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Inverse Heat Conduction Problems 
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Kielce University of Technology 

Poland 

1. Introduction  

In the heat conduction problems if the heat flux and/or temperature histories at the surface 
of a solid body are known as functions of time, then the temperature distribution can be 
found. This is termed as a direct problem. However in many heat transfer situations, the 
surface heat flux and temperature histories must be determined from transient temperature 
measurements at one or more interior locations. This is an inverse problem. Briefly speaking 
one might say the inverse problems are concerned with determining causes for a desired or 
an observed effect.  
The concept of an inverse problem have gained widespread acceptance in modern applied 
mathematics, although it is unlikely that any rigorous formal definition of this concept exists. 
Most commonly, by inverse problem is meant a problem of determining various quantitative 
characteristics of a medium such as density, thermal conductivity, surface loading, shape of a 
solid body etc. , by observation over physical fields in the medium or – in other words -  a 
general framework that is used to convert observed measurements into information about a 
physical object or system that we are interested in. The fields may be of natural appearance or 
specially induced, stationary or depending on time, (Bakushinsky & Kokurin, 2004).  
Within the class of inverse  problems, it is the subclass of indirect measurement problems 
that characterize the nature of inverse problems that arise in applications. Usually 
measurements only record some indirect aspect of the phenomenon of interest. Even if the 
direct information is measured, it is measured as a correlation against a standard and this 
correlation can be quite indirect. The inverse problems are difficult because they ussually 
are extremely sensitive to measurement errors. The difficulties are particularly pronounced 
as one tries to obtain the maximum of information from the input data.  
 A formal mathematical model of an inverse problem can be derived with relative ease. 
However, the process of solving the inverse problem is extremely difficult and the so-called 
exact solution practically does not exist. Therefore, when solving an inverse problem the 
approximate methods like iterative procedures, regularization techniques, stochastic and 
system identification methods, methods based on searching an approximate solution in a 
subspace of the space of  solutions (if the one is known), combined techniques or straight 
numerical methods are used.  

2. Well-posed and ill-posed problems 

The concept of well-posed or correctly posed problems was introduced in (Hadamard, 
1923). Assume that a problem is defined as 
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 Au=g   (1) 

where u  U, g  G, U and G are metric spaces and A is  an operator so that AUG. In 
general u can be a vector that characterize a model of phenomenon and g can be the 
observed attribute of the phenomenon.  
A well-posed problem must meet the following requirements: 
 the solution of equation (1) must exist for any gG, 
 the solution of equation (1) must be unique, 
 the solution of equation (1) must be stable with respect to perturbation on the right-

hand side, i.e. the operator A-1 must be defined throughout the space G and be 
continuous.  

If one of the requirements is not fulfilled the problem is termed as an ill-posed. For ill-
posed problems the inverse operator A-1 is not continuous in its domain AU G which 
means that the solution of the equation (1) does not depend continuously on the input 
data g  G, (Kurpisz & Nowak, 1995; Hohage, 2002; Grysa, 2010). In general we can say 
that the (usually approximate) solution of an ill-posed problem does not necessarily 
depend continuously on the measured data and the structure of the solution can have a 
tenuous link to the measured data. Moreover, small measurement errors can be the source  
for unacceptable perturbations in the solution. The best example of the last statement is  
numerical differentiation of a solution of an inverse problem with noisy input data. Some 
interesting remarks on the inverse and ill-posed problems can be found in (Anderssen, 
2005). 
Some typical inverse and ill-posed problems are mentioned in (Tan & Fox, 2009).  

3. Classification of the inverse problems 

Engineering field problems are defined by governing partial differential or integral 
equation(s), shape and size of the domain, boundary and initial conditions, material 
properties of the media contained in the field and by internal sources and external forces or 
inputs. As it has been mentioned above, if all of this information is known, the field problem 
is of a direct type and generally considered as well posed and solvable. In the case of heat 
conduction problems the governing equations and possible boundary and initial conditions 
have the following form: 

   v

T
c k T Q

t
 

    


 ,   (x,y,z) 3R  , t(0, tf],  (2) 

      , , , , , ,    for   , , ,b DT x y z t T x y z t x y z t S  ,   t(0, tf],    (3) 

 
     , , ,

, , ,    for   , , , ,b N

T x y z t
k q x y z t x y z t S

n


  


  t(0, tf], (4) 

 
        , , ,

, , , , , ,    for   , , , ,c e R

T x y z t
k h T x y z t T x y z t x y z t S

n


   


  t(0, tf],  (5) 

      0, , ,0 , ,    for   , ,T x y z T x y z x y z  ,  (6) 
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where ( / , / , / )x y z        stands for gradient differential operator in 3D;  denotes 

density of mass, [kg/m3]; c is the constant-volume specific heat, [J/kg K]; T is temperature, 

[K]; k denotes thermal conductivity, [W/m K]; vQ is the rate of heat generation per unit 

volume, [W/m3], frequently termed as source function; / n  means differentiation along 
the outward normal; hc denotes the heat transfer coefficient, [W/m2 K]; Tb , qb and T0 are 
given functions and Te stands for environmental temperature, tf – final time. The boundary 
  of the domain  is divided into three disjoint parts denoted with subscripts D for 
Dirichlet, N for Neumann and R for Robin boundary condition; D N RS S S    . 

Moreover, it is also possible to introduce the fourth-type or radiation boundary condition, 
but here this condition will not be dealt with.  
 The equation (2) with conditions (3) to (6) describes an initial-boundary value problem for 
transient heat conduction. In the case of stationary problem the equation (2) becomes a 

Poisson equation or – when the source function vQ  is equal to zero – a Laplace equation. 

Broadly speaking, inverse problems may be subdivided into the following categories: 
inverse conduction, inverse convection, inverse radiation and inverse phase change 
(melting or solidification) problems as well as all combination of them (Özisik & Orlande, 
2000). Here we have adopted classification based on the type of causal characteristics to be 
estimated:  
1. Boundary value determination inverse problems, 
2. Initial value determination inverse problems, 
3. Material properties determination inverse problems, 
4. Source determination inverse problems 
5. Shape determination inverse problems.  

3.1 Boundary value determination inverse problems 

In this kind of inverse problem on a part of a boundary the condition is not known. Instead, 
in some internal points of the considered body some results of temperature measurements 
or anticipated values of temperature or heat flux are prescribed. The measured or 
anticipated values are called internal responses. They can be known on a line or surface 
inside the considered body or in a discrete set of points. If the internal responses are known 
as  values of heat flux, on a part of the boundary a temperature has to be known, i.e. 
Dirichlet or Robin condition has to be prescribed. In the case of stationary problems an 
inverse problem for Laplace or Poisson equation has to be solved. If the temperature field 
depends on time, then the equation (2) becomes a starting point. The additional condition 
can be formulated as  

    , , , , , ,aT x y z t T x y z t    for    , ,x y z L   ,  t(0, tf]  (7) 

or 

  , , ,i i i i ikT x y z t T    for    , ,i i ix y z  , tk(0, tf], i=1,2,…, I; k=1,2,..,K  (8) 

with  Ta being a given function and  Tik known from e.g. measurements. As examples of such 
problems can be presented papers (Reinhardt et al., 2007; Soti et al., 2007; Ciałkowski & 
Grysa, 2010) and many others. 
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3.2 Initial value determination inverse problems 

In this case an initial condition is not known, i.e. in the condition (6) the function T0  is not 
known. In order to find the initial temperature distribution a temperature field in the whole 
considered domain for fixed t>0 has to be known, i.e. instead of the condition (6) a condition 
like   

      0, , , , ,    for   , ,inT x y z t T x y z x y z   and   tin(0, tf]  (9) 

has to be specified, compare (Yamamoto & Zou, 2001; Masood et al., 2002). In some papers 
instead of the condition (9) the temperature measurements on a part of the boundary are 
used, see e.g. (Pereverzyev et al., 2005).  

3.3 Material properties determination inverse problems 

Material properties determination makes a wide class of inverse heat conduction problems. 
The coefficients can depend on spatial coordinates or on temperature. Sometimes 
dependence on time is considered. In addition to the coefficients mentioned in part 3 also 
the thermal diffusivity, /a k c , [m/s2] is the one frequently being determined. In the case 

when thermal conductivity depends on temperature, Kirchhoff substitution is useful, 
(Ciałkowski & Grysa, 2010a). Also in the case of material properties determination some 
additional information concerning temperature and/or heat flux in the domain has to be 
known, usually the temperature measurements taken at the interior points, compare (Yang, 
1998; Onyango et al., 2008; Hożejowski et al., 2009).  

3.4 Source determination inverse problems 

In the case of source determination, vQ , one can identify intensity of the source, its location 

or both. The problems are considered for steady state and for transient heat conduction. In 
many cases as an extra condition the temperature data are given at chosen points of the 
domain  , usually as results of measurements, see condition (8). As an additional condition 
can be also adopted measured or anticipated temperature and heat flux on a part of the 
boundary. A separate class of problems are those concerning moving sources, in particular 
those with unknown intensity. Some examples of such problems can be found in papers 
(Grysa & Maciejewska, 2005; Ikehata, 2007; Jin & Marin, 2007; Fan & Li, 2009).  

3.5 Shape determination inverse problems 

In such problems, in contrast to other types of inverse problems, the location and shape of 
the boundary of the domain of the problem under consideration is unknown. To 
compensate for this lack of information, more information is provided on the known part of 
the boundary. In particular, the boundary conditions are overspecified on the known part, 
and the unknown part of the boundary is determined by the imposition of a specific 
boundary condition(s) on it.  
The shape determination inverse problems can be subivided into two class.  
The first one can be considered as a design problem, e.g. to find such a shape of a part of the 
domain boundary, for which the temperature or heat flux achieves the intended values. The 
problems become then extremely difficult especially in the case when the boundary is 
multiply connected. 
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The second class is termed as Stefan problem. The Stefan problem consists of the 
determination of temperature distribution within a domain and the position of the moving 
interface between two phases of the body when the initial condition, boundary conditions 
and thermophysical properties of the body are known. The inverse Stefan problem consists 
of the determination of the initial condition, boundary conditions and thermophysical 
properties of the body. Lack of a portion of input data is compensated with certain 
additional information. 
Among inverse problems, inverse geometric problems are the most difficult to solve 
numerically as their discretization leads to system of non-linear equations. Some examples 
of such problems are presented in (Cheng  & Chang, 2003; Dennis et al., 2009; Ren, 2007).  

4. Methods of solving the inverse heat conduction problems 

Many analytical and semi-analytical approaches have been developed for solving heat 
conduction problems. Explicit analytical solutions are limited to simple geometries, but are 
very efficient computationally and are of fundamental importance for investigating basic 
properties of inverse heat conduction problems. Exact solutions of the inverse heat conduction 
problems are very important, because they provide closed form expressions for the heat flux in 
terms of temperature measurements, give considerable insight into the characteristics of 
inverse problems, and provide standards of comparison for approximate methods. 

4.1 Analytical methods of solving the steady state inverse problems 

In 1D steady state problems in a slab in which the temperature is known at two or more 
location, thermal conductivity is known and no heat source acts, a solution of the inverse 
problem can be easily obtained. For this situation the Fourier’s law, being a differential 
equation to integrate directly,  indicates that the temperature profile must be linear, i.e.  

   / conT x ax b qx k T     ,  (10) 

with two unkowns, q (the steady-state heat flux) and Tcon (a constant of integration). 

Suppose the temperature is measured at J locations,  1 2, ,..., Jx x x , below the upper surface 

(with x-axis directed from the surface downward) and the experimental temperature 
measurements are Yj , j = 1,2,…,J . The steady-state heat flux and the integration constant can 
be calculated by minimizing the least square error between the computed and experimental 
temperatures. In order to generalize the analysis, assume that some of the sensors are more 
accurate than others, as indicated by the weighting factors, wj ,  j = 1,2,…,J . A weighted least 
square criterion is defined as 

   22

1

J

j j j
j

I w Y T x


  . (11) 

Differentiating equation (11) with respect to q and Tcon gives 

     2

1

0
J

j

j j j
j

T x
w Y T x

q


 

  and      2

1

0
J

j

j j j
conj

T x
w Y T x

T


 

 . (12) 
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Equations (12) involve two sensitivity coefficients which can be evaluated from (10), 

 / /j jT x q x k     and  / 1j conT x T   , j = 1,2,…,J , (Beck et al., 1985). Solving the 

system of equations (12) for the unknown heat flux gives  

 

2 2 2 2

1 1 1 1

2

2 2 2 2

1 1 1

J J J J

j j j j j j j j
j j j j

J J J

j j j j j
j j j

w w x Y w x w Y

q k

w w x w x

   

  

     
     
     
      

    
    
    
    

   

  
. (13) 

Note, that the unknown heat flux is linear in the temperature measurements.  
Constants a and b  in equation (10) could be developed by fitting a weighted least square 
curve to the experimental temperature data. Differentiating the curve according to the 
Fouriers’a law leads also to formula (13).  
In the case of 2D and 3D steady state problems with constant thermophysical properties, the 
heat conduction equation becomes a Poisson equation. Any solution of the homogeneous 
(Laplace) equation can be expressed as a series of harmonic functions. An approximate 
solution, u, of an inverse problem can be then presented as a linear combination of a finite 
number of polynomials or harmonic functions plus a particular solution of the Poisson equation: 

 
1

K
part

k k
k

u H T


    (14) 

where Hk’s stand for harmonic functions, k denotes the k-th coefficient of the linear 

combination of the harmonic functions, k = 1,2,…,K, and partT  stands for a particular 
solution of the Poisson equation. If the experimental temperature measurements Yj, 
j = 1,2,…,J, are known, coefficients of the combination,  k , can be obtained by minimization 
an objective functional  

 

     

  

2
2 22 2 2

1 2

2 2
2
3

1

 

D N

R

v b b

S S

J

c c e j j
jS

u
I u u Q d w u T dS w k q dS

n

v
w k h v h T dS Y u

n





          

       

  

 x



  (15) 

where j x ; w1, w2, w3 – weights. Note that for harmonic functions the first integral vanishes.  

4.2 Burggraf solution  

Considering 1D transient boundary value inverse problem in a flat slab Burggraf obtained 
an exact solution in the case when the time-dependant temperature response was known 

at one internal point, (Burggraf, 1964). Assuming that    *, *T x t T t   and    *, *q x t q t  

are known and are of class C  in the considered domain, Burggraf found an exact 
solution to the inverse problem for a flat slab, a sphere and a circular cylinder in the 
following form: 
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      
0

** 1
,

nn

n nn n
n

d qd T
T x t f x g x

adt dt





 
  

  
  .  (16) 

with a standing for thermal diffusivity, /a k c , [m/s2]. The functions  nf x  and  ng x  

have to fulfill the conditions 

2
0

2
0

d f

dx
 ,   

2

12

1n
n

d f
f

adx
 ,  

2
0

2
0

d g

dx
 ,   

2

12

1n
n

d g
g

adx
 ,   1,2,...n   

 0 * 1f x  ,   * 0nf x  ,   
*

0n

x x

df

dx 

 ,   0,1,...n   

 0 * 0g x  ,  0

*

1
x x

dg

dx 

  * 0ng x  ,   
*

0n

x x

dg

dx 

 ,    1,2,...n   

It is interesting  that no initial condition is needed to determine the solution. This 
follows from the assumption that the functions  *T t  and  *q t are defined for [0, ).t   

The solutions of 1D inverse problems in the form of infinite series or polynomials was also 
proposed in (Kover'yanov, 1967) and in other papers.  

4.3 Laplace transform approach  

The Laplace transform approach is an integral technique that replaces time variable and the 
time derivative by a Laplace transform variable. This way in the case of 1D transient 
problems, the partial differential equation converts to the form of an ordinary differential 
equation. For the latter it is not difficult to find a solution in a closed form. However, in the 
case of inverse problems inverting of the obtained solutions to the time-space variables is 
practically impossible and usually one looks for approximate solutions, (Woo & Chow, 1981; 
Soti et al., 2007; Ciałkowski & Grysa, 2010). The Laplace transform is also useful when 2D 
inverse problems are considered (Monde et al., 2003)  
The Laplace transform approach usually is applied for simple geometry (flat slab, halfspace, 
circular cylinder, a sphere, a rectangle and so on).  

4.4 Trefftz method  

The method known as “Trefftz method” was firstly presented in 1926, (Trefftz, 1926). In the 
case of any direct or inverse problem an approximate solution is assumed to have a form of 
a linear combination of functions that satisfy the governing partial linear differential 
equation (without sources). The functions are termed as Trefftz functions or T-functions. In 
the space of solutions of the considered equation they form a complete set of functions. The 
unknown coefficients of the linear combination are then determined basing on approximate 
fulfillment the boundary, initial and other conditions (for instance prescribed at chosen 
points inside the considered body), finally having a form of a system of algebraic equations 
(Ciałkowski & Grysa, 2010a).  
T-functions usually are derived for differential equation in dimensionless form. The 
equation (2) with zero source term and constant material properties can be expressed in 
dimensionless form as follows: 
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    2 ,
,

T
T







 

ξ

ξ ,    , (0, ]f ξ ,   (17) 

where ξ  stands for dimensionless spatial location and τ = k/c denotes dimensionless time 

(Fourier number). In further consideration we will use notation x =( x, y, z) and t for 
dimensionless coordinates.  
For dimensionless heat conduction equation in 1D the set of T-functions read 

 
 2 2

0

( , )
( 2 )! !

n n k k

n
k

x t
v x t

n k k






  .    0,1,...n   (18) 

where [n/2] = floor(n/2) stands for the greatest previous integer of n/2. T-functions in 2D are 
the products of proper T-functions for the 1D heat conduction equations: 

  , , ( , ) ( , )m n k kV x y t v x t v y t ,   0,1,...n   ; 0,...,k n ;  
 1

2

n n
m k


     (19) 

The 3D T-functions are built in a similar way.  
Consider an inverse problem formulated in dimensionless coordinates as follows: 

                                             2 /T T                           in (0, ]f , 

                                             1T g                                    on (0, ]D fS  , 

                                             2/T n g                           on (0, ]N fS  ,                                       (20) 

                                             3/T n BiT Big               on (0, ]R fS  , 

                                             4T g                                    on int intS T , 

                                             T h                                     on  for  t = 0, 

where intS  stands for a set of points inside the considered region, int (0, )fT   is a set of 

moments of time, the functions  gi , i=1,2,3,4  and h are of proper class of differentiability in 
the domains in which they are determined and D N RS S S    . Bi=hcl/k denotes the Biot 

number (dimensionless heat transfer coefficient) and l stands for characteristic length. The 
sets intS  and intT  can be continuous (in the case of anticipated or smoothed or described by 

continuous functions input data) or discrete. Assume that g1 in not known and g4 describes 
results of measurements on int intS T . An approximate solution of the problem is expressed 

as a linear combination of the T-functions 

 
1

K

k k
k

T u  


    (21) 

 with k standing for T-functions. The objective functional can be written down as  
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   

 

   
int int

2
2

(0, )

2
3

(0, )

2 2
4

/

/

 

N f

R f

S

S x

S T

I u u n g dSdt

u n Biu Big dSdt

u g dSdt u h d







 

   

    

    





 

   (22) 

In the contrary to the formula (15), the integral containing residuals of the governing 

equation fulfilling,   
 

2
2

0,

/

f

t u d dt



     , does not appear here because u, as a linear 

combination of T-functions, satisfies the equation (20)1. Minimization of the functional  I u  

(being in fact a function of K unknown coefficients, 1 ,..., K  ) leads to a system of K 

algebraic equations for the unknowns. The solution of this system leads to an approximate 
solution, (21), of the considered problem. Hence, for  , (0, )D fS  x  one obtains 

approximate form of the functions g1.  
It is worth to mention that approximate solution of the considered problem can also be 
obtained in the case when, for instance, the function h  is unknown. In the formula (21) the 
last term is then omitted, but the minimization of the functional  I u  can be done. The final 

result has physical meaning, because the approximate solution (21) consists of functions  
satisfying the governing partial differential equation.  
The greater the number of T-functions in (21), the better the approximation of the solutions 
takes place. However, with increasing K, conditioning of the algebraic system of equation 
that results from minimization of I(u) can become worse. Therefore, the set intS  has to be 

chosen very carefully.  
Since the system of algebraic equations for the whole domain may be ill-conditioned, a 
finite element method with the T-functions as base functions is often used to solve the 
problem.  

4.5 Function specification method  

The function specification method, originally proposed in (Beck, 1962), is particularly useful 
when the surface heat flux is to be determined from transient measurements at interior 
locations. In order to accomplish this, a functional form for the unknown heat flux is 
assumed. The functional form contains a number of unknown parameters that are estimated 
by employing the least square method. The function specification method can be also 
applied to other cases of inverse problems, but efficiency of the method for those cases is 
often not satisfactory.  
As an illustration of the method, consider the 1D problem 

 2 2/ /a T x T t         for (0, )x l  and  t(0, tf], 

 / ( )k T x q t       for x = 0 and  t(0, tf],    (23) 

   / ( )k T x f t      for x = l  and  t(0, tf], 

www.intechopen.com



 

Heat Conduction – Basic Research 

 

12

  0T T x          for (0, )x l  and  t = 0 . 

For further analysis it is assumed that q(t) is not known. Instead, some measured 
temperature histories are given at interior locations: 

   ,,j k i kT x t U ,     
1,...,

0,j
j J

x l


 ,      1,...,
0,k fk K

t t


 .  

The heat flux is more difficult to calculate accurately than the surface temperature. When 
knowing the heat flux it is easy to determine temperature distribution. On the contrary, if 
the unknown boundary characteristics were assumed as temperature, calculating the heat 
flux would need numerical differentiating which may lead to very unstable results.  
 In order to solve the problem, it  is  assumed  that  the  heat flux is also expressed in discrete 
form as a stepwise functions in the intervals (tk-1, tk) . It is assumed that the temperature 
distribution and the heat flux are known at times tk-1, tk-2, … and it is desired to determine 
the heat flux qk  at time tk . Therefore, the condition (23)2 can be replaced by  

   
1const  for  

t    for             
k k k

k

q t t tT
q k

q t t tx 
  

      
 

Now we assume that the unknown temperature field depends continuously on the 
unknown heat flux q. Let us denote /Z T q   and differentiate the formulas (23) with 

respect to q. We arrive to a direct problem 

 2 2/ /a Z x Z t         for (0, )x l  and  t(0, tf], 

 / 1k Z x           for x = 0 and  t(0, tf],  (24) 

/ 0k Z x          for x = l  and  t(0, tf], 

0Z                 for (0, )x l  and  t = 0 . 

The direct problem (24) can be solved using different methods. Let us introduce now the 
sensitivity coefficients defined as 

 
 

,
,

,i m

i mk
i m

k kx t

TT
Z

q q


 
 

.  (25) 

The temperature  , ,i k i mT T x t  can be expanded in a Taylor series about arbitrary but 
known values of heat flux *

kq . Neglecting the derivatives with order higher than one we 
obtain 

    
*

,* * * *
, , , ,

k k

i k
i k i k k k i k i k k k

k q q

T
T T q q T Z q q

q



     


     (26) 

Making use of (24) and (25), solving (26) for heat flux component qk and taking into 
consideration the temperature history only in one location, x1 ,  we arrive to the formula 
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*

1, 1,*

1,

k k
k k k

k

U T
q q

Z


  ,   1,...,k K .  (27) 

In the case when future temperature measurements are employed to calculate qk , we use 
another formula (Beck et al, 1985, Kurpisz &Nowak, 1995), namely 

 
 

 

* 1
1, 1 1, 1 1, 1

* 1

21
1, 1

1

R
k r

k r k r k r
r

k k R
k r

k r
r

U T Z

q q

Z

 
     



 
 




 




  (28) 

The case of many interior locations for temperature measurements is described e.g. in 
(Kurpisz &Nowak, 1995). 
The detailed algorithm for 1D inverse problems with one interior point with measured 
temperature history is presented below: 

1. Substitute k=1 and assume * 0kq  over time interval 10 t t  , 

2. Calculate *
1, 1k rT   for 1,2,...,r R , R K , assuming 1 1...k k k Rq q q     ; *

1, 1k rT    

should be calculated, employing any numerical method to the following problem: 

differential equation (23)1, boundary condition (23)2 with *
kq  instead of q(t), boundary 

condition (23)3 and initial condition *
1 1k kT T  , where 1kT   has been computed for the 

time interval 2 1k kt t t    or is an initial condition (23)4 when k = 1, 

3. Calculate qk  from equation (27) or (28), 
4. Determine the complete temperature distribution, using equation (26), 

5. Substitute 1k k  and *
1k kq q   and repeat the calculations from step 2. 

For nonlinear cases an iterative procedure should be involved for step 2 and 3. 

4.6 Fundamental solution method  
The fundamental solution method, like the Trefftz method,  is useful to approximate the 
solution of multidimensional inverse problems under arbitrary geometry. The method uses 
the fundamental solution of the corresponding heat equation to generate a basis for 
approximating the solution of the problem.  
 Consider the problem described by equation (20)1 , Dirichlet and Neumann conditions (20)2 
and (20)3 and initial condition (20)6. The dimensionless time is here denoted as t. Let Ω be a 

simply connected domain in Rd, d = 2,3. Let   1

M
i i  x  be a set of locations with noisy 

measured data ( )k
iY of exact temperature  ( ) ( )k k

i i iT t Yx , 1,2,...,i M , 1,2,..., ik J , where 

( ) (0, ]k
fit t  are discrete times. The absolute error between the noisy measurement and exact 

data is assumed to be bounded for all measurement points at all measured times. The 
inverse problem is formulated as: reconstruct T and /T n  on (0, )R fS t  from (20)1, (20)2 , 

(20)3 and (20)6 and the scattered noisy measurements ( )k
iY , 1,2,...,i M ,  1,2,..., ik J . It is 

worth to mention that with reconstructed T and /T n  on (0, )R fS t  it is easy to identify 

heat transfer coefficient, hc ,  on SR . 
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The fundamental solution of (20)1 in Rd  is given by 

  
 

 
2

/2

1
, exp

44
d

F t H t
tt

 
  
 
 

x
x  (29) 

where H(t) is the Heaviside function. Assuming that * ft t is a constant, the function 

   , , *t F t t  x x  is a general solution of (20)1 in the solution domain (0, )ft .  

We denote the measurement points to be   
1

,
m

j j
j

t


x , 
1

M

i
i

m J


 , so that a point at the same 

location but with different time is treated as two distinct points. In order to solve the 
problem one has to choose collocation points. They are chosen as  

   
1

,
m n

j j
j m

t


 
x on the initial region  0 ,  

   
1

,
m n p

j j
j m n

t
 

  
x  on the surface (0, ]D fS t , and 

   
1

,
m n p q

j j
j m n p

t
  

   
x  on the surface (0, ]N fS t .  

Here, n, p and q denote the total number of collocation points for initial condition (20)6 , 
Dirichlet boundary condition (20)2 and Neumann boundary condition (20)3, respectively. 
The only requirement on the collocation points are pairwisely distinct in the (d +1)-

dimensional space  ,tx , (Hon & Wei, 2005, Chen et al., 2008).  

To illustrate the procedure of choosing collocation points let us consider an  

inverse problem in a square (Hon & Wei, 2005):   1 2 1 2, : 0 1,   0 1x x x x      , 

  1 2 1 2, : 1,   0 1DS x x x x    ,   1 2 1 2, : 0 1,   1NS x x x x    ,  \R D NS S S   . 

Distribution of the measurement points and collocation points is shown in Figure 1.  

An approximation T  to the solution of the inverse problem under the conditions (20)2 , (20)3 

and (20)6 and the noisy measurements ( )k
iY  can be expressed by the following linear 

combination: 

    
1

,  ,
n m p q

j j j
j

T t t t 
  



  x x x  ,  (30) 

where    , , *t F t t  x x , F is given by (29) and j  are unknown coefficients to be 

determined.  

For this choice of basis functions  , the approximated solution T  automatically satisfies the 

original heat equation (20)1. Using the conditions (20)2 , (20)3 and (20)6 , we then obtain the 

following system of linear equations for the unknown coefficients j : 

 A b     (31) 
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Fig. 1. Distribution of measurement points and collocation points. Stars represent collocation 
points matching Dirichlet data, squares represent collocation points matching Neumann 
data, dots represent collocation points matching initial data and circles denotes points with 
sensors for internal measurement.  

where 

 
 
 

,

,

i j i j

k j k j

t t

A
t t

n





  
 

  
  

 

x x

x x
  (32) 

and 

 
 
 
 

1

2

,

,

,

i

i i

i i

k k

Y

h t
b

g t

g t

 
 
   
  
 

x

x

x



  (33) 

where  1,2,...,i n m p   ,  1 ,...,( )k n m p m n p q       ,  1,2,...,j n m p q    , 

respectively. The first m rows of the matrix A  leads to values of measurements, the next n 
rows – to values of the right-hand side of the initial condition and, of course, time variable is 
then equal to zero, the next p rows leads to values of the right-hand side of the Dirichlet 
condition and the last q rows - to values of the right-hand side of Neumann condition.  

www.intechopen.com



 

Heat Conduction – Basic Research 

 

16

The solvability of the system (31) depends on the non-singularity of the matrix A, which is 
still an open research problem. 
Fundamental solution method belongs to the family of Trefftz method. Both methods, 
described in part 4.4 and 4.6, frequently lead to ill-conditioned system of algebraic equation. 
To solve the system of equations, different techniques are used. Two of them, namely single 
value decomposition and Tikhonov regularization technique, are briefly presented in the 
further parts of the chapter. 

4.7 Singular value decomposition 
The ill-conditioning of the coefficient matrix A (formula (32) in the previous part of the 
chapter) indicates that the numerical result is sensitive to the noise of the right hand side  

b (formula (33)) and the number of collocation points. In fact, the condition number of the 
matrix A increases dramatically with respect to the total number of collocation points.  
The singular value decomposition usually works well for the direct problems but usually 
fails to provide a stable and accurate solution to the system (31). However, a number of 
regularization methods have been developed for solving this kind of ill-conditioning 
problem, (Hansen, 1992; Hansen & O’Leary, 1993). Therefore, it seems useful to present the 
singular value decomposition method here.  
Denote N = n + m + p + q. The singular value decomposition of the N N matrix A is a 
decomposition of the form 

 
1

 
N

T T
i i i

i

A W V 


  w v  (34) 

with   1 2, ,..., NW  w w w  and  1 2, ,..., NV  v v v  satisfying  T T
NW W V V I  . Here, the 

superscript T denotes transposition of a matrix. It is known that  1 2, ,..., Ndiag      has 

non-negative diagonal elements satisfying inequality 

 1 2 ... 0N        (35) 

The values i  are called the singular values of A and the vectors iw  and iv  are called left 

and right singular vectors of A, respectively, (Golub & Van Loan, 1998). The more rapid is 
the decrease of singular values in (35), the less we can reconstruct reliably for a given noise 
level. Equivalently, in order to get good reconstruction when the singular values decrease 
rapidly, an extremely high signal-to-noise ratio in the data is required. 
For the matrix A the singular values decay rapidly to zero and the ratio between the largest 
and the smallest nonzero singular values is often huge. Based on the singular value 
decomposition, it is easy to know that the solution for the system (31) is given by 

 
1

TN
i

i
ii

b



w

v


   (36) 

When there are small singular values, such approach leads to a very bad reconstruction of 

the vector  . It is better to consider small singular values as being effectively zero, and to 
regard the components along such directions as being free parameters which are not 
determined by the data.  
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However, as it was stated above, the singular value decomposition usually fails for the 
inverse problems. Therefore it is better to use here Tikhonov regularization method. 

4.8 Tikhonov regularization method 

This is perhaps the most common and well known of regularization schemes, (Tikhonov & 
Arsenin, 1977). Instead of looking directly for a solution for an ill-posed problem (31) we 
consider a minimum of a functional  

 
2 22

0J A b          
     (37) 

with 0 being a known vector, . denotes the Euclidean norm, and 2 is called the 

regularization parameter. The necessary condition of minimum of the functional (37) leads 
to the following system of equation: 

   2
0 0TA A b         . 

Hence 

   12 2
0

T TA A I A b   


     

Taking into account (34) after transformation one obtains the following form of the 
functional J: 

 
 

     

22 2
0

22 222 2
0 0

T T TJ W V WW b VV

W V J

    

 

       

          y c y y y c y y y

   
  (38) 

where TV y  , 0
TV y  , TW bc  and the use has been made from the properties 

T T
NW W V V I  . Minimization of the functional  J y  leads to the following vector 

equation: 

   2
0 0T      y c y y    or    2 2

0
T T      y y c y . 

Hence 

 
2

02 2 2 2
i

i i i
i i

y c y
 

   
 

 
 , 1,...,i N     or   

2

02 2 2 2
1

N
Ti
i i

i i i

b
  

   

 
     
 w v     (39) 

If 0  0  the Tikhonov regularized solution for equation (31) based on singular value 

decomposition of the N N  matrix A can be expressed as 

 
2 2

1

N
Ti
i i

i i

b


 



 w v  (40) 
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The determination of a suitable value of the regularization parameter 2  is crucial and is 
still under intensive research. Recently  the L-curve criterion is frequently used to choose a 
good regularization parameter, (Hansen, 1992; Hansen & O’Leary, 1993). Define a curve L 
by 

   22
log ,logL A b            

     (41) 

A suitable regularization parameter 2  is the one near the “corner” of the L-curve, (Hansen 
& O’Leary, 1993; Hansen, 2000).  

4.9 The conjugate gradient method 

The conjugate gradient method is a straightforward and powerful iterative technique for 
solving linear and nonlinear inverse problems of parameter estimation. In the iterative 
procedure, at each iteration a suitable step size is taken along a direction of descent in order 
to minimize the objective function. The direction of descent is obtained as a linear 
combination of the negative gradient direction at the current iteration with the direction of 
descent of the previous iteration. The linear combination is such that the resulting angle 
between the direction of descent and the negative gradient direction is less than 90o and the 
minimization of the objective function is assured, (Özisik & Orlande, 2000). 
As an example consider the following problem in a flat slab with the unknown heat source 

 pg t  in the middle plane: 

   2 2/ 0.5 /pT x g t x T t         in  0 1x  , for 0t   

 / 0T x      at 0x   and at 1x  ,  for 0t   (42) 

 ,0 0T x    for 0t  , in  0 1x   

where     is the Dirac delta function. Application of the conjugate gradient method can be 

organized in the following steps (Özisik & Orlande, 2000): 
 The direct problem, 
 The inverse problem, 
 The iterative procedure, 
 The stopping criterion, 
 The computational algorithm. 
The direct problem. In the direct problem associated with the problem (42) the source 

strength,  pg t , is known. Solving the direct problem one determines the transient 

temperature field  ,T x t  in the slab.  

The inverse problem. For solution of the inverse problem we consider the unknown energy 

generation function  pg t  to be parameterized in the following form of linear combination 

of trial functions  jC t (e.g. polynomials, B-splines, etc.): 
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    
1

N

p j j
j

g t P C t


   (43) 

jP  are unknown parameters, 1,2,...,j N . The total number of parameters, N, is specified. 

The solution of the inverse problem is based on minimization of the ordinary least square 
norm,  S P : 

        2

1

I
T

i i
i

S Y T


               P P Y T P Y T P   (44) 

where  1 2, ,...,T
NP P PP ,    ,i iT T tP P  states for estimated temperature at time it , 

 i iY Y t  denotes measured temperature at time it , I is a total number of measurements, 

I N . The parameters estimation problem is solved by minimization of the norm (44).  
The iterative procedure. The iterative procedure for the minimization of the norm S(P) is 
given by 

 1k k k k  P P d  (45) 

where k is the search step size, 1 2, ,...,k k k k
Nd d d   d  is the direction of descent and k is the 

number of iteration. kd  is a conjugation of the gradient direction,  kS P , and the direction 

of descent of the previous iteration, 1kd : 

   1k k k kS    d P d .  (46) 

Different expressions are available for the conjugation coefficient k . For instance the 

Fletcher-Reeves expression is given as 

 

 

 

2

1

2
1

1

N
k

jjk
N

k

jj

S

S

 





  


  





P

P

   for  1,2,...k   with   0 0  .  (47) 

Here 

    
1

2
kI

k ki
i i

j ji

T
S Y T

P

         P P    for  1,2,...,j N  . (48) 

Note that if 0k  for all iterations k, the direction of descent becomes the gradient direction 

in (46) and the steepest-descent method is obtained.  

The search step k is obtained by minimizing the function  1kS P  with respect to k . It 

yields the following expression for k : 
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 
1

2

1

TI
k ki

i ik
ik

TI
ki

k
i

T
T Y

T

 



           
       





d P
P

d
P

, where 
1 2

, ,...,
T

i i i i
k k k k

N

T T T T

P P P

                P
.   (49) 

The stopping criterion. The iterative procedure does not provide the conjugate gradient 
method with the stabilization necessary for the minimization of   S P  to be classified as 

well-posed. Such is the case because of the random errors inherent to the measured 
temperatures. However, the method may become well-posed if the Discrepancy Principle is 
used to stop the iterative procedure, (Alifanov, 1994): 

  1kS  P  (50) 

where the value of the tolerance ε  is chosen so that sufficiently stable solutions are obtained, 
i.e. when the residuals between measured and estimated temperatures are of the same order 

of magnitude of measurement errors, that is    ,i meas i iY t T x t   , where i  is the 

standard deviation of the measurement error at time ti . For i const    we obtain I  . 

Such a procedure gives the conjugate gradient method an iterative regularization character. If 
the measurements are regarded as errorless, the tolerance ε can be chosen as a sufficiently 
small number, since the expected minimum value for the  S P  is zero. 

The computation algorithm. Suppose that temperature measurements  1 2, ,..., IY Y YY are 

given at times ti , 1,2,...,i I , and an initial guess  0P is available for the vector of unknown 
parameters P. Set k = 0 and then 

Step 1. Solve the direct heat transfer problem (42) by using the available estimate kP  and 

obtain the vector of estimated temperatures    1 2, ,...,k
IT T TT P . 

Step 2. Check the stopping criterion given by equation (50). Continue if not satisfied.  

Step 3. Compute the gradient direction  kS P  from equation (48) and then the conjugation 

coefficient k  from (47). 

Step 4. Compute the direction of descent kd  by using equation (46). 

Step 5. Compute the search step size k  from formula (49). 

Step 6. Compute the new estimate 1kP  using (45). 
Step 7. Replace k by k+l and return to step 1. 

4.10 The Levenberg-Marquardt method 

The Levenberg-Marquardt method, originally devised for application to nonlinear 
parameter estimation problems, has also been successfully applied to the solution of linear 
ill-conditioned problems. Application of the method can be organized as  for conjugate 
gradient. As an example we will again consider the problem (42).  
The first two steps, the direct problem and the inverse problem, are the same as for 
the conjugate gradient method. 
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The iterative procedure. To minimize the least squares norm, (44), we need to equate to 
zero the derivatives of S(P) with respect to each of the unknown parameters 

 1 2, ,..., NP P P ,that is, 

 
     

1 2

... 0
N

S S S

P P P

  
   

  
P P P

 (51) 

Let us introduce the Sensitivity or Jacobian matrix, as follows: 

    

1 1 1

1 2

2 2 2

1 2

1 2

N

TT

N

I I I

N

T T T

P P P

T T T

P P P

T T T

P P P

   
    
   

             
 
   
    

T P
J P

P
   or   i

ij
j

T
J

P





 (52) 

where N = total number of unknown parameters, I= total number of measurements. The 
elements of the sensitivity matrix are called the sensitivity coefficients, (Özisik & Orlande, 
2000). The results of differentiation (51) can be written down as follows:  

    2 0T     J P Y T P   (53) 

For linear inverse problem the sensitivity matrix is not a function of the unknown 
parameters. The equation (53) can be solved then in explicit form (Beck & Arnold, 1977): 

   1
T T


P J J J Y   (54) 

In the case of a nonlinear inverse problem, the matrix J has some functional dependence on the 
vector P. The solution of equation (53) requires then an iterative procedure, which is 
obtained by linearizing the vector T(P) with a Taylor series expansion around the current 
solution at iteration k. Such a linearization is given by 

      k k k  T P T P J P P    (55) 

where  kT P  and kJ  are the estimated temperatures and the sensitivity matrix evaluated at 

iteration k, respectively. Equation (55) is substituted into (54) and the resulting expression is 
rearranged to yield the following iterative procedure to obtain the vector of unknown 
parameters P (Beck & Arnold, 1977): 

 
1 1[( ) ] ( ) [ ( )]k k k T k k T k   P P J J J Y T P   (56) 

The iterative procedure given by equation (56) is called the Gauss method. Such method is 
actually an approximation for the Newton (or Newton-Raphson) method. We note that 
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equation (54), as well as the implementation of the iterative procedure given by equation 

(56), require the matrix TJ J to be nonsingular, or 

 0T J J   (57) 

where  .  is the determinant. 

Formula (57) gives the so called Identifiability Condition, that is, if the determinant of TJ J  is 

zero, or even very small, the parameters Pj , for 1,2,...,j N ,  cannot be determined by 

using the iterative procedure of equation (56). 

Problems satisfying T J J 0 are denoted ill-conditioned. Inverse heat transfer problems are 

generally very ill-conditioned, especially near the initial guess used for the unknown 
parameters, creating difficulties in the application of equations (54) or (56). The Levenberg-
Marquardt method alleviates such difficulties by utilizing an iterative procedure in the 
form, (Özisik & Orlande, 2000): 

 1 1[( ) ] ( ) [ ( )]k k k T k k k k T k     P P J J J Y T P   (58) 

where k is a positive scalar named damping parameter and k is a diagonal matrix. 

The purpose of the matrix term k k   is to damp oscillations and instabilities due to the ill-

conditioned character of the problem, by making its components large as compared to those 

of TJ J  if necessary. k is made large in the beginning of the iterations, since the problem is 

generally ill-conditioned in the region around the initial guess used for iterative procedure, 

which can be quite far from the exact parameters. With such an approach, the matrix TJ J  is 

not required to be non-singular in the beginning of iterations and the Levenberg-Marquardt 
method tends to the steepest descent method, that is , a very small step is taken in the negative 

gradient direction. The parameter k  is then gradually reduced as the iteration procedure 

advances to the solution of the parameter estimation problem, and then the Levenberg-
Marquardt method tends to the Gauss method given by (56).  
The stopping criteria. The following criteria were suggested in (Dennis & Schnabel, 1983) to 
stop the iterative procedure of the Levenberg-Marquardt Method given by equation (58): 

 1
1

kS  P        

   2[ ( )]k k  J Y T P  (59) 

1
3

k k   P P  

where 1 , 2  and 3 are user prescribed tolerances and . denotes the Euclidean norm.  
The computational algorithm. Different versions of the Levenberg-Marquardt method can be 
found in the literature, depending on the choice of the diagonal matrix d and on the form 
chosen for the variation of the damping parameter k (Özisik & Orlande, 2000). [l-91. Here  
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 [( ) ]k k T kdiag  J J .   (60) 

Suppose that temperature measurements  1 2, ,..., IY Y YY are given at times ti , 1,2,...,i I , 

and an initial guess  0P is available for the vector of unknown parameters P. Choose a value 

for 0 , say, 0 = 0.001 and set k=0. Then, 

Step 1. Solve the direct heat transfer problem (42) with the available estimate kP  in order to 

obtain the vector    1 2, ,...,k
IT T TT P . 

Step 2. Compute ( )kS P from the equation (44). 

Step 3. Compute the sensitivity matrix kJ from (52) and then the matrix k  from (60), by 

using the current value of kP . 
Step 4. Solve the following linear system of algebraic equations, obtained from (58): 

 [( ) ] ( ) [ ( )]k T k k k k k T k    J J P J Y T P  (61) 

in order to compute 1k k k  P P P . 

Step 5. Compute the new estimate 1kP  as 

 1k k k   P P P   (62) 

Step 6. Solve the exact problem (42) with the new estimate 1kP  in order to find  1kT P . 

Then compute 1( )kS P . 

Step 7. If 1( ) ( )k kS S P P , replace k  by  10 k  and return to step 4. 

Step 8. If 1( ) ( )k kS S P P , accept the new estimate 1kP  and eplace k  by  0,1 k . 

Step 9. Check the stopping criteria given by (59). Stop the iterative procedure if any of them 
is satisfied; otherwise, replace k by k+1 and return to step 3. 

4.11 Kalman filter method 

Inverse problems can be regarded as a case of system identification problems. System 
identification has enjoyed outstanding attention as a research subject. Among a variety of 
methods successfully applied to them, the Kalman filter, (Kalman, 1960; Norton, 
1986;Kurpisz. & Nowak, 1995), is particularly suitable for inverse problems.  
The Kalman filter is a set of mathematical equations that provides an efficient computational 
(recursive) solution of the least-squares method. The Kalman filtering technique has been 
chosen extensively as a tool to solve the parameter estimation problem. The technique is 
simple and efficient, takes explicit measurement uncertainty incrementally (recursively), 
and can also take into account a priori information, if any. 
The Kalman filter estimates a process by using a form of feedback control. To be precise, it 
estimates the process state at some time and then obtains feedback in the form of noisy 
measurements. As such, the equations for the Kalman filter fall into two categories: time 
update and measurement update equations. The time update equations project forward (in 
time) the current state and error covariance estimates to obtain the a priori estimates for the 
next time step. The measurement update equations are responsible for the feedback by 
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incorporating a new measurement into the a priori estimate to obtain an improved a posteriori 
estimate. The time update equations are thus predictor equations while the measurement 
update equations are corrector equations.  
The standard Kalman filter addresses the general problem of trying to estimate x∈ℜ of a 
dynamic system governed by a linear stochastic difference equation, (Neaupane & 
Sugimoto, 2003) 

4.12 Finite element method 

The finite element method (FEM) or finite element analysis (FEA) is based on the idea of 
dividing the complicated object into small and manageable pieces. For example a two-
dimensional domain can be divided and approximated by a set of triangles or  rectangles (the 
elements or cells). On each element the function is approximated by a characteristic form.  
The theory of FEM is well know and described in many monographs, e.g. (Zienkiewicz, 
1977; Reddy & Gartling, 2001). The classic FEM ensures continuity of an approximate 
solution on the neighbouring elements. The solution in an element is built in the form of 
linear combination of shape function. The shape functions in general do not satisfy the 
differential equation which describes the considered problem. Therefore, when used to solve 
approximately an inverse heat transfer problem, usually leads to not satisfactory results.  
The FEM leads to promising results when T-functions (see part 4.4) are used as shape 
functions. Application of the T-functions as base functions of FEM to solving the inverse 
heat conduction problem was reported in (Ciałkowski, 2001). A functional leading to the 
Finite Element Method with Trefftz functions may have other interpretation than usually 
accepted. Usually the functional describes mean-square fitting of the approximated 
temperature field to the initial and boundary conditions. For heat conduction equation the 
functional is interpreted as mean-square sum of defects in heat flux flowing from element to 
element, with condition of continuity of temperature in the common nodes of elements. Full 
continuity between elements is not ensured because of finite number of base functions in 
each element. 
However, even the condition of temperature continuity in nodes may be weakened. Three 
different versions of the FEM with T-functions (FEMT) are considered in solving inverse 
heat conduction problems: (a) FEMT with the condition of continuity of temperature in the 
common nodes of elements, (b) no temperature continuity at any point between elements 
and (c) nodeless FEMT.  
Let us discuss the three approaches on an example of a dimensionless 2D transient 
boundary inverse problem in a square  ( , ) : 0 1,  0 1x y x y      , for t > 0. Assume that 

for 0y  the boundary condition is not known; instead measured values of temperature, 

ikY , are known at points  1 , ,b i ky t . Furthermore, 

   00
, , ,

t
T x y t T x y


 , 10

( , , ) ( , )
x

T x y t h y t


 , 2
1

( , , ) ( , )
y

T
x y t h x t

y






,    

 3
0

( , , ) ( , )
y

T
x y t h x t

y






 (63) 
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(a) FEMT with the condition of continuity of temperature in the common nodes of elements 
(Figure 2). We consider time-space finite elements. The approximate temperature in a j-th 

element,  , ,jT x y t , is a linear combination of the T-functions, ( , , )mV x y t : 

      
1

( , , ) , , ( , , ) ( , , )
N

Tj j j
m m

m

T x y t T x y t c V x y t C V x y t


     (64) 

where N is the number of nodes in the j-th element and [V(x, y, t)] is the column matrix 
consisting of the T-functions. The continuity of the solution in the nodes leads to the 
following matrix equation  in the element: 

  [ ][ ]V C T   (65) 

In (65) elements of matrix [ ]V  stand for values of the T-functions, ( , , )mV x y t , in the 
 nodal points, i.e.  , ,rs s r r rV V x y t , r,s = 1,2,…,N. The column matrix 

1 2[ ] [ , ,..., ]j j Nj TT T T T  consists of temperatures (mostly unknown) of the nodal points with 
ijT  standing for value of  temperature in the i-th node, i = 1,2,…,N. The unknown 

coefficients of the linear combination (63) are the elements of the  column matrix [C]. Hence 
we obtain 

    1[ ]C V T   and finally   1( , , ) ([ ] [ ]) [ , , ]j TT x y t V T V x y t   (66) 

It is clear, that in each element the temperature ( , , )jT x y t  satisfies the heat conduction 

equation. The elements of matrix 1([ ] [ ])TV T  can be calculated from minimization of the 

objective functional, describing  the mean-square fitting of the approximated temperature 
field to the initial and boundary conditions. 
 

 
Fig. 2. Time-space elements in the case of temperature continuous in the nodes. 

(b) No temperature continuity at any point between elements (Figure 3). The approximate 

temperature in a j-th element,  , ,jT x y t , is a linear combination of the T-functions (63), 

too. In this case in order to ensure the physical sense of the solution we minimize 
inaccuracy of the temperature on the borders between elements. It means that the 
functional describing the mean-square fitting of the approximated temperature field to 
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the initial and boundary conditions includes the temperature jump on the borders 
between elements. For the case 
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  (67) 

 

 
Fig. 3. Time-space elements in the case of temperature discontinuous in the nodes. 

(c) Nodeless FEMT. Again,  , ,jT x y t , is a linear combination of the T-functions. The time 

interval is divided into subintervals. In each subinterval the domain  is divided into J 

subdomains (finite elements) and in each subdomain j , j=1, 2,…, J (with i i   ) the 

temperature is approximated with the linear combination of the Trefftz functions according 
to the formula (64). The dimensionless time belongs to the considered subinterval. In the 
case of the first subinterval an initial condition is known. For the next subintervals initial 
condition is understood as the temperature distribution in the subdomain j at the final  
moment of time in the previous subinterval. The mean-square method is used to minimize 
the inaccuracy of the approximate solution on the boundary, at the initial moment of time 
and on the borders between elements. This way the unknown coefficients of the 

combination, j
mc , can be calculated. Generally, the coefficients j

mc  depend on the time 

subinterval number, (Grysa & Lesniewska, 2009).  
In (Ciałkowski et al., 2007) the FEM with Trefftz base functions (FEMT) has been compared 
with the classic FEM approach. The FEM solution of the inverse problem for the square 
considered was analysed. For the FEM the elements with four nodes and, consequently, the 
simplest set of base functions: (1,  ,  ,  )x y xy have been applied. 

Consider an inverse problem in a square (compare the paragraph before the equation (63)). 
Using FEM to solve the inverse problem gives acceptable solution only for the first row of 
elements. Even for exact values of the given temperature the results are encumbered with 
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relatively high error. For the next row of the elements, the FEM solution is entirely not 
acceptable. When the distance b  greater than the size of the element, an instability of the 

numerical solution appears independently of the number of finite elements. Paradoxically, 
the greater number of elements, the sooner the instability appears even though the accuracy 
of solution in the first row of elements becomes better. The classic FEM leads to much worse 
results than the FEMT because the latter makes use of the Trefftz functions which satisfy the 
energy equation. This way the physical meaning of the results is ensured.  

4.13 Energetic regularization in FEM 

Three kinds of physical aspects of heat conduction can be applied to regularize an 
approximate solution obtained with the use of finite element method, (Ciałkowski et al., 
2007). The first is minimization of heat flux jump between the elements, the second is 
minimization of the defect of energy dissipation on the border between elements and the 
third is the minimization of the intensity of entropy production between elements. Three 
kinds of regularizing terms for the objective functional are proposed:  
- minimizing the heat flux inaccuracy between elements: 

 
,
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, 0

e

i j

t
ji

i ji j

TT
dt d

n n

 
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 
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  (68) 

- minimizing numerical entropy production between elements: 
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- minimizing the defect of energy of dissipation between elements: 
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    (70) 

with tf being the final moment of the considered time interval, (Ciałkowski et al., 2007; Grysa 
& LeĤniewska, 2009),  and ,i j standing for the border between i-th and j-th element. 

Notice that entropy production functional and energy dissipation functional are not 
quadratic functions of the coefficients of the base functions in elements. Hence, minimizing 
the objective functional leads to a non-linear system of algebraic equations. It seems to be 
the only disadvantage when compared with minimizing mean-square defects of heat flux 
(formula (68)); the latter leads to a system of linear equations. 

4.14 Other methods 

Many other methods are used to solve the inverse heat conduction problems. Many iterative 
methods for approximate solution of inverse problems are  presented in monograph 
(Bakushinsky & Kokurin, 2004). Numerical methods for solving inverse problems of 
mathematical physics are presented in monograph (Samarski & Vabishchevich, 2007). Among 
other methods it is worth to mention boundary element method (Białecki et al., 2006; Onyango 
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et al., 2008), the finite difference method (Luo & Shih, 2005; Soti et al., 2007), the theory of 
potentials method (Grysa, 1989), the radial basis functions method (Kołodziej et al., 2010), the 
artificial bee colony method (Hetmaniok et al., 2010), the Alifanov iterative regularization 
(Alifanov, 1994), the optimal dynamic filtration, (Guzik & Styrylska, 2002),  the control volume 
approach (Taler & Zima, 1999), the meshless methods ((Sladek et al., 2006) and many other. 

5. Examples of the inverse heat conduction problems  

5.1 Inverse problems for the cooled gas turbine blade 

Let us consider the following stationary problem concerning the gas turbine blade (Figure 
4): find temperature distribution on the  inner boundary i  of the blade cross-section,

i
T  , 

and heat transfer coefficient variation along i , with the condition 

  0 0T TT T s T       (71) 

where T  stands for temperature measurement tolerance and s  is a normalized coordinate 

of a perimeter length (black dots in Figure 4 denote the beginning and the end of the inner 
and outer perimeter, coordinate is counted counterclockwise). Heat transfer coefficient 
distribution  at the outer surface, 

o
ch  , is known, Tfo = 1350 oC, Tfi=780oC, T0 = 1100 oC , T , 

standing for temperature measurement tolerance, does not exceed 1oC. Moreover, the inner 
and outer fluid temperature Tfo and Tfi are known, (Ciałkowski et al., 2007a). The 
unknowns: ?

i
T    , ?

i
ch    The solution has to be found in the class of functions fulfilling 

the energy equation 

   0k T     (72)  

 

 
Fig. 4. An outline of a turbine blade. 

with k assumed to be a constant. To solve the problem we use FEM with the shape functions 
belonging to the class of harmonic functions. It means that we can express an approximate 
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solution of a stationary heat conduction problem in each element as a linear combination of 
the T-functions suitable for the equation (72). The functional with a term minimizing the 
heat flux inaccuracy between elements reads 

    
, ,

2 2
( )

i j i j
ij

I T q q d w T T d    
 

 
      
 
 

    with 
T

q k
n





   (73) 

In order to simplify the problem, temperature on the outer and inner surfaces was then 
approximated with 5 and 30  Bernstein polynomials, respectively, in order to simplify the 
problem. The area of the blade cross-section was divided into 99 rectangular finite elements 
with 16 nodes (12 on the boundary of each element and 4 inside). 16 harmonic (Trefftz) 
functions were used as base functions. All together 4x297 unknowns were introduced. 
Calculations were carried out with the use of PC with 1.6 GHz processor. Time of 
calculation was 1,5 hours using authors’ own computer program in Fortran F90. The results 
are presented at Figures 5 and 6.  
 

  

 
Fig. 5. Temperature [oC] (upper) and heat flux (lower) distribution on the outer (red squares) 
and inner (dark blue dots) surfaces of the blade.  
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Oscillations of temperature of the inner blade surface (Figure 5 left) is due to the number 
of Bernstein polynomials: it was too small. However, thanks to a small number of the 
polynomials a small number of unknown values of temperature could be taken for 
calculation. The same phenomenon appears in Figure 5 right for heat flux on the inner 
blade surface as well as in Figure 6 for the heat transfer coefficients values. The distance 
between peaks of the curves for the inner and outer surfaces in Figure 6 is a result of 
coordinate normalization of the inner and outer surfaces perimeter length. The 
normalization was done in such a way that only  for s = 0 (s =1) points on both surfaces 
correspond to each other. The other points with the same value of the coordinate s for the 
outer and inner surface generally do not correspond to each other (in the case of peaks the 
difference is about 0,02). 
 

 
Fig. 6. Heat transfer coefficient over inner (dark blue squares) and outer (red dots — given; 
brown dots — calculated) surfaces of the blade. 

5.2 Direct solution of a heat transfer coefficient identification problem 

Consider a  1D dimensionless problem of heat conduction in a thermally isotropic flat slab 
(Grysa, 1982): 

 2 2/ /T x T t         for (0,1)x  and  t(0, tf], 
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 / 0T x              for x = 0 and  t(0, tf],  (74) 

                / 1, fk T x Bi T t T t          for x = 1  and  t(0, tf], 

0T           for     (0,1)x   and  t = 0 . 

If the upper surface temperature (for x = 1) cannot be measured directly then in order to find 
the Biot number, temperature responses at some inner points of the slab or even 
temperature of the lower surface  (x = 0) have to be known. Hence, the problem is ill-posed. 
Employing the Laplace transformation to the problem (74) we obtain 

    cosh
,

sinh cosh
f

Bi x s
T x s T s

s s Bi s



    or     

      cosh 1 1 sinh
, ,

cosh cosh
f

x s s
T s T x s T x s

s Bis s s s
     (75) 

The equation (75) is then used to find the formula describing the Biot number, Bi. Then, the 
inverse Laplace transformation yields: 

 

   

           

2

1

2

1

2 , exp

1
1 2 cos exp ,

n
n

n

f n n
nn

T x t

Bi

T t x t H t x t

 

  










 


 
     
  




  (76) 

Here asterisk denotes convolution,  H   is the Heaviside function and  2 1 / 2n n   , 

n = 1,2,… . 
If the temperature is known on the boundary x = 0 (e.g. from measurements), values of Bi 
(because of noisy input data having form of a function of time) can be calculated from  
formula (76). Of course, formula (76) is obtained with the assumption that Bi = const. 
Therefore, the results have to be averaged in the considered time interval. 

6. Final remarks  

It is not possible to present such a broad topic like inverse heat conduction problems in one 
short chapter. Many interesting achievements were discussed very briefly, some were 
omitted. Little attention was paid to stochastic methods. Also, the non-linear issues were 
only mentioned when discussing some methods of solving inverse problems. For lack of 
space only few examples could be  presented.  
The inverse heat conduction problems have been presented in many monographs and 
tutorials. Some of them are mentioned in references, e.g. (Alifanov, 1994; Bakushinsky & 
Kokurin, 2004; Beck & Arnold, 1977; Grysa, 2010; Kurpisz & Nowak, 1995; Özisik & 
Orlande, 2000;  Samarski & Vabishchevich, 2007; Duda & Taler, 2006; Hohage, 2002; Bal, 
2004; Tan & Fox, 2009).  
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