ = ݐߢߨͶ√ܿܧ , 	 ሻݐ଴ሺݔ = ݐߢ√ , (4)

 

such that the spatial distribution of temperature, when expressed in these scales, ceases to 
depend on time at least in appearance: 
 ΘΘ଴ = ݂ሺߦሻ , ݂ሺߦሻ = expቆ−ߦଶͶ ቇ , ߦ = ଴. (5)ݔݔ

 

Suppose that we are faced with a more complex problem of mathematical physics in two 
independent variables x and t, requiring the solution of a system of partial differential 
equations on a variable ݑሺݔ,  ,ሻ of the phenomenon under consideration. In this problemݐ
self-similarity means that we can choose variable scales ݑ଴ሺݐሻ and ݔ଴ሺݐሻ such that in the new 
scales, ݑሺݔ,  :ሻ can be expressed by functions of one variableݐ

ݑ		  = ߦ					,	ሻߦሻܷሺݐ଴ሺݑ =  ሻ (6)ݐ଴ሺݔ/ݔ

The solution of the problem thus reduces to the solution of a system of ordinary differential 
equations for the function ܷሺߦሻ. 
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At a certain point of analysis, dimensional consideration called Π-theorem plays a crucial 

role in a complementary manner to the self-similar method. Suppose we have some 

relationship defining a quantity ܽ as a function of n parameters ܽଵ, ܽଶ, … , ܽ௡:  
 	ܽ = ݂ሺܽଵ, ܽଶ, …	ܽ௡ሻ	. (7) 

If this relationship has some physical meaning, Eq. (7) must reflect the clear fact that 
although the numbers ܽଵ, ܽଶ, … , ܽ௡ express the values of corresponding quantities in a 
definite system of units of measurement, the physical law represented by this relation does 
not depend on the arbitrariness in the choice of units. To explain this, we shall divide the 
quantities ܽ, ܽଵ, ܽଶ, …	ܽ௡	into two groups. The first group, ܽଵ, …	ܽ௞, includes the governing 
quantities with independent dimensions (for example, length, mass, and time). The second 
group, ܽ, ܽ௞ାଵ, …	ܽ௡,	contains quantities whose dimensions can be expressed in terms of 
dimensions of the quantities of the first group. Thus, for example, the quantity ܽ has the 

dimensions of the product ܽଵ௣ܽଶ௤ ∙∙∙ ܽ௞௥ , the quantity ܽ௞ାଵ has the dimensions of the product ܽଵ௣ೖశభܽଶ௤ೖశభ ∙∙∙ 	ܽ௞௥ೖశభ, etc. The exponents ݌, ,ݍ …	are obtained by a simple arithmetic. Thus the 

quantities, 
 	Π = ܽܽଵ௣ܽଶ௤ ∙∙∙ ܽ௞௥ , Πଵ = ܽ௞ାଵܽଵ௣ೖశభܽଶ௤ೖశభ ∙∙∙ ܽ௞௥ೖశభ , . . . , Π௡ି௞ = ܽ௡ܽଵ௣೙ܽଶ௤೙ ∙∙∙ ܽ௞௥೙ (8)

 

turn out to be dimensionless, so that their values do not depend how one choose the units of 
measurement. This fact follows that the dimensionless quantities can be expressed in the 
form, 

 	Π = ΦሺΠଵ, Πଶ, … , Π௡ି௞ሻ	, (9) 

where no dimensional quantity is contained. What should be stressed is that in the original 
relation (7), ݊ + ͳ dimensional quantities ܽ, ܽଵ, ܽଶ, … , ܽ௡	are connected, while in the reduced 
relation (9), ݊ − ݇ + ͳ	dimensionless quantities	Π, Πଵ, Πଶ, … , Π௡ି௞ are connected with k 
quantities being reduced from the original relation. 
We now apply dimensional analysis to the heat conduction problem considered above. 
Below we shall use the symbol [a] to give its dimension, as Maxwell first introduced, in 
terms of the unit symbols for length, mass, and time by the letters ܯ ,ܮ, and ܶ, respectively. 
For example, velocity v has its dimension [ݒ] =  Then the physical quantities describing .ܶ/ܮ
the present system have following dimensions, 

[ݔ]  = [ݐ]			,ܮ = [ߢ]			,ܶ = [ܧ]				,ଶܶିଵܮ = Θ]	[ܿ			ଶܶିଶ,ܮܯ =  ଷܶିଶ. (10)ܮܯ

From Eq. (10), in which five dimensional quantities (݊ + ͳ = ͷ) under the three principal 
dimensions (݇ = ͵ for ܯ ,ܮ, and ܶ), one can construct the following dimensionless system 
with two dimensionless parameters Π and ߦ	ሺ= Πଵሻ: 
 Π = ݂ሺߦሻ, Π = ܿ Θ√ܧݐߢ , ߦ = ݐߢ√ݔ , (11)

 

where ݂ is unknown function. Substituting Eq. (11) for Eq. (1), one obtains, 

 		݂ᇱᇱ + ଵଶ ሺ݂ + ᇱሻ݂ߦ = Ͳ	, (12) 
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where the prime denotes the derivative with respect to ߦ; also the transform relation from 

partial to ordinary derivatives 

 ߲݂ሺߦሻ߲ݐ = − ݐߦʹ ݂ᇱሺߦሻ, ߲݂ሺߦሻ߲ݔ = ͳ√ݐߢ ݂ᇱሺߦሻ , (13)

 

are used. With the help of the boundary condition, ݂ᇱሺͲሻ = Ͳ, and Eq. (3), Eq. (12) is 

integrated to give 

 ݂ሺߦሻ = ͳ√Ͷߨ expቆ−ߦଶͶ ቇ . (14)

 

Thus Eqs. (11) and (14) reproduce the solution of the problem, Eq. (2). 
What is described above is the simple and essential scenario of the approach in terms of self-

similar solution and dimensional analysis, more details of which can be found, for example, 

in Refs. (Lie, 1970; Barenblatt, 1979; Sedov, 1959; Zel’dovich & Raizer, 1966). In the following 

subsections, we show three specific examples with new self-similar solutions, as reviews of 

previously published papers for readers’ further understanding how to use the dimensional 

analysis and to find self-similar solutions: The first is on plasma expansion of a limited mass 

into vacuum, in which two fluids composed of cold ions and thermal electrons expands via 

electrostatic field (Murakami et al, 2005). The second is on laser-driven foil acceleration due 

to nonlinear heat conduction (Murakami et al, 2007). Finally, the third is an astrophysical 

problem, in which self-gravitation and non-linear radiation heat conduction determine the 

temporal evolution of star formation process in a self-organizing manner (Murakami et al, 

2004).  

2. Isothermally expansion of laser-plasma with limited mass  

2.1 Introduction 

Plasma expansion into a vacuum has been a subject of great interest for its role in basic 

physics and its many applications, in particular, its use in lasers. The applied laser 

parameter spans a wide range, ͳͲଵ଴ ൑ መ௅ଶߣመ௅ܫ ൑ ͳͲଵଽ, where ܫመ௅ is the laser intensity in the units 

of W/cm2 and	ߣመ௅ is the laser wavelength normalized by ͳ	݉ߤ. For ܫመ௅ߣመ௅ଶ ൒ ͳͲଵସ, generation of 

fast ions is governed by hot electrons with an increase in ܫመ௅ߣመ௅ଶ. In this subsection, we focus on 

rather lower intensity range, ͳͲଵ଴ ൑ መ௅ଶߣመ௅ܫ ൑ ͳͲଵସ, where the effect of hot electrons is 

negligibly small and background cold electrons can be modeled by one temperature. Typical 

examples of applications for this range are laser driven inertial confinement fusion 

(Murakami et al., 1995; Murakami & Iida, 2002) and laser-produced plasma for an extreme 

ultra violet (EUV) light source (Murakami et al, 2006). As a matter of fact, the experimental 

data employed below for comparison with the analytical model were obtained for the EUV 

study. Theoretically, this topic had been studied only through hydrodynamic models until 

the early 1990s. In such theoretical studies, a simple planar (SP) self-similar solution has 

often been used (Gurevich et al, 1966). In the SP model, a semi-infinitely stretched planar 

plasma is considered, which is initially at rest with unperturbed density ߩ଴. At ݐ = Ͳ, a 

rarefaction wave is launched at the edge to penetrate at a constant sound speed ܿ௦ into the 

unperturbed uniform plasma being accompanied with an isothermal expansion. The density 
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and velocity profiles of the expansion are given by (Landau & Lifshitz, 1959) ߩ [−ሺͳ	exp	଴ߩ= + x/ s
c t cstሻ] and ݒ = ܿ௦ +  respectively. The solution is indeed quite useful ,ݐ/ݔ

when using relatively short laser pulses or thick targets such that the density scale can be 

kept constant throughout the process.  

However, in actual laser-driven plasmas, a shock wave first penetrates the unperturbed 

target instead of the rarefaction wave. Once this shock wave reaches the rear surface of a 

finite-sized target and the returning rarefaction wave collides with the penetrating 

rarefaction wave, the entire region of the target begins to expand, and thus the target 

disintegration sets in. If the target continues to be irradiated by the laser even after the onset 

of target disintegration, the plasma expansion and the resultant ion energy spectrum are 

expected to substantially deviate from the physical picture given by the SP solution. Figure 1 

demonstrates a simplified version of the physical picture mentioned above with temporal 

evolution of the density profile obtained by hydrodynamic simulation for an isothermal 

expansion. A spherical target with density and temperature profiles being uniform is 

employed as an example. In Fig. 1, the density is always normalized to unity at the center, 

and the labels assigned to each curve denote the normalized time ݐ/ሺܴ଴ܿ௦ሻ, where ܴ଴ is the 

initial radius. The horizontal Lagrange coordinate is normalized to unity at the plasma edge. 

It can be discerned from Fig. 1 that the profile rapidly develops in the early stage for ݐ/ሺܴ଴ܿ௦ሻ ൑ ͳ. After the rarefaction wave reflects at the center, the density distribution 

asymptotically approaches its final self-similar profile (the thick curve with label “ ”), 

which is expressed in the Gaussian form, ߩ ∝ exp	[−ሺݎ/ܴሻଶ] as will be derived below. The 

initial and boundary conditions employed in Fig. 1 are substantially simplified such that the 

laser-produced shock propagation and resultant interactions with the rarefaction wave are 

not described. However, the propagation speeds of the shock and rarefaction waves are 

always in the same order as the sound speed ܿ௦ of the isothermally expanding plasma. 

Therefore the physical picture shown in Fig. 1 is expected to be qualitatively valid also for  

 

 

Fig. 1. Temporal evolution of the density profile of a spherical isothermal plasma, which is 
normalized by that at the center; ܴ଴ and ܿ௦ are the initial radius and the sound speed, 
respectively. After the rarefaction wave reflects at the center, the density distribution 
asymptotically approaches its final self-similar profile (the thick curve with “ ”). 
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realistic cases. Below, we present a self-similar solution for the isothermal expansion of 

limited masses (Murakami et al., 2005). The solution explains plasma expansions under 

relatively long laser pulses or small-sized targets so that the solution responds to the above 

argument on target disintegration. Note that other self-similar solutions of isothermal 

plasma expansion have been found for laser-driven two-fluid expansions in light of ion 

acceleration physics (Murakami & Basko, 2006) and heavy-ion-driven cylindrical x-ray 

converter (Murakami et al., 1990), though they are not discussed here. 

2.2 Isothermal expansion 

The plasma is assumed to be composed of cold ions and electrons described by one 

temperature ௘ܶ, which is measured in units of energy as follows. Furthermore, the electrons 

are assumed to obey the Boltzmann statistics, 

 			݊௘ = ݊௘௖ 	exp	ሺ݁Φ/ ௘ܶ 	ሻ , (15) 

where ݊௘௖ሺݐሻ is the temporal electron density at the target center, ݁ is the elementary charge, 

and Φሺݎ,  ,ሻ is the electrostatic potential, the zero-point of which is set at the target centerݐ

i.e., ΦሺͲ, ሻݐ = Ͳ. The potential Φ satisfies the Poisson equation, 

 ͳݎఈିଵ ݎ߲߲ ൬ݎఈିଵ ߲Φ߲ݎ ൰ = Ͷ݁ߨሺ݊௘ − ܼ݊௜ሻ , (16)

 

where ܼ is the ionization state; the superscript ߙ stands for the applied geometry such that ߙ 

= 1, 2, and 3 correspond to planar, cylinder, and spherical geometry, respectively. 

Throughout the present analysis, the electron temperature ௘ܶ and the ionization state ܼ are 

assumed to be constant in space and time.  

An ion in the plasma is accelerated via the electrostatic potential in the form, 

ݐ߲ݒ߲  + ݒ ݎ߲ݒ߲ = −ܼ݁݉௜ ߲Φ߲ݎ , (17)

 

where ݉௜ is the ion mass and ݒ is the ion velocity. Note that, in the following, we consider 

such a system that the plasma has quasi-neutrality, i.e., ݊௘ ≈ ܼ݊௜, where ݊௜ and ݊௘ are the 

number densities of the ions and the electrons, respectively. Equations (15) and (17) are 

combined to derive a single-fluid description, 

ݐ߲ݒ߲  + ݒ ݎ߲ݒ߲ = −ܿ௦ଶߩ ߲ρ߲ݎ , (18)

 

where ܿ௦ = ඥܼ ௘ܶ/݉௜ is the sound speed. Also, a fluid element with mass density ߩሺݎ, ሻݐ =݉௜݊௜ satisfies the following mass conservation law,  

ݐ߲ߩ߲  + ͳݎఈିଵ ݎ߲߲ ሺݎఈିଵݒߩሻ = Ͳ . (19)

 
We now seek a self-similar solution to Eqs. (18) and (19) on ߩሺݎ, ,ݎሺݒ ሻ andݐ  ሻ under theݐ

similarity ansatz, 

www.intechopen.com



 
Self-Similar Hydrodynamics with Heat Conduction 

 

275 

ݒ = ሶܴ ߦ , ߦ ≡ ݎܴ , (20)

 

ߩ  = ଴଴ߩ ൬ ܴܴ଴൰ିఈ ሻ, (21)ߦሺܩ

 

where ܴሺݐሻ stands for a time-dependent characteristic system size, and ߦ is the 
dimensionless similarity coordinate; the over-dot in Eq. (20) denotes the derivative with 
respect to time; ߩ଴଴ ≡ ሺͲ,Ͳሻ and ܴ଴ߩ ≡ ܴሺͲሻ are the initial central density and the size, 
respectively; ܩሺߦሻ is a positive unknown function with the normalized boundary condition ܩሺͲሻ = ͳ. Then, Eqs. (15) and (21) give 
 ݊௘ ≈ ݊௘௖ሺݐሻܩሺߦሻ ≈ ܼ ଴଴݉௜ߩ ൬ ܴܴ଴൰ିఈ ሻ, (22)ߦሺܩ

 

Under the similarity ansatz, Eqs. (20) and (21), the mass conservation, Eq. (19), is 
automatically satisfied. Substituting Eqs. (20) and (21) for Eq. (18), and making use of the 

derivative rules, ߲/߲ݎ = ܴିଵ	ሺ݀/݀ߦሻ and ߲/߲ݐ = ߦ− ሶܴܴିଵ	ሺ݀/݀ߦሻ, one obtains the following 
ordinary differential equations in the form of variable separation, 
 ܴ ሷܴܿ௦ଶ = − ܩߦᇱܩ = ߰଴ , (23)

 

where ߰଴ሺ> Ͳሻ is a separation constant, and the prime denotes the derivative with respect to ߦ. Without losing generality, the constant ߰଴ can be set equal to an arbitrary numerical 
value, because this is always possible with a proper normalization of R and ߦ. Here, just for 
simplicity, we set ߰଴ = ʹ in Eq. (23). Then the spatial profile of the density, ܩሺߦሻ, is 
straightforwardly obtained under ܩሺͲሻ = ͳ in the form (True et al., 1981; London & Rosen, 
1986), 

ሻߦሺܩ  = expሺ−ߦଶሻ	. (24) 

As was seen in Fig. 1, the density profile of isothermally expanding plasma with a limited 
mass is found to approach asymptotically the solution, Eq. (24), even if it has a different 
profile in the beginning. Meanwhile, ܴሺݐሻ in Eq. (23) cannot be given explicitly as a function 
of time but has the following integrated forms, 

 	 ሶܴ = ʹܿ௦ඥlnሺܴ/ܴ଴ሻ	, (25) 

 ܿ௦ܴݐ଴ = ͳʹන ln√ݔ݀ ݔ ,ோ/ோబଵ  (26)

 

where in obtaining Eqs. (25) and (26), the system is assumed to be initially at rest, i.e.,	 ሶܴ ሺͲሻ =Ͳ. Here it should be noted that Eqs. (23) - (26) do not explicitly include the geometrical index ߙ, and therefore they apply to any geometry.  
Based on the solution given above, some other important quantities are derived as follows. 
First, the total mass of the system ܯ଴	is conserved and given with the help of Eqs. (21) and 
(24) in the form, 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

276 

଴ܯ	  = ሺͶߨሻఈߩ଴଴ܴ଴ఈ ׬ ఈିଵஶ଴ߦ expሺ−ߦଶሻ ߦ݀ = ൫√ܴߨ଴൯ఈߩ଴଴	, (27) 

with  
 ሺͶߨሻఈ ≡ ቐ ʹ, ሺߙ = ͳሻʹߨ, ሺߙ = ʹሻͶߨ, ሺߙ = ͵ሻ = ሻʹ/ߙఈ/ଶȞሺߨʹ , (28)

 

where Ȟ is the Gamma function. Although the quantitative meaning of ܴሺݐሻ was somewhat 

unclear when first introduced in Eq. (20), it can be now clearly understood by relating it to 

the temporal central density, ߩ௖ሺݐሻ ≡ ,ሺͲߩ ሻݐ ≈ ݉௜݊௘௖ሺݐሻ/ܼ, with the help of Eqs. (21) and (27) 

in the form, 

 ܴሺݐሻ = ͳ√ߨ ൬ ሻ൰ଵ/ఈݐ௖ሺߩ଴ܯ . (29)

 

Additionally the potential Φ and corresponding electrostatic field ܧ = −∇Φ are obtained 
from Eqs. (15), (21), (22), and (24) in the following forms, 
 ݁Φܶ௘ = ଶߦ− , (30)

 

௘ܧܶ݁  = ߦܴʹ . (31)

 

The above field quantities contrast well with the fields of the SP solution obtained for a 
semi-infinitely stretched planar plasma: ݁Φ/Te = −ͳ −   and eE/Te = 1/cst for ݐ௦ܿ/ݔ
x/cst ൒ −ͳ and ݐ > Ͳ. It is here worth emphasizing that the electrostatic field increases 
linearly with ߦ for the present model, while it is constant in space for the SP model. 
Furthermore, the kinetic energy of the system ܧ௞ሺݐሻ is given with the help of Eqs. (20), (21) 
and (27) by 
௞ܧ  = ሺͶߨሻఈʹ ଴଴ܴ଴ఈߩ ሶܴ ଶන ఈାଵஶߦ

଴ expሺ−ߦଶሻ ߦ݀ = ଴ܯͶߙ ሶܴ ଶ, (32)

 

while the internal (thermal) energy of the system ܧ௜ሺݐሻ is kept constant, 
௜ܧ  = ଴ܼܯ͵ ௘ܶʹ݉௜ = ଴ܿ௦ଶܯʹ͵ . (33)

 

Correspondingly, the power required to keep the isothermal expansion,	ܲሺݐሻ =  is ,ݐ݀/௞ܧ݀
given from Eqs. (23), (25), and (32) in the form, 

 		ܲ/ ଴ܲ = ඥln	ሺܴ/ܴ଴ሻ	/ሺܴ/ܴ଴	ሻ, (34) 

where ଴ܲ =   .଴ܿ௦ଷ/ܴ଴ܯߙʹ
The ion energy spectrum is a physical quantity of high interest. In the present model, the 

kinetic energy of an ion in flight directly relates its location, in other words, the further an 
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ion is located, the faster it flies. Then, the number of ions contained in an infinitesimally 

narrow area of the similarity coordinate between ߦ and ߦ +  is given by ߦ݀

 	݀ܰ = ሺͶߨሻఈ݊௜଴଴ܴ଴ఈߦఈିଵ expሺ−ߦଶሻ  (35) , ߦ݀

where ݊௜଴଴ = ଴଴/݉௜ߩ 		is the initial number density of the ions at the center. Meanwhile, the 

kinetic energy of an ion at ߦ is ߝ = ݉௜ ሶܴ ଶߦଶ/ʹ, and therefore 

ߝ݀  = ݉௜ ሶܴ ଶߦ݀ߦ	(36) . 

From Eqs. (35) and (36), the ion energy spectrum is obtained, 
 ݀ ෡ܰ݀̂ߝ = ሻʹ/ߙሻȞሺ̂ߝ−ሺఈିଶሻ/ଶexpሺ̂ߝ , (37)

 

where ෡ܰ ≡ ܰ/ ଴ܰ and ̂ߝ ≡  ଴ are normalized quantities withߝ/ߝ

ሻݐ଴ሺߝ	  = ݉௜ ሶܴ ଶ/ʹ	, (38) 

 	 ଴ܰ = ሺ√ܴߨ଴ሻఈ݊௜଴଴	. (39) 

It should be noted that, for 3 = ߙ, the energy spectrum, Eq. (37), coincides with the well-
known Maxwellian energy distribution; this is not just a coincidence because an 
isotropically heated mass always has such a distribution.  
Although the spectrum, Eq. (37), is for the ion number density, another spectrum for the 
energy density, ݀ܧ௞/݀ߝ, is an even more interesting quantity. It can be easily obtained quite 
in the same manner as for ݀ܰ/݀ߝ taking the specific kinetic energy ݒଶ/ʹ		into account: 
̂ߝ௞݀ܧ݀  = ଴ߝ ଴ܰȞሺߙ/ʹሻ ఈ/ଶ̂ߝ expሺ−̂ߝሻ . (40)

 

The peak value of Eq. (40) is attained at ̂ߝ =  .which is three times higher than that of Eq ,ʹ/ߙ
(37) for the spherical case (ߙ = ͵).  

2.3 Comparison with experiments 
We apply the analytical model to two different laser experiments focusing on the ion energy 
spectrum. The two experimental results were separately obtained under different conditions 
by means of the time-of-flight method. In both cases, the laser conditions were almost the 
same, i.e., the wavelength ߣ௅ = ͳ.Ͳ͸	݉ߤ, the irradiation intensity ܫ௅ = Ͳ.ͷ − 	ͳ.Ͳ ×ͳͲଵଵ	ܹ/ܿ݉ଶ, and the pulse length ߬௅~ͳͲ	݊ݏ with a sufficiently large F-number of a focal 
lens. Moreover, the target thicknesses were ܴ଴~ͳͲ	݉ߤ. Once the key laser parameters, ܫ௅ and ߬௅, are given, the other basic parameters required for the model analysis are calculated. For 
example, the plasma temperature is roughly estimated from the power balance, ߟ௔ܫ௅ ≈Ͷߩ௖௥ܿ௦ଷ (Murakami & Meyer-ter-Vhen, 1991), where ߟ௔ is the absorption efficiency and ߩ௖௥ is 
the critical mass density: 

 ௘ܶ 	[ܸ݁] = ʹ͹ሺܣ/ܼሻଵ/ଷߣመ௅ସ/ଷ൫ߟ௔ܫመ௅൯ଶ/ଷ, (41) 

where ܣ is the ion mass number. The corresponding sound speed turns out to be in the 
order of ͳͲ଺ܿ݉/ݏ, and the disintegration time ~ʹܴ଴/ܿ௦ (recall Fig. 1) is calculated to be 
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about 1 ns ሺا ߬௅~ͳͲ	݊ݏሻ. The normalized radius ܴ/ܴ଴ at the laser turn-off is obtained by Eq. 
(26) as a function of the normalized time ߬௅/ሺܴ଴/ܿ௦ሻ. In addition, the scale length of the 
plasma expansion is ܿ௦߬௅~ͳͲͲ	݉ߤሺب ܴ଴~ͳͲ	݉ߤሻ. Therefore, the present self-similar analysis 
is considered to be applicable to the experiments under consideration. From the above key 
numerical values, the characteristic ion kinetic energy at the laser turn-off defined by Eq. 
(38) is roughly estimated to be ߝ଴ = ʹ.ͷ − ͵.ͷ keV. 
 

 

Fig. 2. Comparison of the experimental result (solid line) and the analytical curve (dashed 
line) obtained by Eq. (37) under planar geometry. Dotted curves for reference are obtained 
by the SP model, Eq. (42). 

In the first case, a laser beam was irradiated on a spherical target with diameter of ͷͲͲ	݉ߤ, 
which was composed of ͺ݉ߤ-thick plastic shell coated by a 100 nm-thick tin (Sn) layer. In 
this case, the plasma expansion during the laser irradiation can be regarded as quasi-planar, 
because the plasma scale ~ͳͲͲ	݉ߤ	is appreciably smaller than the laser spot size ~ͷͲͲ	݉ߤ. 
As mentioned in the introduction, the purpose of the Sn-coat was to observe the 
characteristics of the EUV light and energetic ion fluxes emitted from the Sn plasma. The 
detector was tuned to observe massive Sn ions in the direction of 30 degrees with respect to 
the beam axis. Figure 2 shows the ion energy spectrum comparing the experimental result 
(solid line) and the analytical curve (dashed line) obtained by Eq. (37) with a fitted 
numerical factor ߝ଴ = ͳ.͹ keV and ߙ = ͳ (planar geometry). With respect to the vertical axis, 
the physical quantities are properly normalized such that the peak values stay in the order 
of unity. The fluctuated structure of the experimental data for  ߝ > ͳͲ	keV cannot be clearly 
judged as concerns whether the signals simply span the region with less precision of 
diagnosis, or whether they should be attributed to other causes such as carbon ions, protons, 
and photons. In Fig. 2, two other curves (dotted lines) are also plotted for comparison. They 
are obtained by the SP model (Mora, 2003), 
̂ߝ݀ܰ݀  ∝ exp൫−√̂ߝ൯√̂ߝ , (42)

 

where ߝ଴ = ͳ.͹ keV and ߝ଴ = Ͳ.ͳ keV are used to draw the fitted curves to relatively low and 
high energy regions, respectively. It can be seen that it is hard to reproduce the experimental 
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result by Eq. (42). The essential difference of the two analytical models is attributed to their 
density profiles, i.e., ߩ ∝ exp	ሺ−ߦଶሻ for the present model and ߩ ∝ exp	ሺ−ߦሻ for the SP model. 
This can be elaborated on as follows: The pressure scale decreases with time all over the 
region in the present model, while it is kept constant in time in the SP model. Therefore, the 
ions in the former model are less accelerated due to the pdV work than those in the latter 
model.  
 

 

Fig. 3. Comparison of the experimental result (dots) and the analytical curve (dashed line) 
obtained by Eq. (37) under spherical geometry. 

In the second case, a laser beam was irradiated from a single side with a liquid-Xe jet ejected 

through a nozzle with diameter of 30 ݉ߤ. The focal spot size was also 30 ݉ߤ in diameter. 

Therefore, the resultant plasma expansion was very likely unsymmetrical. In this case, 

however, the specific mass can expand into much larger space three-dimensionally than in 

the first case, and thus is regarded as a quasi-spherical expansion ሺߙ = ͵ሻ. Figure 3 shows 

the experimental result and an analytical curve obtained by Eq. (37) with a fitted numerical 

factor ߝ଴ = ͵.Ͳ keV. Again, with respect to the vertical axis, the physical quantities are 

properly normalized such that the peak values stay in the order of unity. The ion fluxes 

were observed at an angle of 45 degrees with respect to the laser beam axis. The 

experimental signals strongly fluctuate at energies close to the lowest detection limit at 

around ߝ	~	ͶͲͲ	eV, but are otherwise well reproduced by the analytical curve.  

3. Laser-driven nonstationary accelerating foil due to nonlinear heat 
conduction  

3.1 Introduction 

When one side of a thin planar foil is heated by an external heat source, typically by laser or 
thermal x-ray radiation, the heated material quickly expands into vacuum with its density 
being reduced drastically - this phenomenon is called “ablation”. In inertial confinement 
fusion (ICF) research, for example, it is indispensable to correctly understand the shell 
acceleration due to ablation. Thereby self-similar solutions play a crucial role in the analysis 
and prediction of the detailed behavior of the shell acceleration. Although some analytical 
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models have been proposed to study the shell acceleration due to mass ablation (Gitomer et 
al., 1977; Takabe et al., 1983; Kull, 1989, 1991), most of them have assumed a stationary 
ablation layer. Pakula and Sigel (1985), for example, reported a self-similar solution for the 
ablative heat wave. In the solution, however, the ablation surface is ideally treated such that 
the density goes to infinity, and the surface does not accelerate. Below, we present a new 
self-similar solution (Murakami et al, 2007), which describes non-stationary acceleration 
dynamics of a planar foil target ablatively driven by non-linear heat transfer. The most 
striking differences from the other models are that the target has a decreasing mass with a 
peak density, and that it has a distinct shell/vacuum boundary, where the density and the 
temperature converge to null.   

3.2 Basic equations and similarity ansatz 

Suppose that a planar shell is being accelerated in the positive direction of the x-axis in an 

inertial laboratory frame via the recoil force due to the ablation. The characteristic scale 

length of the shell ܦሺݐሻ decreases with time. Let us assume that the shell is burnt out at the 

origin of the coordinates, i.e., ܦሺͲሻ = Ͳ at ݔ = Ͳ. One can always find such an inertial frame 

by appropriately choosing relative position and velocity to another reference inertial frame. 

In this case the shell velocity is initially (ݐ < Ͳ) negative, its absolute value gradually 

decreases due to the positive acceleration, and finally the burned-out shell halts at ሺݔ, ሻݐ =ሺͲ,Ͳሻ. The fluid system is then described by the following equations:  

ݐ߲ߩ߲  + ߲ሺݒߩሻ߲ݔ = Ͳ , (43)

 

ݐ߲ݒ߲  + ݒ ݔ߲ݒ߲ = ݔ߲݌߲− , (44)

 

ߩ  ൬߲߲߳ݐ + ݒ ൰ݔ߲߲߳ + ݌ ݔ߲ݒ߲ = ݔ߲߲ ൬ߢ ൰ݔ߲߲ܶ , (45)

 

where ߩ is the mass density, ݒ is the flow velocity, ߳ is the specific internal energy, ܶ is the 

temperature in units of energy, and ߢ is the thermal conductivity. We assume an ideal gas 

equation of state in the form, 

݌  = ߳  ,ܶߩ = ܶ/ሺߛ − ͳሻ, (46) 

where ߛ is the specific heats ratio. We assume that the thermal conductivity is expressed in 

the following power-law form with m, n, and ߢ଴ being constants, 

ߢ  =  ௠. (47)ߩ/଴ܶ௡ߢ

We introduce the following well-known similarity ansatz (Guderley, 1942; Lie, 1970) to 

eliminate the temporal dependence of the system and thus to find a self-similar solution: 

ߟ  = ሻݐሺܦ  ,	ሻݐሺܦ/ݔ = ሻఈݐ−ሺܣ ߙ  ,	 ൒ ͳ	, (48) 

ݒ		  =  , (49)	ሻߟሺݑሻఈିଵݐ−ሺܣߙ
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   ܶ = ሺܣߙሻଶሺ−ݐሻଶሺఈିଵሻߠሺߟሻ	, (50) 

ߩ  = ሻߟሻఉ݃ሺݐ−ሺܤ , ߚ = ʹሺ݊ − ͳሻሺߙ − ͳሻ − ͳͳ +݉ , (51)

 

where ߟ is the self-similar variable; ݑሺߟሻ, ߠሺߟሻ, and ݃ሺߟሻ stand for the self-similar profiles of 
the velocity, temperature, and density, respectively; ܣ ,ߙ and ܤ are arbitrary constants. In 
most of numerical calculations in this paper, we employ ߙ = ʹ (constant acceleration), ሺ݉, ݊ሻ = ሺͲ, ͷ/ʹሻ (electron heat conductivity) and ߛ = ͷ/͵ as a reference case. The constraint, ߙ ൒ ͳ, in Eq. (48) stems from Eqs. (49) and (50) in order that ݒ and ܶ do not diverge to 
infinity as ݐ → Ͳ. The limiting value, ߙ = ͳ, corresponds to a special case, where the 
characteristic scale of ݒ and ܶ are kept constant in time, while ߙ = ሺʹ݊ − ͳሻ/ʹሺ݊ − ͳሻ = Ͷ/͵ 
corresponds to another special case, where the density scale does not change in time, i.e., ߚ = Ͳ [see Eq. (51)]. 
Using ansatz (48) - (51), Eqs. (43) - (45) are reduced to the following set of ordinary 
differential equations: 
 ሺݑ + ሻ݃ᇱߟ + ൬ݑᇱ − ൰݃ߙߚ = Ͳ , (52)

 

   ሺݑ + ′ݑ	ሻߟ + ሺିߙଵ − ͳሻݑ + ሺ݃ߠሻ′/݃ = Ͳ	, (53) 

   ሺߛ − ͳሻିଵ[ሺݑ + ′ߠ	ሻߟ + ʹሺିߙଵ − ͳሻߠ] + ′ݑߠ =  ᇱሻ′ (54)ߠ௡ߠଵሺ݃ି௠ି݃ܭ

where the prime denotes the derivative with respect to ߟ, and 

ܭ   =  ଵି௠ (55)ିܤଶ௡ିଶܣଶ௡ିଵߙ଴ߢ

is a dimensionless parameter. Solving Eqs. (52) and (53) algebraically for ݃′ and ݑ′, one finds 

that a singular point appears when ݑ + ߟ =  more details on the singular point will be) ߠ√±
given later). Let ߟ௦, ݑ௦, ݃௦, and ߠ௦ be their values at the singular point. Here we introduce re-
normalized variables, ξ, Uሺξሻ, Gሺξሻ, and Θሺξሻ: 
ߦ  = ߟ − ௦ߠ௦ඥߟ , ߦ = ݑ − ௦ߠ௦ඥߟ , ܩ = ݃݃௦ , ߆ = ௦ߠߠ , (56)

 

At the singular point, ߦ = Ͳ, the re-normalized variables are specified to be 

   ܷሺͲሻ = −ͳ,					ܩሺͲሻ = ͳ,					߆ሺͲሻ = ͳ, (57) 

where we employ the flow direction such that ݑ௦ + ௦ߟ = −ඥߠ௦	. Equations (10) - (12) are then 

transformed to 

   ሺܷ + ′ܩ	ሻߦ + ሺܷ′ − ܩሻߙ/ߚ = Ͳ	, (58) 

   ሺܷ + ′ܷ	ሻߦ + ሺିߙଵ − ͳሻܷ + ሺ߆ܩሻ′/ܩ + ଵܭ = Ͳ	, (59) 

   ሺߛ − ͳሻିଵ[ሺܷ + ′߆	ሻߦ + ʹሺିߙଵ − ͳሻ߆] + ′ܷ߆ =  ᇱሻ′ (60)߆௡߆௠ିܩଵሺିܩଶܭ

where the prime hereafter denotes the derivative with respect to ߦ, and  
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ଵܭ    = ሺͳ − ଶܭ  , ௦ߠ௦/ඥߟଵሻିߙ = ௦௡ିଵ݃௦ିߠܭ ௠ିଵ	, (61) 

are dimensionless constants representing the gravity (acceleration) and the heat 
conductivity, respectively. Thus the system is clearly defined by Eqs. (57) - (60). Equations 
(58) and (59) yield 
ᇱܩ  = ଵ߂ଶ߂ ܩ , ܷᇱ = ߙߚ − ሺܷ + ଵ, (62)߂ଶ߂ሻߦ

 

where 

ଵ߂		  = ሺܷ + ሻଶߦ −  (63) ,	߆

ଶ߂  = ൬ߙߚ൰ ሺܷ + ሻߦ + ሺିߙଵ − ͳሻܷ + ᇱ߆ + ଵܭ . (64)

 

It is clear that G′ and U′ in Eq. (62) are singular when ߂ଵ = Ͳ. This singular point corresponds 
to the sonic point, where the flow velocity relative to the surface ߦ =  is equal to the ݐݏ݊݋ܿ
local isothermal sound speed. An integrated curve which is physically acceptable is 
expected to pass this singular sonic point smoothly, the condition of which is given by 

ଵ߂			  = ଶ߂ = Ͳ	. (65) 

Since ߦ = Ͳ is the singular point, one should start numerical integration at its infinitesimally 
adjacent point. One then needs the four derivatives ܩ′ሺͲሻ, ܷ′ሺͲሻ, ߆′ሺͲሻ, and ߆′′ሺͲሻ, which are 
fully provided by relation (65). At ߦ = Ͳ, the derivatives of Eq. (62) are reduced from 
L'Hopital's theorem to 
ᇱܩ  = ଵᇱ߂ଶᇱ߂ , ܷᇱ = ߙߚ + ଵᇱ߂ଶᇱ߂ . (66)

 

Thus all the four derivatives at the sonic point are explicitly obtained from Eqs. (57) - (60), 
and (66). 
The present system has another singular point at the vacuum interface, the coordinate at 

which, ߦ =  ௩, is an eigenvalue of the system. On the vacuum interface the relative flowߦ

velocity to the free surface vanishes, i.e., ܷሺߦ௩ሻ + ௩ߦ = Ͳ, which can also be interpreted as the 

definition of the free surface. Moreover at ߦ =  ௩ the pressure and thus the density areߦ

expected to vanish coherently, because practically no heat conduction prevails in this front 

region (typically characterized such that ܩ ب ͳ, ߆ ا ͳ, and ሺܷ + ሻଶߦ ا Θ) and thus the 

specific entropy is kept constant in time. It is then shown that Eqs. (16) and (18) (neglecting 

the heat conduction) have the adiabatic integral with an arbitrary constant ܿ଴ (Zel’dovich & 

Raizer, 1966): 

ሺܷ߆  + ఓାଵିఊܩሻఓߦ = ܿ଴, ߤ ≡ ʹሺͳ − ሻߙ + ߛሺߚ − ͳሻߙ + ߚ . (67)

 

The vacuum interface is a singular point of the adiabatic flow of the saddle type (Sanz et al., 
1988), where the spatial profiles in the vicinity of ߦ =  ௩ is worked out from Eqs. (58) - (60) toߦ
a first-order approximation in ሺߦ௩ −  :ሻߦ
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߆ ≈ ൫ሺߛ + ͳሻߙ − ʹ൯ሺܭߙଵ + ሺߙ − ͳሻߦ௩ሻሺߙ + ߛሻߚ ሺߦ௩ − ሻ, (68)ߦ

 

 ܷ + ߦ ≈ ߛ− + ͳ − ߛଵିߙʹ ሺߦ௩ − ሻ (69)ߦ

 

ܩ  ≈ ܿଵሺߦ௩ − ሻఔߦ , ߥ ≡ ߙ− + ߛߚ + ߛሺߙʹ + ͳሻ − ʹ , (70)

 

where ܿଵ is an arbitrary constant; ܿଵ ≈ ௩ߦ௔ሺܩ − ௩ߦ௔/ሺܩ ,.௔ሻିఔ for a relatively high aspect shell, i.eߦ − ሻ	௔ߦ ب ͳ, where ܩ௔ and ߦ௔ are their corresponding values at the density peak; ܩ௔ 
and ߦ௔ are also eigenvalues of the system as will be given below together with ߦ௩. In 
particular, under constant acceleration (ߙ = ʹ), the velocity becomes constant, ܷ = ܩ ௩, andߦ− ∝ ሺߦ௩ −  .ሻ apart from a linear temperature profile in space, as one can predict from Eqs	௔ߦ
(69) and (70). 

 

 

Fig. 4. Eigenstructure of the accelerated shell under a constant gravity (ߙ = ʹሻ. 
3.3 Two dimensional eigenvalue problem and numerical results 

Although one can start the numerical integration at ߦ = Ͳ toward the positive direction of ߦ-
axis, it soon turns out  that such numerical integrations  produce physically unacceptable 
pictures under an arbitrary set of the values of ܭଵ and ܭଶ such that ܩ → ∞ on its way in the 
integration without showing the converging behavior, Eqs. (68) - (70), at the vacuum 
boundary. Therefore the present system is supposed to be an eigenvalue problem, in which 
only some special combinations of ܭଵ and ܭଶ can produce the converging behavior expected 
as a physically meaningful solution (Murakami et al., 2004).  
Figure 4 shows such an eigenstructure numerically obtained for the density ܩ, the 

temperature Θ, the velocity ܷ, and the pressure ܲ =  Θ under the fixed parameters given inܩ

Fig. 4. As mentioned earlier, the spatial profiles thus obtained strikingly contrast with ones 

for the stationary ablation models (Gitomer et al., 1977; Takabe et al., 1983; Kull, 1989, 1991).  
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Fig. 5. Magnified view of Fig.4 around the ablation surface. 

Figure 5 shows the magnified view around the ablation surface of Fig. 4, in which the mass 
flux relative to the surface with ߦ = ܨ ,ݐݏ݊݋ܿ ≡ 	−ሺܷ +  .is additionally depicted ,ܩሻߦ
Surprisingly the predicted profiles, (68) - (70), apply not only to the vicinity of the vacuum 
boundary but also to almost all the region beyond the ablation surface (ߦ > Ͳ.ͳ͹͸͵). This in 
turn supports the earlier argument that the heat conduction in the shell is practically 
negligible. It should also be noted that at ߦ =  ௔ the physical quantities seemingly have aߦ
sharp jump in their derivatives. However, all those quantities change smoothly but on a 
very narrow range, which can be observed in the further magnified view for ܩ in the upper 
right corner in Fig. 5. The characteristic scale length of the drastic change in the physical 

quantities can be roughly estimated from Eq. (60) to be ȟߦ௔	~	Θ௔௡/|ܷ௔|	ܩ௔ଵା௠		~			ࣩሺͳͲିହሻ as 
can be observed in Fig. 5.  

4. Gravitational collapse of radiatively cooling sphere in view of star-
formation  

4.1 Introduction 

Self-similar solutions play a crucial role in astrophysics as well. Below we describe a 

spherically contracting system observed in the star formation processes, in which the effect 

of radiative heart conduction is expected to play an important role. In such a system, 

substantial dissociation and ionization of molecules and atoms proceed with time, and the 

isothermal assumption used in the so-called LP model (Larson, 1969; Penston, 1969) 

becomes inappropriate. A solution introduced here (Murakami et al., 2004) can be clearly 

placed in a thermodynamic perspective as follows: The LP model with the isothermal 

assumption means infinitely large heat conductivity, i.e., ܲ݁ → Ͳ, where ܲ݁ denotes the 

P݁́clet number. Meanwhile, there are a number of works based on the perfect adiabaticity, 

i.e., ܲ݁ → ∞, which corresponds to zero heat conductivity (Sedov, 1959; Barenblatt, 1979; 

Antonova, 2000). These are two opposed limiting cases, with which the analytical and 

numerical treatment are substantially simplified, and the energy conservation law is often 

expressed in an integrated form or neatly installed in the equation of motion. In contrast, we 

explicitly leave the radiative conduction term in the hydrodynamic system to handle its 

nonlinear effect.  
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An important feature of the present subsection, which is essentially different from the 
conventional ones obtained under the isothermal or adiabatic assumptions, is that all the 
scales of the physical quantities are uniquely determined as a function of time only. This is 
clear from the following argument: When discussing self-similarity within the one-
dimensional framework, one needs four physical quantities to produce a dimensionless 
parameter as a basic self-similar variable, where the system is contained in the class of 
systems of the so-called MLT fundamental units of measurement. Radius r, time t, and the 
gravitational constant G, are apparently the first three quantities in a spherically contracting 
system under self-gravity. The fourth quantity is, for example, the temperature for an 
isothermal system, or the specific entropy for an adiabatic system. Such quantities cannot be 
specified in the absolute value, and therefore they can serve as an external control parameter 
of individual systems. In the present system, however, the fourth quantity is the heat 
diffusion conductivity, ߥ଴; the numerical value of which is quite unique, once the conductive 
mechanism is specified. Therefore ߥ଴ can never be a control parameter, and the resultant 
behavior of the system is unique. 

4.2 Basic equation and similarity ansatz 

The one-dimensional spherical gas-dynamical equations with both self-gravity and 
diffusivity are  
ݐ߲ߩ߲  + ͳݎଶ ݎ߲߲ ሺݎଶݑߩሻ = Ͳ, (71)

 

ݐݑ߲߲  + ݑ ݎ߲ݑ߲ = −ͳߩ ݎ߲݌߲ − ݎ߲߶߲ , (72)

 

 ͳݎଶ ݎ߲߲ ൬ݎଶ ൰ݎ߲߶߲ = Ͷ(73) ,ߩܩߨ

 

ߩ  ൬߲߲߳ݐ + ݑ ൰ݎ߲߲߳ + ଶݎ݌ ݎ߲߲ ሺݎଶݑሻ = ͳݎଶ ݎ߲߲ ൬ݎଶߥ ൰ (74)ݎ߲߲ܶ

 

where p is the pressure, ߩ the density, ߳ the specific internal energy, u the flow velocity, and ߶ the gravitational potential. We assume the ideal gas equation of state (EOS) in the form,  
 ሺܼ + ͳሻ݇஻ߤ ܶ = ߩ݌ = ሺߛ − ͳሻ߳, (75)

 

where kB is the Boltzmann constant, ߤ the mean atomic mass, and ߛ the specific heats ratio; Z 

is the ionization state, and ܼ = ͳ is assumed for hydrogen plasma. Equation (74), described 

by the one-temperature model, includes the non-linear heat diffusion term on the right hand 

side, where we assume a power-law dependence for the diffusion coefficient, ߥ =  ,௠ߩ/଴ܶ௡ߥ

with ߥ଴, m, and n being constants. For normal physical values, ݊ > Ͳ and ݉ > Ͳ are 

assumed. With an intention to apply our solution primarily to the case of radiative heat 

diffusion, we can express ߥ as ߥ = ሺͳ͸ߪௌ஻	ܶଷሻ/͵ߢோ where 3

0 /    m n

R
T  is the Rosseland 
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mean opacity, ߪௌ஻ is the Stefan-Boltzmann constant, and ߢ଴ = ͳ͸ߪௌ஻/͵ߥ଴ is a constant. In the 

formulae given below, we keep the generality in terms of the parameters, m, n, and ߛ, but 

also show specific forms using the values of the reference set at the same time: ݉ = ʹ, ݊ = ͳ͵/ʹ, and  ߥ଴	describing the opacity due to inverse bremsstrahlung in a fully ionized 

hydrogen plasma (Zel'dovich & Raizer, 1966) together with ߛ = ͷ/͵. 

To find a self-similar solution, we here introduce the following group transformation, 

ݎ		   = ݐ 		,ݎ̂ߣ = ݑ ෝ,ݐ௔ߣ = ܶ ,ොݑ௕ߣ = ௖ߣ ෠ܶ ߩ , = ߶ ,ොߩௗߣ =  ௘߶෠ (76)ߣ

where the hats denote the physical quantities in the scaled system related by the scale factor ߣ with the parent system without hats. The constants, a, b, c, d, and e, can be appropriately 

determined by substituting Eq. (76) for Eqs. (71) - (74) such that the transformed system is 

kept symmetric and thus has the same structure as the original one based on the Lie's idea 

(Lie, 1970): 

 		ͳ − ܽ = ܾ = ܿ/ʹ = ͳ + ݀/ʹ = ݁/ʹ = ሺͳ ∗ ʹ݉ሻ/ሺ͵ + ʹ݉ − ʹ݊ሻ. (77) 

For the reference case, m = 2 and n = 13/2, Eq. (77) gives ܽ = ͳͳ/͸, ܾ = −ͷ/͸, ܿ = ݁ = −ͷ/͵, 

and ݀ = −ͳͳ/͵. Equation (77), together with the following similarity ansatz, enables the 

removal of the temporal dependence from Eqs. (71) - (74),  

 		ܴሺݐሻ = ଵ/௔|ݐ|	ܣ  r/R(t), (78)≡ߦ  ,

ݑ  = ܣܽ ሻ, (79)ߦሺݒ௕/௔|ݐ|

 

 ܶ = ൬ܽܣ൰ଶ ሻ, (80)ߦ௖/௔߬ሺ|ݐ|

 

ߩ    =  ሻ, (81)ߦଶ݃ሺି|ݐ|ܤ

ݎ߲߶߲  = ଶߦܩܤܣ ,ሻߦሺ௖ିଵሻ/௔Ωሺ|ݐ| Ωሺߦሻ ≡ Ͷߨන݃ሺߦሻ݀ߦ,క
଴  (82)

 

where ܴሺݐሻ is the temporal characteristic scale length of the system; A and B are positive 

constants defining the scales of the radius and the density, respectively. Note that the 

relation, ݀/ܽ = −ʹ, is used for the similarity ansatz of the density in Eq. (84), which holds 

regardless of the values of m and n. Furthermore, it should be noted that, at a glance, the 

ansatz for u and T given in Eqs. (82) and (83) seem to be bounded with each other with the 

similar front factors, ܣ/ܽ and ሺܣ/ܽሻ2, respectively. However, these factors are chosen just for 

simplicity, and u and T are kept independent of each other, because the functions, ݒሺߦሻ and ߬ሺߦሻ, are left free until they are self-consistently determined as the solution of the eigenvalue 

problem as shown below. In this paper, we consider a contracting fluid system for ݐ	 < 	Ͳ 

which collapses at ݐ	 = 	Ͳ, and therefore |	ݐ	| 	=  Then, Eqs. (71), (72), and (74) are .ݐ−	

respectively reduced to the following ordinary differential equations,  
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   −ሺ±ߦ − ሻ݃ᇱݒ + ቀ±݀ + ᇱݒ + ଶ௩క ቁ݃ = Ͳ, (83) 

ݒܾ±  − ሺ±ߦ − ᇱݒሻݒ + ሺ݃߬ሻᇱ݃ + ଵܭ Ωߦଶ = Ͳ, (84)

 
 ±ܿ߬ − ሺ±ߦ − ߛሻ߬ᇱݒ − ͳ + ൬ݒᇱ + ߦݒʹ ൰ ߬ = ଶܭ ሺߦଶ݃ି௠߬௡߬ᇱሻᇱ݃ߦଶ , (85)

 

where the prime denotes the derivative with respect to ߦ, and concerning the double signs, ሺ±ሻ, the upper (plus) and lower (minus) sign correspond to ݐ	 > 	Ͳ and ݐ	 < 	Ͳ, respectively. 

Since Eq. (73) is automatically satisfied, its reduced form does not appear in the above set of 

equations. Thus, the present system is characterized by the two positive dimensionless 

parameters, ܭଵ and ܭଶ, defined by ܭଵ = ܽଶܤܩ and ܭଶ = ሺߥ଴/ܽܤ௠ାଵሻሺܣ/ܽሻଶ௡ିଶ. It can be 

interpreted that ܭଵ and K2 are introduced for simplicity instead of A and B. Equations (83) - 

(85) are second-order ordinary equation system for ݃, ߬, and ݒ, and the obvious boundary 

conditions are 

ሺͲሻݒ    = Ͳ,  ݃ሺͲሻ = ͳ,  ߬ሺͲሻ = ͳ,  ሺ݃߬ሻకୀ଴ᇱ = Ͳ. (86) 

The last relation means that there is no pressure gradient at the center. 

4.3 The self-similar solution as two dimensional eigenvalue problem 

At first glance, the ODE system, Eqs. (83) - (85), together with the boundary condition (86), 

seem to be closed mathematically. However, one can easily find that numerical integration 

of the system produces a physically unacceptable picture under an arbitrary set of the 

values for ܭଵ and ܭଶ such that the temperature suddenly diverges to infinity at a finite 

radius. Since the physical quantities are expected to change smoothly in space, it is 

conjectured that some special values of ܭଵ and ܭଶ, which are still unknown, can give such a 

physically acceptable picture. Therefore the present system is supposed to be a two-

dimensional eigenvalue problem, which is essentially different from the one-dimensional 

eigenvalue problems of the previous work.  

To determine a unique set of parameters, ܭଵ and ܭଶ, we need two more physical conditions. 

The first one is quite an orthodox prescription, in which the right integration curve 

smoothly passes through the singular point, which is located somewhere at a finite distance 

from the center. On this singular point, the fluid velocity is equal to the local sound speed. 

The second parameter is less obvious compared with the first one, but still seems natural 

enough, namely, that both the density and the temperature converge to zero simultaneously 

with an increase in radius. The numerical calculation is started from the center, and 

therefore it is necessary to make clear the asymptotic behavior of the solution in the vicinity 

of the center as follows. 

For the central region, the asymptotic behaviors of the above physical quantities are 

obtained by inserting the following ansatz, 

   ݃ = ͳ − ݃଴ߦଶ,  ߬ = ͳ − ߬଴ߦଶ,  ݒ = ߦሺ  ,ߦ଴ݒ− ا ͳሻ, (87) 
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into Eqs. (83) - (85), where ݃଴, ߬଴, and ݒ଴ are unknown positive constants, where we make 
use of the symmetry at the center and thus employed only the lowest quadratic terms for ݃ 
and ߬. After some manipulation, the constants are obtained, 
଴ݒ  = ʹሺ݊ − ͳሻ͵ሺ݊ −݉ − ͵/ʹሻ , ߬଴ = ሺߛ − ͳሻ݊ −݉ − ߛ + ͳ/ʹ͵ሺߛ − ͳሻሺ݊ − ݉ − ͵/ʹሻܭଶ ݃଴ = ଵܭߨʹ − ߬଴ݒ଴ଶͶ 	 (88)

 

As can be seen in Eq. (88), in order to conduct the numerical calculation starting from the 
center, ܭଵ and ܭଶ must both be specified as trial values, which are expected to converge to 
their genuine eigenvalues after numerical iteration. Figure 6 shows the first step of the 
solving process, or how a right eigenvalue, ܭଶ, is obtained on the ݃-߬ plane, where ܭଵ = Ͳ.͸Ͷ 
is fixed just as a trial value. As can be seen in Figure 6, there exists an appropriate value of ܭଶ, with which the integrated curve smoothly passes through the singular point, while the 
other integrated curves deviate from the right curve as the integration proceeds toward the 
singular point, resulting in an unacceptable physical picture. In this manner, an appropriate 
eigenvalue ܭଶ can be determined as a function of arbitrary ܭଵ. 
 

 

Fig. 6. g - ߬ diagram showing the optimization process of the eigenvalue, ܭଶ.  

Under the condition that the right integrated curve is to smoothly pass through a singular 
point, the integrations are conducted from the center (݃ = ߬ = ͳ) with the radius toward 
infinity corresponding to ݃ = ߬ = Ͳ. Fixed parameters are ݉ = ʹ, ݊ = ͳ͵/ʹ, ߛ = ͷ/͵, and ܭଵ = Ͳ.͸Ͷ. As the second step, one needs to determine ܭଵ that satisfies the second 
requirement mentioned earlier, namely, ݃ → Ͳ and ߬ → Ͳ at the same time. Figure 7 shows 
how the right eigenvalue, ܭଵ, is determined on the ݃-߬ plane, where each curve is already 
optimized such that it passes through each singular point. As a result, it turns out that there 
exists a unique pair of the eigenvalues of ܭଵ and ܭଶ, which satisfies the both requirements.  
Figure 8 shows the eigenstructure for the temperature, ߬ ∝ ܶ the density, ݃ ∝ ݒ ,the velocity ,ߩ ∝ ࢗ ,and the heat flux ,ݑ ∝  under the eigenvalues of the reference system thus ,ܶ∇ߥ−
obtained, where the curves are assigned with labels corresponding to the original physical 
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quantities just for readers' comprehension. The behavior of the velocity for ݒ → ∞ may seem 
physically unacceptable at least in a rigorous sense. As a matter of fact, however, there are a 
number of examples for implosions and explosions in which the velocity profile is 
approximately linear with the radius (Sedov, 1959; Bernstein, 1978). In addition, the physical 
condition at enough large radii (ߦ ب ͳ) will not affect the core dynamics for an intermediate 
time period. Therefore, when we restrict our considerations to a finite closed volume 
containing the core, the present self-similar solution is expected to be an approximation of 
the core evolution at higher densities and temperatures. 

 

 

Fig. 7. g - ߬ diagram showing the optimization process of the eigenvalue, ܭଵ.  

 

 

Fig. 8. Eigenstructure of the self-similar solution.  
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Under the condition that the right integrated curve is to converge to ݃ = ߬ = Ͳ, each curve 
has already optimized with respect to ܭଶ as was shown in Fig. 6. Other fixed parameters are 
the same as in Fig. 6. 
The normalized physical quantities are obtained as a result of the two-dimensional 
eigenvalue problem with fixed parameters, ݉ = ʹ, ݊ = ͳ͵/ʹ, and ߛ = ͷ/͵.  

5. Conclusions 

The crucial role of dimensional analysis and self-similarity are discussed in the introduction 
and the three subsequent examples. Self-similar solutions for individual cases have been 
demonstrated to be derivable by applying the Lie group analysis to the set of PDE for the 
hydrodynamic system, taking nonlinear heat conductivity into account as the decisive 
physical ingredient. The scaling laws for thermally conductive fluids are conspicuously 
different from those for adiabatic fluids (not discussed in the present chapter; see references 
by Murakami et al., 2002, 2005 for details). The former has one freedom less than the latter 
due to the additional constraint of thermal conductivity. If a thermo-hydrodynamic system 
comprises multiple heat conduction mechanisms, self-similarity cannot be expected in a 
vigorous sense except for special cases. However, self-similarity and scaling laws can always 
be found at least in an approximate manner, by shedding light on the dominant conduction 
mechanism, which should give the basis of system design and diagnostics for scaled 
experiments for individual cases. The necessity of dimensional analysis and finding self-
similar solutions is encountered in many problems over wide ranges of research. The simple 
general scheme and the examples mentioned in this chapter will help the reader who 
encounters a similar situation in his or her investigation find the underlying physics and 
prepare further theoretical and experimental setup. 

6. References 

Antonova, R.N. & Kazhdan, Y.M. (2000). “A self-similar solution for spherically symmetric 

gravitational collapse ” Astronomy Letters, Vol. 26, pp. 344 - 355. 

Barenblatt, G.I. (1979). Similarity, Self-Similarity, and Intermediate Asymptotics (New York: 

Consultants Bureau). 

Basko, M.M. & Murakami, M., (1998). “Self-similar implosions and explosions of radiatively 

cooling gaseous masses” Phys. Plasma, Vol. 5, pp. 518 – 528. 

Bernstein, I.B. ＆ Book, D.L. (1978). “Rayleigh-Taylor instability of a self-similar spherical 

expansion” Astrophysical Journal, Vol. 225, pp. 633 – 640. 

Gitomer, S.J.; Morse, R.L. & Newberger, B.S. (1977). “Structure and scaling laws of laser-

driven ablative implosions”, Phys. Fluids Vol. 12, pp. 234 - 238. 

Guderley, G. (1942) “Starke kugelige und zylindrische Verdichtungsstoሷße in der Naሷhe des 

Kugelmittelpunktes bzw. der Zylinderachse” Luftfahrtforschung Vol. 19, pp. 302–

312. 

Gurevich, A.V.; Parrska, L.V. & Pitaevsk, L.P. (1966). “Self-similar motion of rarefied 

plasma” Sov. Phys. JETP, Vol. 22, pp. 449 - &. 

Kull, H.J. (1989). “Incompressible Description of Rayleigh-Taylor Instabilities in Laser-

Ablated Plasmas” Phys. Fluids, Vol. B1, pp.170 - 182. 

Kull, H.J. (1991). “Theory of Rayleigh-Taylor Instability” Phys. Reports, Vol.206, pp.197 - 325. 

www.intechopen.com



 
Self-Similar Hydrodynamics with Heat Conduction 

 

291 

Landau, L.D. & Lifshitz, E.M. (1959). Fluid Mechanics (New York: Pergamon).  

Larson, R.B. (1969). ”Numerical calculations of the dynamics of collapsing proto-star” Mon. 

Not. R. Astr. Soc., Vol. 145, pp. 271-&. 

Lie, S. (1970). Theorie der Transformationsgruppen (New York: Chelsea). 

London, R.A. & Rosen, M.D. (1986) “Hydrodynamics of Exploding Foil X-ray Lasers” Phys. 

Fluids, Vol. 29, pp. 3813 - 3822. 

Mora, P. (2003). “Plasma Expansion into a Vacuum” Phys. Rev. Lett. Vol.90, 185002 (pp. 1 - 

4).  

Murakami, M.; Meyer-ter-Vehn, J. & Ramis, R. (1990). ”Thermal X-ray Emission from Ion-

Beam-Heated Matter” J. X-ray Sci. Technol., Vol. 2, pp. 127 - 148. 

Murakami, M. & Meyer-ter-Vehn, J. (1991) “Indirectly Driven Targets for Inertial 

Confinement Fusion” Nucl. Fusion, Vol. 31, pp. 1315 – 1331. 

Murakami, M., Shimoide, M., and Nishihara, K. (1995). “Dynamics and stability of a 

stagnating hot spot” Phys. Plasmas, Vol.2, pp. 3466 - 3472. 

Murakami, M. & Iida, S., (2002). “Scaling laws for hydrodynamically similar implosions 

with heat conduction”, Phys. Plasmas, Vol.9, pp.2745 - 2753. 

Murakami, M.; Nishihara, K. & Hanawa, T. (2004). “Self-similar Gravitational Collapse of 

Radiatively Cooling Spheres”, Astrophysical Journal, Vol. 607, pp.879 - 889. 

Murakami, M.; Kang, Y.-G.; Nishihara, K.; Fujioka, S. & Nishimura, H. (2005). “Ion energy 

spectrum of expanding laser-plasma with limited mass”, Phys. Plasmas, Vol.12, pp. 

062706 (1-8). 

Murakami, M. & M. M. Basko (2006). “Self-similar expansion of finite-size non-quasi-neutral 

plasmas into vacuum: Relation to the problem of ion acceleration”, Phys. Plasmas, 

Vol. 13, pp. 012105 (1-7). 

Murakami, M.; Fujioka, S.; Nishimura, H.; Ando, T.; Ueda, N.; Shimada, Y. & Yamaura, M. 

(2006). “Conversion efficiency of extreme ultraviolet radiation in laser-produced 

plasmas”, Phys. Plasmas, Vol.13, pp. 033107 (1-8). 

Murakami, M.; Sakaiya, T. & Sanz, J. (2007). “Self-similar ablative flow of nonstationary 

accelerating foil due to nonlinear heat conduction”, Phys. Plasmas, Vol. 14, pp. 

022707 (1-7). 

Pakula, R. & Sigel, R., (1985). “Self-similar expansion of dense matter due to heat-transfer by 

nonlinear conduction ” Phys. Fluids, Vol. 28, pp. 232 - 244. 

Penston, M.V. (1969). “Dynamics of Self-Gravitating Gaseous Spheres – III Analytical 

Results in the Free-Fall of Isothermal Cases” Mon. Not. R. astr. Soc., Vol. 144, pp. 425 

- 448. 

Sedov, L.I. (1959). Similarity and Dimentional Methods in Mechanichs (New York : Academic). 

Sanz, J.; Nicolás, J.A.; Sanmartín, J.R. & Hilario, J. (1988). “Nonuniform target illumination in 

the deflagration regime: Thermal smoothing”, Phys. Fluids, Vol. 31, pp. 2320 – 2326. 

Takabe, H; Montierth, L. & Morse, R.L. (1983). ”Self-consistent Eigenvalue Analysis of 

Raileigh-Taylor Instability in an Ablating Plasma”, Phys. Fluids, Vol. 26, pp. 2299 - 

2307. 

True, M.A.; Albritton, J.R. & Williams, E.A. (1981). “Fast Ion Production by Suprathermal 

Electrons in Laser Fusion Plasmas”, Phys. Fluids Vol. 24, pp. 1885 - 1893. 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

292 

Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High Temperature 

Hydrodynamic Phenomena (New York: Academic Press). 

www.intechopen.com



Heat Conduction - Basic Research

Edited by Prof. Vyacheslav Vikhrenko

ISBN 978-953-307-404-7

Hard cover, 350 pages

Publisher InTech

Published online 30, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The content of this book covers several up-to-date approaches in the heat conduction theory such as inverse

heat conduction problems, non-linear and non-classic heat conduction equations, coupled thermal and

electromagnetic or mechanical effects and numerical methods for solving heat conduction equations as well.

The book is comprised of 14 chapters divided into four sections. In the first section inverse heat conduction

problems are discuss. The first two chapters of the second section are devoted to construction of analytical

solutions of nonlinear heat conduction problems. In the last two chapters of this section wavelike solutions are

attained.The third section is devoted to combined effects of heat conduction and electromagnetic interactions

in plasmas or in pyroelectric material elastic deformations and hydrodynamics. Two chapters in the last section

are dedicated to numerical methods for solving heat conduction problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Masakatsu Murakami (2011). Self-Similar Hydrodynamics with Heat Conduction, Heat Conduction - Basic

Research, Prof. Vyacheslav Vikhrenko (Ed.), ISBN: 978-953-307-404-7, InTech, Available from:

http://www.intechopen.com/books/heat-conduction-basic-research/self-similar-hydrodynamics-with-heat-

conduction



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


