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1. Introduction  

Optical lithography is a core technique used in the industrial mass production of 
semiconductor memory chips. To increase the memory size per chip, shorter wavelength 
light is required for the light source. ArF excimer laser light (193 nm) is used at present and 
extreme ultraviolet (EUV) light (13.5 nm) is proposed in next-generation optical lithography. 
There is currently worldwide research and development for lithography using EUV light 
(Bakshi, 2005). EUV lithography (EUVL) was first demonstrated by Kinoshita et al. in 1984 
at NTT, Japan (Kinoshita et al., 1989). He joined our laboratory in 1995 and has since been 
actively developing EUVL technology using our synchrotron facility NewSUBARU. Today, 
EUVL is one of the major themes studied at our laboratory. 
To use EUVL in industry, however, a small and strong light source instead of a synchrotron 
is required. Our group began developing laser-produced plasma (LPP) sources for EUVL in 
the mid-1990s (Amano et al., 1997). LPP radiation from high-density, high-temperature 
plasma, which is achieved by illuminating a target with high-peak-power laser irradiation, 
constitutes an attractive, high-brightness point source for producing radiation from EUV 
light to x-rays. 
Light at a wavelength of 13.5 nm with 2% bandwidth is required for the EUV light source, 
which is limited by the reflectivity of Mo/Si mirrors in a projection lithography system. Xe 
and Sn are known well as plasma targets with strong emission around 13.5 nm. Xe was 
mainly studied initially because of the debris problem, in which debris emitted from plasma 
with EUV light damages mirrors near the plasma, quickly degrading their reflectivity. This 
problem was of particular concern in the case of a metal target such as Sn because the metal 
would deposit and remain on the mirrors. On the other hand, Xe is an inert gas and does not 
deposit on mirrors, and thus has been studied as a deposition-free target. Because of this 
advantage, researchers initially studied Xe. To provide a continuous supply of Xe at the 
laser focal point, several possible approaches have been investigated: employing a Xe gas 
puff target (Fiedrowicz et al., 1999), Xe cluster jet (Kubiak et al., 1996), Xe liquid jet 
(Anderson et al., 2004; Hansson et al., 2004), Xe capillary jet (Inoue et al., 2007), stream of 
liquid Xe droplets (Soumagne et al., 2005), and solid Xe pellets (Kubiak et al., 1995). Here, 
there are solid and liquid states, and their cryogenic Xe targets were expected to provide 
higher laser-to-EUV power conversion efficiency (CE) owing to their higher density 
compared with the gas state. In addition, a smaller gas load to be evacuated by the exhaust 
pump system was expected. 
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We have also studied a cryogenic Xe solid target. In that study, we measured the EUV 
emission spectrum in detail, and we found and first reported that the emission peak of Xe 
was at 10.8 nm, not 13 nm (Shimoura et al., 1998). This meant we could only use the tail of 
the Xe plasma emission spectrum, not its peak, as the radiation at 13.5 nm wavelength with 
2% bandwidth. From this, improvements in the CE at 13.5 nm with 2% bandwidth became a 
most critical issue for the Xe plasma source; such improvements were necessary to reduce 
the pumped laser power and cost of the whole EUV light source. On the other hand, the 
emission peak of a Sn target is at 13.5 nm; therefore, Sn intrinsically has a high CE at 13.5 nm 
with 2% bandwidth. The CE for Sn is thus higher than that for Xe at present, in spite of our 
efforts to improve the CE for Xe. This resulted in a trend of using Sn rather than Xe in spite 
of the debris problem. Today, Cymer (Brandt et al., 2010) and Gigaphoton (Mizoguti et al., 
2010), the world’s leading manufacturers of LPP-EUV sources, are developing sources using 
Sn targets pumped with CO2 lasers while making efforts to mitigate the effects of debris. 
In the historical background mentioned above, we developed an LPP-EUV source composed 

of 1) a fast-rotating cryogenic drum system that can continuously supply a solid Xe target 

and 2) a high-repetition-rate pulse Nd:YAG slab laser. We have developed the source in 

terms of its engineering and investigated potential improvements in the CE at 13.5 nm with 

2% bandwidth. The CE depends on spatial and temporal Xe plasma conditions (e.g., density, 

temperature, and size). To achieve a high CE, we controlled the condition parameters and 

attempted to optimize them by changing the pumping laser conditions. We initially focused 

on parameters at the wavelength of 13.5 nm with 2% bandwidth required for an EUV 

lithography source, but the original emission from the Xe plasma has a broad spectrum at 5–

17 nm. We noted that this broad source would be highly efficient and very useful for many 

other applications, if not limiting for EUVL. Therefore, we estimated our source in the 

wavelength of 5–17 nm. Though Xe is a deposition-free target, there may be sputtering due 

to the plasma debris. We therefore investigated the plasma debris emitted from our LPP 

source, which consists of fast ions, fast neutrals, and ice fragments. To mitigate the 

sputtering, we are investigating the use of Ar buffer gas. In this chapter, we report on the 

status of our LPP-EUV source and discuss its possibilities.  

2. Target system – Rotating cryogenic drum  

We considered using a cryogenic solid state Xe target and developed a rotating drum 

system to supply it continuously, as shown in Fig. 1 (Fukugaki et al., 2006). A cylindrical 

drum is filled with liquid nitrogen, and the copper surface is thereby cooled to the 

temperature of liquid nitrogen. Xe gas blown onto the surface condenses to form a solid Xe 

layer. The drum coated with a solid Xe layer rotates around the vertical z-axis and moves up 

and down along the z-axis during rotation, moving spirally so that a fresh target surface is 

supplied continuously for every laser shot. A container wall surrounds the drum surface, 

except for an area around the laser focus point. This maintains a relatively high-density Xe 

gas in the gap between the container wall and the drum surface so as to achieve a high 

growth rate of the layer and fast recovery of the laser craters during rotation. The container 

wall also suppresses Xe gas leakage to the vacuum chamber to less than 5%, and the 

vacuum pressure inside the chamber is kept at less than 0.5 Pa. The diameter of the drum is 

10 cm. Its mechanical rotation and up–down speed are tunable at 0–1200 rpm and 0–10 

mm/s in a range of 3 cm respectively.  
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Fig. 1. Illustration of (a) the top view of the rotating cryogenic drum, (b) the side view, and 
(c) the wiper. 

First, we formed a solid Xe layer with thickness of 300–500 m on the drum surface and 

measured the size of the laser crater, which depends on the laser pulse energy. The crater 

diameter was measured directly from a microscope image, and its depth was roughly 

estimated from the number of shots needed to burn through the known thickness of the 

layer. A Q-switched 1064 nm Nd:YAG laser was focused on the Xe target surface with a spot 

diameter of 90 m. Measured crater diameters Dc and crater depths c are plotted in Fig. 2 

for a laser energy range of 0.04–0.7 J. From the results in Fig. 2, a thickness of more than 200 

m was found to be sufficient for a laser shot of 1 J not to damage the drum surface. We 

then decided the target thickness to be 500 m. 

Two wipers are mounted on the container wall as shown in Fig.1 (a) to adjust the thickness 

of the solid Xe layer to 500 m. As shown in Fig. 1 (c), the V-figure wipers also collect the Xe 

target powder on the craters produced by laser irradiation, thereby increasing the recovery 
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speed. The wipers demonstrated a recovery speed of 150 m/s up to a rotation speed of 

1000 rpm, at a Xe flow rate of 400 mL/min. 

 

 

Fig. 2. Measured diameter and depth of a crater as a function of the irradiating laser 
energy. 

Next, operational parameters of the drum are discussed to achieve high-repetition-rate laser 

pulse irradiation. In Fig. 1(b), R is the rotation speed, r is the radius of the drum, and L is the 

range of motion (scanning width of the target) along the rotational axis (z-axis). When the 

laser pulses are irradiated with frequency f, craters form on the target with separation length 

d between adjacent craters. The recovery time of a crater is T. Under the condition that 

craters do not overlap, f and T can be written as 

 
2 r R

f
d

 
        (1) 

 2

2 rL
T

f d





       (2) 

For example, if we assume laser energy of EL = 1 J, a formed crater has a diameter of Dc = 

300 m and a depth of c = 160 m, and d must be at least 300 m for the craters not to 

overlap. At r = 5 cm and R = 1000 rpm, we obtain f = 17 kHz from Eq. (1). When f = 10 kHz 

and L = 3 cm, T is calculated to be 10 s using Eq. (2), and we know that a recovery speed of 

the crater (Vc = c/T) of 16 m/s is required. Here, we have already obtained Vc = 150 m/s 

via the wiper effect and the required speed has been achieved. 
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Although flaking of the target layer due to superimposition of shock and/or thermal waves 

produced by continuous laser pulses was a concern for high-repetition pulse operation, 

model experiments and calculations show that there is no problem up to 1 J per pulse and 10 

kHz (Inoue et al., 2006). 

From the above results, we conclude that the rotating drum system we developed can 
supply the target continuously, achieving the required laser irradiation of 10 kHz and 1 J, 
and thus realizing a high-average-power EUV light source. 

3. Drive laser – Nd:YAG slab laser 

High peak power and high focusability (i.e., high beam quality) are required for a driving 

laser to produce plasma. In addition, high average power is required for high throughput in 

industrial use such as EUVL. We express such a laser as a high average and high peak 

brightness laser, for which the average brightness and peak brightness are defined as average 

power/(·M2)2 and peak power/(·M2)2, respectively; we began studying such lasers in the 

1990s (Amano et al, 1997,1999). 

We attempted to realize a high average and high peak brightness laser using a solid-state 

Nd:YAG laser (Amano et al., 2001). The thermal-lens effect and thermally induced 

birefringence in an active medium are serious for such a laser; thus, thermal management of 

the amplifier head is more critical, and the design of the amplifier system must more 

efficiently extract energy and more accurately correct the remaining thermally induced 

wavefront aberrations in the pumping head. To meet these requirements, we developed a 

phase-conjugated master-oscillator-power-amplifier (PC-MOPA) Nd:YAG laser system 

consisting of a diode-pumped master oscillator and flash-lamp-pumped angular-

multiplexing slab power-amplifier geometry incorporating a stimulated-Brillouin-scattering 

phase-conjugate mirror (SBS-PCM) and image relays (IR). The system design and a 

photograph are shown in Fig. 3. This laser demonstrated simultaneous maximum average 

power of 235 W and maximum peak power of 30 MW with M2 = 1.5. The maximum pulse 

energy was 0.73 J with pulse duration of 24 ns at a pulse repetition rate of 320 pps. We 

therefore obtained, simultaneously, both high average brightness of 7 × 109 W/cm2·sr and 

high peak brightness of 1 × 1015 W/cm2·sr.  

This peak brightness is enough to produce plasma but the average brightness needs to be 

higher for EUVL applications. The maximum average power is mainly limited by the 

thermal load caused by flash-lamp-pumping in amplifiers. The system design rules that we 

confirmed predicted that average output power at the kilowatt level can be achieved by 

replacing lamp pumping in the amplifier with laser-diode pumping. Since our work, it 

seems that there has been no major progress in laser engineering for such high average and 

high peak brightness lasers. Average power of more than 10 kW has been achieved in 

continuous-wave solid-state lasers using configurations of fibers (ex. IPG Photonics Corp.) 

or thin discs (ex. TRUMPF GmbH). On the other hand, for the short-pulse lasers mentioned 

above, the maximum average power remains around 1 kW (Soumagne et al., 2005), which is 

more than an order of magnitude less than the ~30 kW required for an industrial EUVL 

source. This is one of the reasons why CO2 lasers have been preferred over Nd:YAG lasers 

as the driving laser. To further the industrial use of solid-state lasers, there needs to be a 

breakthrough to increase the average power. 
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Fig. 3. Experimental setup and photograph of the PC-MOPA laser system. 

4. EUV source  

Figure 4 is an illustration and a photograph of the LPP-EUV source composed of a rotating 

cryogenic drum and Nd:YAG slab laser. The drum, detectors, and irradiating samples are 

installed in a vacuum chamber because EUV light cannot transmit through air. Driving laser 

pulses passing through the window are focused perpendicularly on the target by the lens so 

that Xe plasma is produced and EUV radiation is emitted. At a repetition rate of 320 Hz and 

average power of 110 W, the laser pulses irradiate the Xe solid target on the rotating drum 

with laser intensity of ~1010 W/cm2. The rotation speed is 130 rpm and the vertical speed 3 
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mm/s. The Xe target gas is continuously supplied at a flow rate of 400 mL/min. Under 

these operation conditions, we obtain continuous EUV generation with average power of 1 

W at 13.5 nm and 2% bandwidth.  

The driving pulse energy was determined to be 0.3 J under the optimal condition that higher 

CE and lower debris are simultaneously achieved, as detailed below. At present, the 

maximum achieved CE is 0.9% at 13.5 nm with 2% bandwidth for the optimal condition. 

Under drum-rotating operation, we found the good characteristics of increased CE and less 

fast ions compared with the case with the drum at rest. We next detail the EUV and debris 

characteristics of the EUV source. 

 

 

Fig. 4. Experimental setup and photograph of the laser plasma EUV source. 

5. Conversion efficiency for EUVL  

In this section, we report our studies carried out to improve the CE at 13.5 nm with 2% 

bandwidth required for the EUVL source (Amano et al., 2008, 2010a). To achieve the 

highest CE, we attempted to control the plasma parameter by changing the driving laser 

conditions. We investigated dependences of the CE on the drum rotation speed, laser 

energy, and laser wavelength. We also carried out double-pulse irradiation experiments 

to improve the CE. 

To obtain data of EUV emission, a conventional Q-switched Nd:YAG rod laser (Spectra-

Physics, PRO-230) was used in single-shot operation. By changing the position of the 

focusing lens to change the laser spot, the laser intensity on the target was adjusted to find 

the optimum intensity. We note that the lens position (LP) is zero at best focus, negative for 

in-focus (the laser spot in the target before the focus) and positive for out-of-focus (beyond 

the focus).  
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Figure 5(a) shows the CE per solid angle as a function of LP (laser intensity), which was 

measured by an EUV energy detector calibrated absolutely—Flying Circus (SCIENTEC 

Engineering)—located 45 degrees from the laser incident axis. The laser pulse energy was 

0.8 J. We see that the CE was higher under the rotating-drum condition than under the rest 

condition. Here, the rest condition is as follows. Xe gas flow is stopped (0 mL/min) after the 

target layer has formed, and the drum rests (0 rpm) during a laser shot and stepwise rotates 

after every shot so that a fresh target is supplied to the point irradiated by the laser. The 

rotation condition is as follows. Laser pulses irradiate quasi-continuously the target on the 

rotating drum (>3 rpm), supplying Xe gas (>40 mL/min) and forming the target layer. The 

EUV intensity increased immediately with slow rotation (>3 rpm) and appeared to be 

almost independent of the rotation speed. In Fig. 5(a), we see that the maximum CE per 

solid angle was for an optimized laser intensity of 1 × 1010 W/cm2 (LP = –10 mm) during 

rotation. The EUV angular distribution could be expressed by a fitting curve of (cos)0.38, 

and taking into account this distribution, we obtained the maximum spatially integrated CE 

of 0.9% at 13.5 nm with 2% bandwidth. EUV spectra at laser intensity of 1 × 1010 W/cm2 are 

shown in Fig. 5(b). It is obvious that the emission of the 13.5 nm band was greater in the case 

of rotation than it was in the case of rest.  

 

 

Fig. 5. (a) CE at the wavelength of 13.5 nm with 2% bandwidth as a function of LP under the 

rotation (130 rpm) and at-rest (0 rpm) conditions. The laser energy was 0.8 J. Insets show the 

laser beam focusing on the target. (b) Spectra of EUV radiation from the cryogenic Xe drum 

targets under the rotation (bold line) and at-rest (narrow line) conditions with laser intensity 

of 1 × 1010 W/cm2 for LP of –10 mm. 

We considered the mechanism for the increase in EUV intensity with rotation of the target. 
Figure 6 shows photographs of the visible emission from the Xe target observed from a 
transverse direction. It shows an obvious expansion of the emitting area with longer 
(optically thicker) plasma in the rotating case compared with the at-rest case. These images 
indicate the existence of any gas on the target surface. Under the rotation condition, Xe gas 
is supplied continuously to grow the target layer and the wipers form the layer. However, 
the wipers are not chilled especially, and the temperature of the target surface might 
increase owing to contact with the wipers in the rotating case so that the vapor pressure 
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increases. Therefore, the vaporized Xe gas from the target surface was considered as the gas 
on the target. Although additional Xe gas was added from outside the vacuum chamber, the 
EUV intensity did not increase and in fact decreased owing to gas absorption. Therefore, it is 
supposed that Xe gas with adequate pressure localizes only near the target surface. From 
these results, we conclude that Xe gas on the target surface in the rotating drum produces 
optically thick plasma that has optimized density and temperature for emitting EUV 
radiation, and satellite lines of the plasma contribute effectively to increasing the EUV 
intensity (Sasaki et al., 2004).  
 

 

Fig. 6. Images of visible emissions from the plasma on the resting (a) and rotating (b) targets. 

Next, the dependence of the laser pulse energy was investigated. We measured the CE as a 

function of laser energy at different LPs in the rotating drum. For laser energies exceeding 

0.3 J, a CE of nearly 0.9% was achieved by tuning the LP with the laser intensity optimized 

as ~1010 W/cm2. In the energy range, the maximum CE did not depend on the laser energy. 

At the LP in this experiment, the spot size on the target was larger than 500 m and plasma 

energy loss at the edges could be ignored for this large spot. Therefore, the same CE was 

achieved at the same laser intensity. However, in the lower energy region, the spot size must 

be small to achieve optimal laser intensity, and edge loss due to three-dimensional 

expansion in plasma cannot then be ignored and a decrease in the CE was observed. 

Therefore, it is concluded that laser energy must exceed 0.3 J to achieve a high CE.  

The dependence of the laser wavelength was also investigated. Additionally, we carried out 1 

 double-pulse irradiation experiments in which a pre-pulse produces plasma with optimal 

density and temperature, and after a time delay, a main laser pulse effectively injects emission 

energy into the expanded plasma to increase the CE. Under the rest condition, there were 

increases in CE for the shorter laser or the double pulse irradiation (Miyamoto et al., 2005, 

2006). In both cases, the long-scale plasmas and their emission spectra were observed to be 

similar to those under the rotation condition for 1  single-pulse irradiation. Therefore, we 

supposed that in the both cases, the CE was increased by the same mechanism described 

above. However, when the shorter pulses or the double pulses were emitted under the 

rotating condition, the CE did not increase but decreased. It is considered that the opacity of 

the plasma was too great in these experiments and the best condition was not achieved. 

In conclusion, the maximum CE was found to be 0.9% at 13.5 nm with 2% bandwidth for the 

optimal condition. 
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6. Xe plasma debris  

In this section, we report the characteristics of the plasma debris that damages mirrors 
(Amano et al., 2010b). First, we investigated fast ions, fast neutrals and ice fragments, which 
constitute the debris. 
When we found that EUV radiation was greater for a rotating drum than for a drum at rest, 
we also found that the number of fast ions decreased simultaneously. Figure 7(a) shows ion 
signals from a charge collector (CC) with laser pulse energy of 0.5 J and optimal intensity of 
1010 W/cm2, for different drum rotation speeds. The ion signal reduces rapidly after the 
drum starts to rotate (> 4 rpm), after which the signal is almost independent of rotation 
speed. Ion energy spectra were obtained as shown in Fig. 7(b) using the time-of-flight 
signals shown in Fig. 7(a). Here, we assume that all ions were doubly charged because we 
measured the principle charge state of Xe ions to be two with an electrostatic energy 
analyzer (Inoue et al., 2005). Under the rotation condition, the maximum ion energy 
decreases to 6 keV and the number of high-energy ions (with energy of a few dozen kilo-
electron-volts) also decreases. These are favorable characteristics for the debris problem. The 
decrease in the ion count under the rotation condition can be explained by a gas curtain effect 
that originates from the Xe gas localized at the target surface. The pressure of this localized 

Xe gas can be roughly estimated from the peak attenuation () in Fig. 7(a); we estimated the 
product of pressure and thickness to be about 10 Pa·mm. 
 

 

Fig. 7. (a) CC signals of ions and (b) their energy spectra at rotation speeds of 0, 4, 10, 60 and 

130 rpm. in (a) is the loss rate of ions due to the drum rotating. The ion number in (b) was 
calculated assuming the charge state was two. 

Fast neutral particles were measured by the microchannel plate (MCP) detector when the 

number of fast ions decreased under the rotation condition. The MCP is sensitive to both 

ions and neutrals, making the use an electric field obligatory to repel ions so that the MCP 

detects only neutral particles. From the measurement, we found the number of neutrals to 

be approximately an order of magnitude less than the number of ions. 

In the case of solid Xe targets, ice fragments might be produced by shock waves of laser 
irradiation, whereas this is not the case for gas or liquid targets. In early experiments using a 
solid Xe pellet, ice fragments were observed and mirror damage due to these fragments was 
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indicated (Kubiak et al., 1995). Since these reports, liquid Xe targets have been preferred 
over solid Xe targets, with the exception of our group. It is therefore necessary to clarify 
characteristics of fragment debris from a solid Xe target on a rotating cryogenic drum. After 
exposing a Si sample to the Xe plasmas pumped by 100 laser pulses, we observed fragment 
impact damage on its surface using a scanning electron microscope. We observed damage 
spots on the samples at laser energy of 0.8 J irrespective of whether the drum rotates. 
Conversely, we did not observe spots at laser energy of 0.3 J. To explain these results, we 
consider that the fragment speed (kinetic energy) might drop below a damage threshold 
upon reducing the laser pulse energy because the fragment speed is a function of incident 
laser energy (Mochizuki et al., 2001). Observing the damage spots, we know that the 
fragment size was larger than a few microns, and the gas curtain might not be effective for 
such large fragments. This would explain why the fragment impact damage was 
independent of the state of drum rotation. From these results, we conclude that fragment 
impact damage, which occurs especially for the solid Xe target, can be avoided simply by 
reducing the incident laser pulse energy to less than 0.3 J. 
The laser pulse energy was set to 0.3 J to avoid fragment impact damage and the laser 
repetition rate was 320 pps, giving an average power of 100 W. Next, we investigated 
damage to a Mo/Si mirror, which was the result of total plasma debris (mainly fast ions) 
from the laser multi-shots experiments. After 10 min plasma exposure, the sputtered depth 
was measured to be 50 nm on the surface of a Mo/Si mirror placed 100 mm from the plasma 
at a 22.5-degree angle to the incident laser beam. Because a typical Mo/Si mirror has 40 
layer pairs and the thickness of one pair is approximately 6.6 nm, all layers will be removed 
within an hour by the sputtering. Although Xe is a deposition-free target, sputtering by 
debris needs to be mitigated. However, the major plasma debris component is ions, and we 
believe their mitigation to be simple compared with the case of a metal target such as Sn, 
using magnetic/electric fields and/or gas. We are now studying debris mitigation by Ar 
buffer gas. Ar gas was chosen because of its higher stopping power for Xe ions and lower 
absorption of EUV light, and its easy handling and low cost. After the vacuum chamber was 
filled with Ar gas, total erosion rates were measured using a gold-coated quartz crystal 
microbalance sensor placed 77 mm from the plasma at a 45-degree angle, and 
simultaneously, EUV losses were monitored by an EUV detector placed 200 mm from the 
plasma at a 22.5-degree angle. Figure 8 shows the erosion rates as a function of Ar gas 
pressure. The rates were normalized by the erosion N0 at a pressure of 0 Pa. When the Ar 
pressure was 8 Pa, we found the erosion rate was 1/18 of that without the gas, but the 
absorption loss for EUV light was only 8%. The erosion rates (N/N0) in Fig. 8 can be fitted to 
an exponential curve: 

   exp
0

P
ArN P N l

Ar kT


 
   
 
 

       (3) 

where PAr is the Ar pressure, k is the Boltzmann constant, T is the gas temperature,  is the 

cross section and l is the debris flight length. From this fitting, we obtain  = 2.0 × 10–20 m2. 

The Ar buffer gas successfully mitigated the effect of plasma debris with little EUV 

attenuation. Increasing the Ar pressure, mirror erosion decreases but EUV attenuation 

increases. Compromising the erosion and EUV attenuation, an optimized pressure is 

achieved. We should localize the higher density Ar gas to only the debris path so that EUV 

attenuation is as small as possible. We can design the optimized pressure condition using 
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the  value obtained and we consider the use of an Ar gas jet. Through this mitigation, we 

expect that erosion will be reduced by more than two orders of magnitude and the lifetime 

of the mirror will be extended. We believe the debris problem for Xe plasma will thus be 

solved.   

 

 

Fig. 8. Normalized erosion rate as a function of Ar pressure. The laser energy was 0.3 J and 
the rotation speed was 130 rpm. 

7. EUV emission at 5-17nm  

We began developing the LPP source for EUVL and characterized it at 13.5 nm with 2% 
bandwidth, but Xe plasma emission has originally a broad continuous spectrum as shown in 
Fig. 9. If the broad emission is used, our source will be very efficient, not limiting its 
applications to EUVL. We characterized the source again in the wavelength range of 5–17 
nm. Figure 10 shows the CE at 5–17 nm as a function of LP (laser intensity) with laser energy 
of 0.8 J. The maximum spatially integrated CE at 5–17 nm was 30% for optimal laser 
intensity of 1 × 1010 W/cm2. The maximum CE depended on the laser energy and was 21% 
at 0.3 J. Therefore, high average power of 20 W at 5–17 nm has been achieved for pumping 
by the slab laser with 100 W (0.3 J at 320 pps). We consider this a powerful and useful 
source.  
Recently, new lithography using La/B4C mirrors having a reflectivity peak at 6.7 nm was 
proposed as a next-generation candidate following EUVL using Mo/Si mirrors having a 
reflectivity peak at 13.5 nm (Benschop, 2009). This means that a light source emitting around 
6 nm will be required in a future lithograph for industrial mass production of 
semiconductors. Because our source emits broadly at 5–17 nm as mentioned above, it can 
obviously be such a 6 nm light source. We thus next characterized it as a source emitting at 
6.7 nm. Here we did not carry out new experiments to optimize the plasma for emitting at 
6.7 nm but looked for indications of strong emission at 6.7 nm from the spectrum data 
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already acquired. When making efforts to improve the CE at 13.5 nm, we noticed that 
emissions around 6 nm became strong at higher laser intensity. When laser energy is 0.8 J 
and LP = 0 mm (i.e., laser intensity is 4  1012 W/cm2 under the rotation condition), there is a 
hump around 6 nm as shown in Fig. 9. The spatially integrated CE at 6.7 nm with 0.6% 
bandwidth is estimated to be 0.1% from this spectrum. Because the bandwidth of 0.6% for 
the La/B4C mirror reflectivity is narrower than the 2% for the Mo/Si mirror, the available 
reflected power is intrinsically small. The CE of 0.1% was not obtained under optimized 
conditions and higher CE may be achieved in the future. In any event, our source is only one 
LPP source at present that can generate continuously an emission at 6.7 nm. 
 

 

Fig. 9. Spectra of EUV radiation under the rotation (bold line) and at-rest (narrow line) 

conditions with laser intensity of 4  1012W/cm2 for best focus (LP = 0 mm). The laser 
energy was 0.8 J. 

 

 

Fig. 10. CE for a wavelength of 5–17 nm as a function of LP under the rotation (130 rpm) 
condition. The laser energy was 0.8 J.  
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8. Conclusion  

This chapter briefly reviewed our LPP-EUV source. First, we characterized the source at a 
wavelength of 13.5 nm with 2% bandwidth as an EUVL source and achieved a maximum CE 
of 0.9%. When the driving laser power is 110 W at 320 pps, the average power of 1 W is 
obtained at the wavelength and this is thought to be sufficient for the source to be used in 
various studies. However, the EUV power required for industrial semiconductor products is 
more than 100 W at present; our power is two orders of magnitude less. To approach the 
requirements of an industrial EUV source, the remaining tasks are considered. The majority 
of Xe plasma debris is fast ions, which can be mitigated using gas and/or a 
magnetic/electric field relatively easily. The drum system can supply the Xe target for laser 
pulses with energy up to 1 J at 10 kHz. Therefore, a remaining task is powering up the 
driving laser. A short pulse laser with average power of the order of 10 kW (i.e., high average 
and high peak brightness laser) must be developed and such a breakthrough is much hoped 
for. 
Not limiting the wavelength to 13.5 nm with 2% bandwidth and using the broad emission at 
5–17 nm, a maximum CE of 30% is achieved. Pumping with laser power of 100 W, high 
average power of 20 W is already obtained and the source is useful for applications other 
than industrial EUVL using Mo/Si mirrors. We are now applying our source to 
microprocessing and/or material surface modification. Our source also emits around the 
wavelength of 6 nm considered desirable for the next lithography source. In conclusion, our 
LPP source is a practicable continuous EUV source having possibilities for various 
applications. 
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