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Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Taiwan

1. Introduction

Nanoscale structures have achieved novel functions in liquid crystal devices such as liquid
crystal displays, optical filters, optical modulators, phase conjugated systems, optical
attenuators, beam amplifiers, tunable lasers, holographic data storage and even as parts for
optical logic systems over the last decades (Blinov et al. (2006; 2007); Sutkowski et al. (2006)).
Many theoretical works also have been reported on liquid crystal (LC) optics. Jones method
(Jones (1941)) is first proposed for an easy calculation, which stratifies the media along
the cell normal while remains the transverse LC orientation uniform, and hence supplies a
straightforward way to analyze the forward propagation at normal incidence. This was later
followed by the extended Jones method (Lien (1997)), which allows to trace the forward waves
at an oblique incidence. The Berreman method (Berreman (1972)) then provides an alternative
process to include forward and backward waves.
A further step in LC optics is to consider rigorously the LC variation both along the cell
normal and along a single transverse direction, leading to a two-dimensional treatment of
light propagation. This step is fulfilled by implementing the finite-difference time-domain
method (Kriezis et al. (2000a); Witzigmann et al. (1998)), the vector beam propagation method
(Kriezisa & Elston (1999 ); Kriezis & Elston (2000b)), coupled-wave theory (Galatola et al.
(1994); Rokushima & Yamakita (1983)), and an extension of the Berreman approach
(Zhang & Sheng (2003)), and has proven to be successful in demonstrating the strong
scattering and diffractive effects on the structures with transverse LC variation lasting over
the optical-wavelength scale.
For three-dimensional LC medium with arbitrary normal and transverse LC variations,
Kriezis et al. (2002) proposed a composite scheme based on the finite-difference time-domain
method and the plane-wave expansion method to evaluate the light propagation in periodic
liquid-crystal microstructures. Olivero & Oldano (2003) applied numerical calculations
by a standard spectral method and the finite-difference frequency-domain method for
electromagnetic propagation in LC cells. Glytsis & Gaylord (1987) gave three-dimensional
coupled-wave diffraction algorithms via the field decomposition into ordinary and
extraordinary waves, although the transverse variation of the ordinary/extraordinary axis
raises the complexity. Alternatively, this work neglects the multiple reflections and
gives a coupling-matrix algorithm that is much easier to manipulate algebraically for
three-dimensional LC media, yet accounts for the effects of the Fresnel refraction and
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the single reflection at the surfaces of the media. The detailed derivations are described
in appendix A. Furthermore, analogous with the Berreman approach (Berreman (1972))
to consider the multiple reflections for one-dimensional layered media (i.e. stratifying
the media along the cell normal while remaining the transverse LC orientation uniform),
another supplementary formulae including the influences of multiple reflections for
three-dimensional media (i.e. stratifying the media along the cell normal and simultaneously
including the varying LC orientation along the transverse) are also addressed in the appendix
A. The program code of wolfram mathematica for coupling-matrix method is appended in
appendix B for references.

2. Extended Jones matrix method revisited
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Fig. 1. (a) Schematic depiction of one unit cell of the periodic LC structures. (b) Stratification
of the cell along the cell normal ẑ with remaining the real transverse x̂(ŷ) profile as in
coupling-matrix method.(c) Decompose the cell along the transverse direction x̂(ŷ) into
independent strips, and treat the stratification of each stripe with uniform transverse profiles,
as in (extended) Jones matrix method.

In this section, extended Jones matrix method is revisited first due to its similar underlying
concepts can supply an accessibility to understand the coupling-matrix method. In the
extended Jones matrix method, the liquid crystal cell (Figure 1(a)) is decomposed into multiple
one-dimensional (z) independent stripes (Figure 1(c)), treating the transverse LC orientation
uniform within each stripes and being irrelevant each other. Each stripe is further divided
into N layers along the z direction, including two separate polarizer and analyzer layers. In
the layer, there are four eigen-mode waves: two transmitted and two reflected waves; while
at the interface of the layer, the boundary condition is that the tangential components of the
electric field are continuous. Without loss of generality, considering the propagation of waves
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Electromagnetic Formalisms for Optical Propagation in Three-Dimensional Periodic Liquid-Crystal Microstructures 3

in the xz plane at angle angle θ related to z axis, it specifies�k = (k0sinθ, 0, k0cosθ), extended
Jones Matrix can relate the electric fields at the bottom of the ℓth layer to the fields at the top
of the ℓth layer of each strip by:

[

Ex

Ey

]

ℓ,dzℓ

= Jℓ

[

Ex

Ey

]

ℓ,0

; Jℓ = AℓΞℓA−1
ℓ

(1)

with

Ξℓ =

[

exp (ikz1dzℓ) 0
0 exp (ikz2dzℓ)

]

; Aℓ =

[

ex1 ex2

ey1 ey2

]

(2)
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=
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(
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(
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(
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(
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(8)

Here, k0 = ω/c = 2π/λ with λ the wavelength of the incident light in free space. dzℓ is the
thickness of the the ℓth layer. θo and φo are the orientation angles of the LC director defined in
the spherical coordinate. ε i,j∈{x,y,z} is the dielectric tensors defined in appendix A. Equation

(1) can be understood as follow. A−1
ℓ

transforms the electric fields at the bottom of the ℓth

layer into the eigen-mode fields. Ξℓ then propagates the eigen-mode fields from the bottom
of the ℓth layer to the top of the ℓth layer through the distance dzℓ. Finally, Aℓ transform the
eigen-mode fields at the top of the the ℓth layer back into the electric fields at the top of the
ℓth layer, which is equal to the electric fields at the bottom of the (ℓ+ 1)th layer by boundary
condition. Grouping all layers, the extended Jones matrix formula that relates the incident
electric fields (ℓ = 0) and the emitted electric fields (ℓ = N + 1) is given by

[

Ex

Ey

]

N+1

= JextJNJN−1...J2J1Jent

[

Ex

Ey

]

0

(9)

Jent =

⎡

⎣

2 cos θp

cos θp+np cos θ 0

0 2 cos θ
cos θ+np cos θp

⎤

⎦ (10)

Jext =

⎡

⎣

2np cos θ
cos θp+np cos θ 0

0
2np cos θp

cos θ+np cos θp

⎤

⎦ (11)
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with θp = sin−1(sin θ/ℜ
(

np
)

) in which ℜ
(

np
)

stands for the average of the real parts of the
two indices of refraction (ne and no) of the polarizer. The total transmission for the stripe is
calculated by

trans. =
|Ex,N+1|2 + cos2 θ ·

∣

∣Ey,N+1

∣

∣

2

|Ex,0|2 + cos2 θ ·
∣

∣Ey,0

∣

∣

2
(12)

The total transmission of the three-dimensional LC media then can be evaluated by summing
up the contributions from the individual stripe.

3. Coupling matrix method

Parallel to the equation (9) by one-dimensional treatments for strips, an analogous
coupling-matrix formulae for the propagations of waves through the three-dimensional
periodic microstructures can be given as:

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,N+1

�M+
q,N+1

�E−
q,N+1

�M−
q,N+1

⎤

⎥

⎥

⎥

⎥

⎦

= SextSN ...S2S1Sent

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎥

⎦

(13)

Here, �E+
q,ℓ and �M+

q,ℓ (�E−
q,ℓ and �M−

q,ℓ) represent the physical forward (backward) TE and TM

fields, i.e. transverse electric and transverse magnetic fields corresponding to the planes of
the diffraction waves in the incident (ℓ = 0) and emitted (ℓ = N + 1) regions. In which

the components of the vectors �E+
q,ℓ,

�M+
q,ℓ,

�E−
q,ℓ, or �M−

q,ℓ define the diffraction waves along the

direction ngh = nxg ı̂ + nyh ĵ + ξghk̂:

nxg = nI sin θ cos φ − g
λ

Λx
(14)

nyh = nI sin θ sin φ − h
λ

Λy
(15)

ξgh =
√

ε I(E) − nyhnyh − nxgnxg (16)

with ε I = n2
I (εE = n2

E) being the dielectric coefficient in the incident (emitted) region.
Note that the components with imaginary ξgh values are ignored for studied cases due to
the decaying natures along the electromagnetic propagations parallel to the z direction. Λx

(Λy) is the periodicity of the LC structure along the x (y) direction. Sℓ∈{1∼N} is the matrix
representing the propagations of waves through the ℓth structured layer. It consists of the

matrix T
(a)
ℓ

, which is the (column) eigen-vector matrix of the characteristic matrix Gℓ for the

ℓth layer , and the diagonal matrix exp
[

iκ
(a)
ℓ

dzℓ

]

relates to the eigen-value κ
(a)
ℓ

of Gℓ with

dimensionless dzℓ = dzℓk0:

Sℓ = T
(a)
ℓ

exp
[

iκ
(a)
ℓ

dzℓ

]

(T
(a)
ℓ

)−1 (17)
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Gℓ =

⎡

⎢

⎢

⎣

ñx ε̃−1
zz ε̃zx ñx ε̃−1

zz ñx − 1 ñx ε̃−1
zz ε̃zy −ñx ε̃−1

zz ñy

ε̃xz ε̃−1
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zz ñx ε̃xz ε̃−1
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zz ε̃zy −ñyε̃−1

zz ñy + 1

−ε̃yz ε̃−1
zz ε̃zx + ε̃yx + ñxñy −ε̃yzε̃−1

zz ñx −ε̃yz ε̃−1
zz ε̃zy + ε̃yy − ñxñx ε̃yz ε̃−1

zz ñy

⎤

⎥

⎥

⎦

(18)
In this context, the notation �E (or �M) denotes the Ng Nh × 1 vector with components Egh

(or Mgh) describing the wave along ngh. ñx (ñy) are Ng Nh × Ng Nh diagonal matrices with

Ng Nh diagonal elements nxg (nyh) being the same (g, h) sequence as that of �E and �M, and
are calculated by Equations (14-15). ε̃ ij∈{x,y,z} are NgNh × Ng Nh matrices with elements

ε ij,αβ being the Fourier transform of the spatial dielectric coefficients ε ij(x, y; z), in which the

indexes α, β are arranged by the relation �M ∼ ε̃ ij
�E, i.e. Mgh ∼ ∑g′h′ ε ij,(g−g′)(h−h′)Eg′h′ (

derived in appendix A). Above Ng(h) define the number of considered total Fourier orders
g (h) in the x (y) direction. 1 represents the Ng Nh × Ng Nh identity matrix. One may
understand the Equation (17) for the ℓth layer by the similar way as described in extended

Jones method: the (T
(a)
ℓ

)−1 term represents the coordinate transformation from the spatial

tangential components of fields ft̂,ℓ = [�ex,ℓ
�hy,ℓ �ey,ℓ

�hx,ℓ]
t denoted by Equations (46)-(47) at ℓth

interface into the orthogonal components of the eigen-modes in the ℓth layer; the exp
[

iκa
ℓ
dzℓ

]

term describes eigen-mode propagation over the distance dzℓ (thickness of the ℓth layer); the

T
(a)
ℓ

term then is the inversely coordinate transformation from the eigen-mode components
back to the spatial tangential components of fields at the next interface. Considering the
continuum of tangential fields on interfaces, these fields emitted from the ℓth layer hence can
be straightforwardly treated as the incident fields ft̂,ℓ+1 for the (ℓ + 1)th layer, and allow to
follow the next transfer matrix Sℓ+1 to describe the sequential propagations of fields through
the (ℓ+ 1)th layer as in Equation (13).
For the matrices Sent and Sext defined for the (isotropic) uniform incident (ℓ = 0) and emitted
(ℓ = N + 1) regions, respectively, the eigen-modes are specially chosen (and symbolized)

as �E+
q and �M+

q (�E−
q and �M−

q ) (Ho et al. (2011); Rokushima & Yamakita (1983)), representing
the physical forward (backward) TE and TM waves as the above-mentioned. In which the

transform matrix T
(i)
ε I

between the eigen-mode components and the tangential components

ft̂,0 = [�ex,0
�hy,0 �ey,0

�hx,0]
t for the isotropic incident region (ℓ = 0) is given as:

⎡

⎢

⎢

⎣

�ex,0
�hy,0

�ey,0
�hx,0

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

ṅy ṅx ṅy ṅx

ṅyξ ε I ṅxξ−1 −ṅyξ −ε I ṅxξ−1

−ṅx ṅy −ṅx ṅy

ṅxξ −ε I ṅyξ−1 −ṅxξ ε I ṅyξ−1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎥

⎦

≡ T
(i)
ε I

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎥

⎦

(19)

Here, ṅy and ṅx are Ng Nh × Ng Nh diagonal matrices with normalized elements
nyh

mgh
and

nxg

mgh

respectively. ξ−1 is the diagonal matrix with elements 1/ξgh (not the inverse of the matrix ξ),
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in which mgh = (nyhnyh + nxgnxg)
1/2, ξgh = (ε I − nyhnyh − nxgnxg)

1/2, and ε I = n2
I have been

applied for the incident region. A similar transform for ft̂,N+1 in the emitted region can be
derived straightforwardly by replacing all the ε I in Equation (19) with εE and can be denoted

as ft̂,N+1 = T
(i)
εE
[�E+

q,N+1
�M+

q,N+1
�E−

q,N+1
�M−

q,N+1]
t, with ξgh = (εE − nyhnyh − nxgnxg)1/2, and

εE = n2
E.

Sent is the matrix representing the light propagation from the incident region into the medium,
and indicates the essential refraction and the reflection at the first interface of the medium.
To consider these effects in a simple way, a virtual (isotropic) uniform layer, which has zero
thickness and effective dielectric coefficient εa = n2

avg, e.g. navg = (ne + no)/2 for the
liquid-crystal grating, is assumed to exist between the incident region and the 1st layer. Sent

thereby can be approximately evaluated as:

Sent = T
(i)
ε a

[

W′−1
1 0
0 0

]

(20)

[

W′
1 W′

2
W′

3 W′
4

]

=
[

(T
(i)
ε a
)−1T

(i)
ε I

]−1
(21)

Here, T
(i)
ε a

is formulated as equation (19) with the replacements of ε I by εa, ξgh = (εa −
nyhnyh − nxgnxg)

1/2, and εa = n2
avg. Similar to the argument of Sent, another virtual (isotropic)

uniform layer is included between the emitted region and the Nth layer to consider the effects
of refraction and the reflection at the last interface. Here, Sext is approximated as:

Sext =

[

W′′−1
1 0
0 0

]

(T
(i)
ε a
)−1 (22)

[

W′′
1 W′′

2
W′′

3 W′′
4

]

=
[

(T
(i)
εE
)−1T

(i)
ε a

]−1
(23)

Put everything together, and the propagation of fields through three-dimensional periodic
microstructures hence can be evaluated as in Equation (13).

4. Numerical analyses

In this section, a simple case is applied to demonstrate the algorithms and is verified by
finite-difference time-domain (FDTD) method. Consider a one-layer film (N = 1) with
liquid-crystal orientation θo = πx/Λx = λx/2Λx , φo = π/2 . By the Fourier transform
defined in equations (42-45), the non-zero Fourier components for the dielectric elements εij,gh

are: εxx,00 = n2
o , εyy,00 =

(

n2
o + n2

e

)

/2, εyy,±10 =
(

n2
o − n2

e

)

/4, εyz,±10 = ±i
(

n2
o − n2

e

)

/4,

εzz,00 =
(

n2
o + n2

e

)

/2, εzz,±10 =
(

n2
e − n2

o

)

/4. For simplicity, we only consider three Fourier
components of fields, i.e. (g, h) = (±1, 0) and (0, 0), for this case. The corresponding
transfer-matrix formula in equation (13) are then given as:

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,N+1

�M+
q,N+1

�E−
q,N+1

�M−
q,N+1

⎤

⎥

⎥

⎥

⎥

⎦

= SextS1Sent

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎥

⎦

(24)
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Fig. 2. Diffraction efficiency for the periodic LC structures at thickness zLC = 0 − 4μm, in
which (a) the solid line indicates numerical results by RCWA with considering multiple
reflections as in the appendix (equations 89-92), and are in agreement with those (dotted line)
from the FDTD method, while (b) the solid line indicates numerical results by the RCWA
with ignoring multiple reflections, yet accounting for the effects of the Fresnel refraction and
the single reflection at the surfaces of the media as in equation (13), showing comparable
results.

which relates to the eigen-vector matrices T0/T2 for the isotropic incident/emitted layer in

the equation (19), and the eigen-values κ
(a)
1 and eigen-vector T

(a)
1 matrices of G in equation

(18) for the liquid-crystal film. Here, zlc = zlc/k0 is the thickness of the liquid-crystal
film. In this case, we simply choose the unit-amplitude normal TE incidence with respect

to the xz incident plane, i.e. �E+
q,0 =

[

E+
q,0,−10 E+

q,0,00 E+
q,0,10

]t
=

[

0 1 0
]t

and �M+
q,0 =

[

M+
q,0,−10 M+

q,0,00 M+
q,0,10

]t
=

[

0 0 0
]t

. For the isotropic incident/emitted air layer (ε = 1),

the associated ṅx, ṅy, ε, and ξ in T0/T2 are referred to equations (14,15,16), and are given as:

ṅx =

⎡

⎣

1 0 0
0 1 0
0 0 −1

⎤

⎦ ; ṅy =

⎡

⎣

0 0 0
0 0 0
0 0 0

⎤

⎦ ; ε =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ (25)

ξ =

⎡

⎢

⎣

√

1 − λ2/Λ2
x 0 0

0 1 0

0 0
√

1 − λ2/Λ2
x

⎤

⎥

⎦
(26)

ξ−1 =

⎡

⎢

⎣

1/
√

1 − λ2/Λ2
x 0 0

0 1 0

0 0 1/
√

1 − λ2/Λ2
x

⎤

⎥

⎦
(27)

Note we have used a small incident angle (θ = 10−5, φ = 0) to avoid the numerical instability
at θ = 0. For the layer of liquid-crystal film, the associated ñx, ñy and ε ij∈{x,y,z} in G in
equation (18) are written out as below:

ñx =

⎡

⎣

λ/Λx 0 0
0 1 0
0 0 −λ/Λx

⎤

⎦ ; ñy =

⎡

⎣

0 0 0
0 0 0
0 0 0

⎤

⎦ (28)
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εxx =

⎡

⎢

⎣

εxx,00 εxx,−10 εxx,−20

εxx,10 εxx,00 εxx,−10

εxx,20 εxx,10 εxx,00

⎤

⎥

⎦
=

⎡

⎢

⎢

⎣

n2
o 0 0

0 n2
o 0

0 0 n2
o

⎤

⎥

⎥

⎦

(29)

εyy =

⎡

⎢

⎢

⎢

⎣

n2
o+n2

e
2

n2
o−n2

e
4 0

n2
o−n2

e
4

n2
o+n2

e
2

n2
o−n2

e
4

0
n2

o−n2
e

4
n2

o+n2
e

2

⎤

⎥

⎥

⎥

⎦

(30)

εzz =

⎡

⎢

⎢

⎢

⎣

n2
o+n2

e
2

n2
e−n2

o
4 0

n2
e−n2

o
4

n2
o+n2

e
2

n2
e−n2

o
4

0
n2

e−n2
o

4
n2

o+n2
e

2

⎤

⎥

⎥

⎥

⎦

(31)

εyz =

⎡

⎢

⎢

⎢

⎢

⎣

0
−i(n2

o−n2
e)

4 0

i(n2
o−n2

e)
4 0

−i(n2
o−n2

e)
4

0
i(n2

o−n2
e)

4 0

⎤

⎥

⎥

⎥

⎥

⎦

(32)

εxy = 0, εxz = 0 (33)

Consequently, the eigen-values κ
(a)
1 and eigen-vector T

(a)
1 matrices of G can be numerically

evaluated and a similar process for Sent and Sext can be followed straightforwardly. Together

with all these definitions of matrixes in equation (24), the transmittance fields �E+
q,2 and �M+

q,2

then can be decided. Here, we set λ = 0.55um, Λx = 2.0um, no = 1.5, and ne = 1.6. The
numerical results of far-field diffractions for this case by RCWA ignoring the influences of
the multiple reflections are shown in figure 2(b), and are in agreement with these obtained by
FDTD. Besides, an alternative consideration described by the equations (89-92) in appendix A,
which includes the multiple reflections, is shown in figure 2(a), and clarifies the effectiveness
of the easy-manipulated algorithm in equation (13) for the three-dimensional periodic LC
media.

A. Derivation of the coupling matrix

In this appendix, detailed derivations of the coupling matrix method are demonstrated for
references.

A.1 Maxwell’s equations in spatial-space descriptions

Without charges and currents, Maxwell’s equations can be read as:

∇ · E = 0 (34)

∇ · B = 0 (35)

∇× E = − ∂B

∂t
(36)

∇× B = μμ0εε0
∂E

∂t
(37)
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Define variables k0 = ω
√

μ0ε0 = 2π
λ , Y0 = 1

Z0
=

√

ε0
μ0

, r = k0r, x = k0x, y = k0y, z = k0z, and

∇i = ∂/∂ri = ∂/∂rik0 = ∇i/k0, and the equations can be derived as:

∇ · E = 0 (38)

∇ · B = 0 (39)

∇×
√

Y0E = −i
√

Z0H (40)

∇×
√

Z0H = iε (r)
√

Y0E

= i

⎡

⎣

εxx (r) εxy (r) εxz (r)
εyx (r) εyy (r) εyz (r)
εzx (r) εzy (r) εzz (r)

⎤

⎦

√

Y0E (41)

Here, all the field components are assumed to have time dependence of exp (iωt) and are
omitted everywhere. The relative permeability of the medium is assumed to be μ = 1. Note
that ε ij∈{x,y,z} are defined as functions of position (x, y, z) and εij are of (x, y, z). λ is the vacuum
wavelength of the incident wave. Variables x, y, z generally represent spatial positions while
these appeared in suffix, e.g ε ij∈{x,y,z}, denote the orientations along the directions x̂, ŷ, ẑ.

Moreover, the variable i is the imaginary constant number i =
√
−1 and that appeared in

suffix, e.g. dzi, is an integer indexing number. For liquid crystals, the dielectric matrix ε is
associated with the orientation of director (θo, φo):

ε =

⎡

⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤

⎦ (42)

with

εxx = n2
o +

(

n2
e − n2

o

)

sin2 θo cos2 φo,

εxy = εyx =
(

n2
e − n2

o

)

sin2 θo sin φo cos φo,

εxz = εzx =
(

n2
e − n2

o

)

sin θo cos θo cos φo,

εyy = n2
o +

(

n2
e − n2

o

)

sin2 θo sin2 φo,

εyz = εzy =
(

n2
e − n2

o

)

sin θo cos θo sin φo,

εzz = n2
o +

(

n2
e − n2

o

)

cos2 θo, (43)

where ne and no are extraordinary and ordinary indices of refraction of the birefringent liquid
crystal, respectively, θo is the angle between the director and the z axis, and φo is the angle
between the projection of the director on the xy plane and x axis.

A.2 Maxwell’s equations in k-space descriptions

Consider the general geometry illustrated in Figure 3 of stacked multi-layer two-dimensional
periodic microstructures. To apply the rigorous coupled-wave theory to the stack, all of the
layers have to define the same periodicity: Λx along the x direction and Λy along the y
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Polarizer

Polarizer

periodic structures
with
isotropic/birefringent
materials

xy

z

k

u

y

x

Λ

Λ

φ

θ

ψ

z

z

...

z

2

3

N-1

Fig. 3. Geometry of three-dimensional RCWA algorithm for a multi-layer stack with
two-dimensional periodic microstructures in arbitrary isotropic and birefringent material
arrangement.

direction. The thickness for the ℓth layer is dzℓ, and these layers contribute to a total thickness
of the stack ZN = ∑

N
ℓ=1 dzℓ. The periodic permittivity of an individual layer in the stack can

be expanded in Fourier series of the spatial harmonics as:

εij (x, y; zℓ) = ∑
g,h

εij,gh (zℓ) exp

(

i
gλx

Λx
+ i

hλy

Λy

)

(44)

εij,gh (zℓ) =
λ

2πΛx

λ

2πΛy

∫ 2πΛx
λ

0

∫

2πΛy
λ

0
εij (x, y; zℓ) exp

(

−i
gλx

Λx
− i

hλy

Λy

)

dxdy (45)

A similar transform for the fields in the stack can be expressed in terms of Rayleigh
expansions:

√

Y0E (x, y; zℓ) = ∑
g,h

egh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

(46)

√

Z0H (x, y; zℓ) = ∑
g,h

hgh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

(47)

nxg = nI sin θ cos φ − g
λ

Λx
(48)

nyh = nI sin θ sin φ − h
λ

Λy
(49)

where nI (nE) is the refraction index for the isotropic incident (emitted) region. θ, φ are the
incident angles defined in sphere coordinates, and z is the normal direction for the xy plane
of periodic structures. Here, the electric field of an incident unit-amplitude wave has been
introduced by Einc = u × exp (−ik · r) as illustrated in figure 3, in which the wave vector k as
well as the unit polarization vector u are given by:

k = k0nI (sin θ cos φx̂ + sin θ sin φŷ + cos θẑ) (50)

u = ux x̂ + uyŷ + uz ẑ = (cos Ψ cos θ cos φ − sin Ψ sin φ) x̂ (51)

+ (cos Ψ cos θ sin φ + sin Ψ cos φ) ŷ − (cos Ψ sin θ) ẑ
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with the Ψ angle between the electric field vector and the incident plane.
Now we can express Maxwell’s equations by the (g, h) Fourier components in k-space
descriptions. For simplicity, we introduce the definitions of the tangential and normal fields
at the interfaces as

ft̂ =

⎡

⎢

⎢

⎣

�ex
�hy

�ey
�hx

⎤

⎥

⎥

⎦

, fn̂ =

[

�ez
�hz

]

(52)

Here,�ei∈{x,y,z} =�ei (zℓ) and�hi∈{x,y,z} =�hi (zℓ) are column matrices with Fourier components

ei,gh (zℓ) and hi,gh (zℓ), respectively. In the following context, a straightforward calculation
to obtain the infinite set of coupled-wave equations corresponding to the infinite Fourier
components is fulfilled. First, we express Maxwell’s curl equations (40)-(41) in terms of the
spatial x, y, z components:

∇×
√

Y0E =
[

∂x

√

Y0Ey − ∂y

√

Y0Ex

]

ẑ +
[

∂y

√

Y0Ez − ∂z

√

Y0Ey

]

x̂

+
[

∂z

√

Y0Ex − ∂x

√

Y0Ez

]

ŷ

= −i
√

Z0Hz ẑ − i
√

Z0Hx x̂ − i
√

Z0Hyŷ (53)

∇×
√

Z0H =
[

∂x

√

Z0Hy − ∂y

√

Z0 Hx

]

ẑ +
[

∂y

√

Z0Hz − ∂z

√

Z0Hy

]

x̂

+
[

∂z

√

Z0Hx − ∂x

√

Z0Hz

]

ŷ

= i
√

Y0 [ε (r) E]z ẑ + i
√

Y0 [ε (r) E]x x̂ + i
√

Y0 [ε (r) E]y ŷ (54)

Next, we introduce the Fourier representations of E, H, and ε (r) as defined in Equations
(44)-(47). Maxwell’s curl equations (53)-(54) can thereby be regrouped by the components of
ft̂ and fn̂. For the component hz,gh (zℓ), the equation can be derived as:

∂x

√

Y0Ey − ∂y

√

Y0Ex = ∑
gh

−inxgey,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

−∑
gh

−inyhex,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

= −i
√

Z0Hz = −i ∑
gh

hz,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

(55)

It is simplified to be:
hz,gh (zℓ) = nxgey,gh (zℓ)− nyhex,gh (zℓ) (56)

For the component
∂ey,gh(zℓ)

∂z
, the equation can be derived as:

∂y

√

Y0Ez − ∂z

√

Y0Ey = ∑
gh

−inyhez,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

−∑
gh

∂ey,gh (zℓ)

∂z
exp

[

−i
(

nxgx + nyhy
)]

= −i
√

Z0Hx = −i ∑
gh

hx,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

(57)
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and is simplified to be:

∂ey,gh (zℓ)

∂z
= −inyhez,gh (zℓ) + ihx,gh (zℓ) (58)

For the component
∂ex,gh(zℓ)

∂z
, the equation can be derived as:

∂z

√

Y0Ex − ∂x

√

Y0Ez = ∑
m

∂ex,gh (zℓ)

∂z
exp

[

−i
(

nxgx + nyhy
)]

−∑
gh

−inxgez,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

= −i
√

Z0Hy

= −i ∑
gh

hy,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

(59)

and is simplified to be:

∂ex,gh (zℓ)

∂z
= −inxgez,gh (zℓ)− ihy,gh (zℓ) (60)

For the component ez,gh, the equation can be derived as:

∂x

√

Z0Hy − ∂y

√

Z0Hx = ∑
gh

−inxghy,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

−∑
gh

−inyhhx,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

= i
√

Y0 [ε (r) E]z

= i ∑
ghuv

εzx,uvex,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εzy,uvey,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εzz,uvez,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

(61)

and is simplified to be:

nyhhx,gh (zℓ)− nxghy,gh (zℓ) = ∑
u′v′

εzx,(g−u′)(h−v′)ex,u′v′ (zℓ)

+ ∑
u′v′

εzy,(g−u′)(h−v′)ey,u′v′ (zℓ)

+ ∑
u′v′

εzz,(g−u′)(h−v′)ez,u′v′ (zℓ) (62)
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For the component
∂hy,gh(zℓ)

∂z
, the equation can be derived as:

∂y

√

Z0Hz − ∂z

√

Z0Hy = ∑
gh

−inyhhz,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

−∑
m

∂hy,gh (zℓ)

∂z
exp

[

−i
(

nxgx + nyhy
)]

= i
√

Y0 [ε (r) E]x

= i ∑
ghuv

εxx,uvex,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εxy,uvey,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εxz,uvez,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

(63)

and is simplified to be:

∂hy,gh (zℓ)

∂z
= −inyhhz,gh (zℓ)− i ∑

u′v′
εxx,(g−u′)(h−v′)ex,u′v′ (zℓ)

−i ∑
u′v′

εxy,(g−u′)(h−v′)ey,u′v′ (zℓ)− i ∑
u′v′

εxz,(g−u′)(h−v′)ez,u′v′ (zℓ) (64)

For the component
∂hx,gh(zℓ)

∂z
, the equation can be derived as:

∂z

√

Z0Hx − ∂x

√

Z0Hz = ∑
gh

∂hx,gh (zℓ)

∂z
exp

[

−i
(

nxgx + nyhy
)]

−∑
gh

−inxhhz,gh (zℓ) exp
[

−i
(

nxgx + nyhy
)]

= i
√

Y0 [ε (r) E]y

= i ∑
ghuv

εyx,uvex,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εyy,uvey,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

+i ∑
ghuv

εyz,uvez,gh (zℓ) exp
[

−i
(

nx(g+u)x + ny(h+v)y
)]

(65)

and is simplified to be:

∂hx,gh (zℓ)

∂z
= −inxhhz,gh (zℓ) + i ∑

u′v′
εyx,(g−u′)(h−v′)ex,u′v′ (zℓ)

+i ∑
u′v′

εyy,(g−u′)(h−v′)ey,u′v′ (zℓ) + i ∑
u′v′

εyz,(g−u′)(h−v′)ez,u′v′ (zℓ) (66)
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To solve the fields systematically, these equations are reformulated in terms of the full fields
ft̂ and fn̂ in the following context, and show an eigen-system problem for studied periodic
structures.

A.3 Derive the coupled-wave equation of the normal field fn̂

To obtain the coupled-wave equations of the normal field fn̂, we consider the
above-mentioned formulas for its components hz,gh (zℓ) and ez,gh (zℓ) in Equations (56) and
(62), respectively, i.e.:

hz,gh (zℓ) = nxgey,gh (zℓ)− nyhex,gh (zℓ) (56)

nyhhx,gh (zℓ)− nxghy,gh (zℓ) = ∑
u′v′

εzx,(g−u′)(h−v′)ex,u′v′ (zℓ)

+ ∑
u′v′

εzy,(g−u′)(h−v′)ey,u′v′ (zℓ)

+ ∑
u′v′

εzz,(g−u′)(h−v′)ez,u′v′ (zℓ) (62)

Up to the Fourier order g, h ∈ {0, 1}, an example corresponding to Equations (56) and (62) can
be matrixized:

⎡

⎢

⎢

⎢

⎣

hz,00 (zℓ)

hz,01 (zℓ)

hz,10 (zℓ)

hz,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

nx0 0 0 0

0 nx0 0 0

0 0 nx1 0

0 0 0 nx1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ey,00 (zℓ)

ey,01 (zℓ)

ey,10 (zℓ)

ey,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

ny0 0 0 0

0 ny1 0 0

0 0 ny0 0

0 0 0 ny1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ex,00 (zℓ)

ex,01 (zℓ)

ex,10 (zℓ)

ex,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

(67)

⎡

⎢

⎢

⎢

⎣

εzz,00 εzz,0−1 εzz,−10 εzz,−1−1

εzz,01 εzz,00 εzz,−11 εzz,−10

εzz,10 εzz,1−1 εzz,00 εzz,0−1

εzz,11 εzz,10 εzz,01 εzz,00

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ez,00 (zℓ)

ez,01 (zℓ)

ez,10 (zℓ)

ez,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

ny0 0 0 0

0 ny1 0 0

0 0 ny0 0

0 0 0 ny1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

hx,00 (zℓ)

hx,01 (zℓ)

hx,10 (zℓ)

hx,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

nx0 0 0 0

0 nx0 0 0

0 0 nx1 0

0 0 0 nx1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

hy,00 (zℓ)

hy,01 (zℓ)

hy,10 (zℓ)

hy,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

εzx,00 εzx,0−1 εzx,−10 εzx,−1−1

εzx,01 εzx,00 εzx,−11 εzx,−10

εzx,10 εzx,1−1 εzx,00 εzx,0−1

εzx,11 εzx,10 εzx,01 εzx,00

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ex,00 (zℓ)

ex,01 (zℓ)

ex,10 (zℓ)

ex,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

εzy,00 εzy,0−1 εzy,−10 εzy,−1−1

εzy,01 εzy,00 εzy,−11 εzy,−10

εzy,10 εzy,1−1 εzy,00 εzy,0−1

εzy,11 εzy,10 εzy,01 εzy,00

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ey,00 (zℓ)

ey,01 (zℓ)

ey,10 (zℓ)

ey,11 (zℓ)

⎤

⎥

⎥

⎥

⎦

(68)

The full-component coupled-wave equation for the normal field fn̂ then can be extended as:

fn̂ =

[

�ez
�hz

]

=

[

−ε̃−1
zz ε̃zx −ε̃−1

zz ñx −ε̃−1
zz ε̃zy ε̃−1

zz ñy

−ñy 0 ñx 0

]

·

⎡

⎢

⎢

⎢

⎢

⎣

�ex

�hy

�ey

�hx

⎤

⎥

⎥

⎥

⎥

⎦

≡ D · ft̂ (69)
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Here, the symbol �(.) represents a NgNh × 1 vector, and the symbol ˜(.) represents a NgNh ×
Ng Nh matrix, indicating the considered g(h) ranged from gmin(hmin) to gmax(hmax) with Ng =
gmin + gmax + 1(Nh = hmin + hmax + 1). As indicated in Equation (69), the normal field fn̂ can
be obtained straightforwardly if the tangential field ft̂ is given.

A.4 Derive the coupled-wave equation of the tangential field ft̂
Further, we derive the coupled-wave equation of the tangential field ft̂, in which the
component fields of fn̂ are replaced by those of ft̂ via equation (69). Similarly, we consider

the associated formulas of
∂ey,gh(zℓ)

∂z
,

∂ex,gh(zℓ)
∂z

,
∂hy,gh(zℓ)

∂z
, and

∂hx,gh (zℓ)
∂z

in Equations (58), (60), (64),
and (66), respectively, i.e.:

∂ex,gh (zℓ)

∂z
= −inxgez,gh (zℓ)− ihy,gh (zℓ) (60)

∂ey,gh (zℓ)

∂z
= −inyhez,gh (zℓ) + ihx,gh (zℓ) (58)

∂hy,gh (zℓ)

∂z
= −inyhhz,gh (zℓ)− i ∑

u′v′
εxx,(g−u′)(h−v′)ex,u′v′ (zℓ)

−i ∑
u′v′

εxy,(g−u′)(h−v′)ey,u′v′ (zℓ)− i ∑
u′v′

εxz,(g−u′)(h−v′)ez,u′v′ (zℓ) (64)

∂hx,gh (zℓ)

∂z
= −inxhhz,gh (zℓ) + i ∑

u′v′
εyx,(g−u′)(h−v′)ex,u′v′ (zℓ)

+i ∑
u′v′

εyy,(g−u′)(h−v′)ey,u′v′ (zℓ) + i ∑
u′v′

εyz,(g−u′)(h−v′)ez,u′v′ (zℓ) (66)

With equation (69), these equations can matrixize the coupled-wave equation of ft̂ as:

∂ft̂

∂z
= i

⎡

⎢

⎢

⎣

0 −1 0 0
−ε̃xx 0 −ε̃xy 0

0 0 0 1
ε̃yx 0 ε̃yy 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

�ex

�hy

�ey

�hx

⎤

⎥

⎥

⎥

⎥

⎦

+ i

⎡

⎢

⎢

⎢

⎣

−ñx�ez

−ñy�hz − ε̃xz�ez

−ñy�ez

−ñx
�hz + ε̃yz�ez

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ñx ε̃−1
zz ε̃zx ñx ε̃−1

zz ñx − 1 ñx ε̃−1
zz ε̃zy −ñx ε̃−1

zz ñy

ε̃xz ε̃−1
zz ε̃zx − ε̃xx + ñyñy ε̃xzε̃−1

zz ñx ε̃xz ε̃−1
zz ε̃zy − ε̃xy − ñyñx −ε̃xzε̃−1

zz ñy

ñy ε̃−1
zz ε̃zx ñy ε̃−1

zz ñx ñy ε̃−1
zz ε̃zy −ñyε̃−1

zz ñy + 1

−ε̃yz ε̃−1
zz ε̃zx + ε̃yx + ñxñy −ε̃yz ε̃−1

zz ñx −ε̃yz ε̃−1
zz ε̃zy + ε̃yy − ñxñx ε̃yz ε̃−1

zz ñy

⎤

⎥

⎥

⎥

⎥

⎦

·ift̂ ≡ iG · ft̂ (70)

Definitely, the equation (70) turns the Maxwell’s curl equations into a eigen-system problems.
Up to now, with the known structured layers for equations (44)-(45) and the known incidence
related to equations (46)-(47), the transition behaviors of the tangential field ft̂ can be
formulated layer by layer via equation (70), and the corresponding normal field fn̂ can be
evaluated sequentially via equation (69).
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In the following contexts, we continue to describe (a) the solutions of the transition fields
within stack layers via equation (70), especially for these uniform layers with isotropic
materials which bring in the degenerate eigen-states, and (b) the continuum of fields
conditioned at interfaces between stack layers. Consequently, a complete analysis for fields
through all stacks can be fulfilled, and the associated near/far field optics can be evaluated.

A.5 Eigen-system solutions

As indicated in equation (70), the tangential fields ft̂ within the layers proceed an
eigen-system process, in which the eigen-states are independent to each other and allow
individual/straightforward analyses to evaluate the transition behaviors through the layers.
At the interfaces among the layers, the tangential fields ft̂ associated with the composite
phases/amplitudes of the eigen-states follow the physical continuous conditions in the
laboratory framework. These characteristics lead to the necessary transform between
the laboratory and eigen-system frameworks as described below. Besides, for these
uniform layers with isotropic materials, especially for the incident and emitted regions,
the eigen-system shows the degenerate status, and a reasonable choice of the eigen-states
corresponding to the physical conditions is emphasized below. Implemented with all these,
the behaviors of the tangential fields ft̂ through all stacks layers including the in-between
interfaces can be decided. The normal fields fn̂ are then obtained by equation (69), and thereby
the complete light waves are understood.

A.5.1 Uniform layers with isotropic materials

For the uniform layers with isotropic materials, i.e. ε(r) is a scalar constant, the coupled-wave
equation of the tangential fields ft̂ in equation (70) can be simplified as:

∂

∂z

⎡

⎢

⎢

⎢

⎢

⎣

�ex

�hy

�ey

�hx

⎤

⎥

⎥

⎥

⎥

⎦

= iC ·

⎡

⎢

⎢

⎢

⎢

⎣

�ex

�hy

�ey

�hx

⎤

⎥

⎥

⎥

⎥

⎦

= i

⎡

⎢

⎢

⎢

⎣

0 ñx ε̃−1ñx − 1 0 −ñx ε̃−1ñy

−ε̃ + ñyñy 0 −ñyñx 0

0 ñy ε̃−1ñx 0 −ñy ε̃−1ñy + 1

ñxñy 0 ε̃ − ñxñx 0

⎤

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎣

�ex

�hy

�ey

�hx

⎤

⎥

⎥

⎥

⎥

⎦

(71)

Here, all the submatrices in C are diagonal and thereby the component states are independent.
By straightforward calculation, its eigen-values as well as the corresponding eigen-vectors for
(g, h)-order component can be obtained:

eigval ≡ κgh

=

⎡

⎢

⎢

⎢

⎣

−ξgh 0 0 0

0 −ξgh 0 0

0 0 ξgh 0

0 0 0 ξgh

⎤

⎥

⎥

⎥

⎦

(72)
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with ξgh =
√

ε − nyhnyh − nxgnxg while the corresponding eigen-vector matrix are:

eigvec =
[

v′
gh1 v′

gh2 v′
gh3 v′

gh4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−ξgh

nxgnyh

nxgnxg−εgh

nxg nyh

ξgh

nxgnyh

nxg nxg−εgh

nxgnyh

nyhnyh−εgh

nxgnyh

−εghξgh

nxg nyh

nyhnyh−εgh

nxgnyh

εghξgh

nxgnyh

0 1 0 1

1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(73)

Due to the degeneracy in (κgh,1, κgh,2) and (κgh,3, κgh,4), the eigenvector (v′
gh1, v′

gh2) as well as

(v′
gh3, v′

gh4) can be remixed by arbitrary linear combinations. Choosing

mgh =
√

nyhnyh + nxgnxg (74)

vgh1 =
(

nxgξghv′
gh1 − nxgv′

gh2

)

/mgh (75)

vgh2 =

(

−
εghnyh

ξgh
v′

gh1 + nyhv′
gh2

)

/mgh (76)

vgh3 =
(

−nxgξghv′
gh3 − nxgv′

gh4

)

/mgh (77)

vgh4 =

(

εghnyh

ξgh
v′

gh3 + nyhv′
gh4

)

/mgh (78)

the equation (73) is then shown as:

eigvec = Tgh =
[

vgh1 vgh2 vgh3 vgh4

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

nyh

mgh

nxg

mgh

nyh

mgh

nxg

mgh

nyhξgh

mgh

εghnxg ξ−1
gh

mgh

−nyhξgh

mgh

−εghnxg ξ−1
gh

mgh
−nxg

mgh

nyh

mgh

−nxg

mgh

nyh

mgh

nxgξgh

mgh

−εghnyhξ−1
gh

mgh

−nxgξgh

mgh

εghnyhξ−1
gh

mgh

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(79)

Hence, vgh1 and vgh2 correspond to the (g, h)-order forward TE and TM (transverse electric
and transverse magnetic) representations (with respect to the plane of the diffraction wave),
respectively. vgh3 and vgh4 then correspond to the backward TE and TM ones. For example,
with equation (69) and (79), vgh1 denotes the component fields:

egh =
nyh

mgh
ı̂ − nxg

mgh
ĵ (80)

hgh =
nxgξgh

mgh
ı̂ +

nyhξgh

mgh
ĵ − mghk̂ (81)
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along the direction ngh = nxgı̂ + nyh ĵ + ξghk̂. It can be seen that the characteristic fields
in equations (80)-(81) associated with the eigen-solution ∝ exp(−iξghz) and constitutes the
forwards TE wave. It is noted that the field amplitudes are normalized to |egh| = 1,

|hgh| =
√

ε, and egh · ngh = hgh · ngh = egh · hgh = 0 - that is, ngh, egh, and hgh are
mutually perpendicular. Similarly, the remaining eigen-vectors can characterize the forwards
and backwards TE/TM waves and are omitted here. In this way, a unit-amplitude incident

wave then can be given as �E+
q = [0...1...0]t, �M+

q = 0 for TE wave, and �M+
q = [0...1...0]t,�E+

q = 0
for TM wave as defined below.
Considering the full components gmin ≤ g ≤ gmax and hmin ≤ h ≤ hmax, the coupled-wave
equation (71) can be straightforwardly written as:

∂

∂z
ft̂ = iC f t̂

⇒ ∂

∂z
T−1ft̂ = iT−1CTT−1 f t̂

⇒ ∂

∂z
qt̂ = iκqt̂ with ft̂ = Tqt̂ (82)

where

T =

⎡

⎢

⎢

⎢

⎢

⎣

ṅy ṅx ṅy ṅx

ṅyξ εṅxξ−1 −ṅyξ −εṅxξ−1

−ṅx ṅy −ṅx ṅy

ṅxξ −εṅyξ−1 −ṅxξ εṅyξ−1

⎤

⎥

⎥

⎥

⎥

⎦

, qt̂ =

⎡

⎢

⎢

⎢

⎣

�E+
q

�M+
q

�E−
q

�M−
q

⎤

⎥

⎥

⎥

⎦

(83)

Note that ṅy and ṅx are the Ng Nh × Ng Nh diagonal matrices with diagonal elements
nyh

mgh

and
nxg

mgh
respectively. ξ−1 is the matrix with elements 1/ξgh, not the inverse of the matrix ξ.

Moreover, �E+
q and �M+

q (�E−
q and �M−

q ) correspond to the physical forward (backward) TE and
TM waves, respectively. The transition of fields qt̂ within the considered layer are now solved
as:

qt̂(z) = exp [iκ (z − z0)] qt̂(z0) (84)

A.5.2 Periodic-structured layers with isotropic/birefringent materials

For the in-between periodic layers, the transition equations of tangential fields ft̂ in equation
(70) can be generally expressed as:

∂

∂z
qt̂ = iκ(a)qt̂ with ft̂ = T(a)qt̂ (85)

with the transition of qt̂

qt̂(z) = exp
[

iκ(a) (z − z0)
]

qt̂(z0) (86)

Here, T(a) is the eigen-vector matrix of G of equation (70) with column eigen-vectors, and

κ(a) is the corresponding diagonal eigen-value matrix.
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A.6 Boundary conditions

Now for each layer, we have been able to independently solve the transition of electromagnetic
fields in the individual layers, but the continuum of fields on interfaces has still not been
included. Considering the tangential components in ft̂ are continuous across ith interface at
zi, the constriction equations can be shown as

T
(a)
i qt̂,i(zi) = T

(a)
i+1qt̂,i+1(zi) (87)

Grouping this condition into the fields qt̂ in equation (86), and introducing two virtual layers
to consider the Fresnel refraction and reflection at surfaces of the media as described in
the texts, a general expression for N−multilayered periodic structures can be obtained as
in equation (13). This argument ignores the effects of multiple reflections as applied by
(extended) Jones method, and similarly supplies as a easy-manipulated method. Further, an
alternative process to consider the multiple reflections is described as below for references.
Similarly, group the equation (87) with (86), the consecutive matrix equation with undecided
diffraction/reflection waves can be written as:

qt̂,N+1(zn) = T−1
N+1T

(a)
N qt̂,N(zN)

= T−1
N+1T

(a)
N exp

[

iκ
(a)
N (zN − zN−1)

]

qt̂,N(zN−1)

= T−1
N+1T

(a)
N exp

[

iκ
(a)
N (zN − zN−1)

]

×(T
(a)
N )−1T

(a)
N−1 exp

[

iκ
(a)
N−1 (zN−1 − zN−2)

]

×...

×(T
(a)
1 )−1T0qt̂,0(z0) (88)

where the first boundary is indexed as 0. Consequently, the relation between fields in the
incident region 0 and in the emitted region N + 1 can be obtained as:

qt̂,N+1 =

⎡

⎢

⎢

⎢

⎢

⎣

�E+
q,N+1

�M+
q,N+1

�E−
q,N+1

�M−
q,N+1

⎤

⎥

⎥

⎥

⎥

⎦

= T−1
N+1Ta

N exp [iκa
N (zN − zN−1)] ... (Ta

1)
−1 T0

⎡

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎦

≡ W−1

⎡

⎢

⎢

⎢

⎣

�E+
q,0

�M+
q,0

�E−
q,0

�M−
q,0

⎤

⎥

⎥

⎥

⎦

= W−1qt̂,0

(89)

or alternatively:

qt̂,0 ≡
[

q+
t̂,0

q−
t̂,0

]

=

[

W1 W2

W3 W4

]

[

q+
t̂,N+1

q−
t̂,N+1

]

= Wqt̂,N+1 (90)

Consider that the reflective field in the emitted region is zero, i.e. q−
t̂,N+1

=
[

�E−
q,N+1

�M−
q,N+1

]T
= 0. The transmittance field in the emitted region can be obtained as:

q+
t̂,N+1

= W−1
1 q+

t̂,0
(91)
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and the reflective field in the incident region is:

q−
t̂,0

= W3W−1
1 q+

t̂,0
(92)

A.7 Diffraction efficiency

To evaluate the diffraction efficiency with the obtained q±
t̂

, the x, y, and z components of the
transmittance/reflection fields of the diffraction order (g, h) can be calculated by equations
19 (or 82, 83) and 69 for emitted/incident regions, and thereby the standard definitions of
diffraction efficiency can be followed. Note that the incident fields should be excluded when
calculating the reflection fields in the incident region.

B. Program codes of Wolfram Mathematica for Coupling Matrix Method

In this appendix, the program codes of Wolfram Mathematica for the (numerical) study case
in the previous section are added as follows. It could be able to do the simulations by copy
and paste the codes, while few characters may need to be adjusted, e.g., the superscript of W ′

(W ′′) and the power symbol on no∧2 (ne∧2).

(*Initialize one − period LC profiles (θo, φo) for single LC layer*)
dx = 0.1; dy = dx; (*um/grid; grid interval *)
GridNx = 100; GridNy = 100; (*grid num. in x and y *)
Λx = GridNx*dx; Λy = GridNx*dy; (* unit cell *)
θo = Table[π*i/GridNx, {i, GridNx}, {j, GridNy}];
φo = Table[π/2.0, {i, GridNx}, {j, GridNy}];
dz = 2.0; (*um; the thickness of the LC layer *)

(*Define optical − related parameters*)
nI = 1.0; nE = 1.0; θ = 0.001; φ = 0.0; λ = 0.55;
ne = 1.5; no = 1.6;
grng = 1; hrng = 1; (* − grng ≤ g ≤ grng;−hrng ≤ h ≤ hrng*)
Ng = 2*grng + 1; Nh = 2*hrng + 1; (*Note Ng < GridNx, Nh < GridNy*)

(*Initialize relevant wave − vector matrixes related to nxg, nyh, respectively*)
gindx = Table[Floor[(i − 1.0)/Nh]− grng, {i, Ng*Nh}]; (* g sequence in ei or hi fields *)
hindx = Table[Mod[(i − 1), Nh]− hrng, {i, Ng*Nh}]; (* h sequence in ei or hi fields *)
nx = DiagonalMatrix[Table[nI*Sin[θ]*Cos[φ]− gindx[[i]]*λ/Λx, {i, Ng*Nh}]];
ny = DiagonalMatrix[Table[nI*Sin[θ]*Sin[φ]− hindx[[i]]*λ/Λy, {i, Ng*Nh}]];
m = DiagonalMatrix[Table[Sqrt[nx[[i, i]]∧2 + ny[[i, i]]∧2], {i, Ng*Nh}]];
ξ = DiagonalMatrix[Table[Sqrt[nI∧2 − nx[[i, i]]∧2 − ny[[i, i]]∧2], {i, Ng*Nh}]];
ξinv = DiagonalMatrix[Table[1.0/Sqrt[nI∧2 − nx[[i, i]]∧2 − ny[[i, i]]∧2], {i, Ng*Nh}]];

(*Calculate εijgh by Fourier transform of εij(x, y; z) for the single LC layer*)
εxxgh=InverseFourier[no∧2+(ne∧2−no∧2)*Sin[θo]∧2*Cos[φo]∧2]/Sqrt[GridNx]/Sqrt[GridNy];
εxygh=InverseFourier[(ne∧2−no∧2)*Sin[θo]∧2*Sin[φo]Cos[φo]]/Sqrt[GridNx]/Sqrt[GridNy];
εxzgh=InverseFourier[(ne∧2−no∧2)*Sin[θo]Cos[θo]Cos[φo]]/Sqrt[GridNx]/Sqrt[GridNy];
εyygh=InverseFourier[no∧2+(ne∧2−no∧2)*Sin[θo]∧2*Sin[φo]∧2]/Sqrt[GridNx]/Sqrt[GridNy];
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εyzgh=InverseFourier[(ne∧2 − no∧2)*Sin[θo]Cos[θo]Sin[φo]]/Sqrt[GridNx]/Sqrt[GridNy];
εzzgh=InverseFourier[no∧2 + (ne∧2 − no∧2)*Cos[θo]∧2]/Sqrt[GridNx]/Sqrt[GridNy];

(* Define the matrix εij with element εijgh *)
εxx = Table[0, {i, Ng*Nh}, {j, Ng*Nh}]; εxy = Table[0, {i, Ng*Nh}, {j, Ng*Nh}];
εxz = Table[0, {i, Ng*Nh}, {j, Ng*Nh}]; εyy = Table[0, {i, Ng*Nh}, {j, Ng*Nh}];
εyz = Table[0, {i, Ng*Nh}, {j, Ng*Nh}]; εzz = Table[0, {i, Ng*Nh}, {j, Ng*Nh}];
εzzinv = Table[0, {i, Ng*Nh}, {j, Ng*Nh}];
For[i = 1, i ≤ Ng*Nh, For[j = 1, j ≤ Ng*Nh,
g = gindx[[i]]− gindx[[j]]; h = hindx[[i]]− hindx[[j]];
gp = If[g ≥ 0, g = g + 1, g = g + GridNx + 1];
(* follow arrangements of components in εijgh *)
hp = If[h ≥ 0, h = h + 1, h = h + GridNy + 1];
εxx[[i, j]] = εxxgh[[gp, hp]]; εxy[[i, j]] = εxygh[[gp, hp]]; εxz[[i, j]] = εxzgh[[gp, hp]];
εyy[[i, j]] = εyygh[[gp, hp]]; εyz[[i, j]] = εyzgh[[gp, hp]]; εzz[[i, j]] = εzzgh[[gp, hp]];
j++; ]; i++; ];
εzzinv = Inverse[εzz];

(* Calculate matrix G for the single LC layer*)
G11 = Dot[nx, εzzinv, εxz]; G12 = Dot[nx, εzzinv, nx]− IdentityMatrix[Ng*Nh];
G13 = Dot[nx, εzzinv, εyz]; G14 = −Dot[nx, εzzinv, ny];
G21 = Dot[εxz, εzzinv, εxz]− εxx + Dot[ny, ny]; G22 = Dot[εxz, εzzinv, nx];
G23 = Dot[εxz, εzzinv, εyz]− εxy − Dot[ny, nx]; G24 = −Dot[εxz, εzzinv, ny];
G31 = Dot[ny, εzzinv, εxz]; G32 = Dot[ny, εzzinv, nx];
G33 = Dot[ny, εzzinv, εyz]; G34 = −Dot[ny, εzzinv, ny] + IdentityMatrix[Ng*Nh];
G41 = −Dot[εyz, εzzinv, εxz] + εxy + Dot[nx, ny]; G42 = −Dot[εyz, εzzinv, nx];
G43 = −Dot[εyz, εzzinv, εyz] + εyy − Dot[nx, nx]; G44 = Dot[εyz, εzzinv, ny];
G1i = Join[G11, G12, G13, G14, 2]; G2i = Join[G21, G22, G23, G24, 2];
G3i = Join[G31, G32, G33, G34, 2]; G4i = Join[G41, G42, G43, G44, 2];
G = Join[G1i, G2i, G3i, G4i];
Ta = Transpose[Eigenvectors[G]]; (*eigen − vecotr matrix*)
Tainv = Inverse[Ta]; (*inverse of the eigen− vecotr matrix *)
κa = Dot[Tainv, G, Ta]; (*eigen − value matrix corresponding to the arrangement of Ta*)

(*Calculate the matrixes related to incidnet and emitted air regions, i.e. nI = nE = 1*)
nxd = DiagonalMatrix[Table[nx[[i, i]]/m[[i, i]], {i, Ng*Nh}]];
nyd = DiagonalMatrix[Table[ny[[i, i]]/m[[i, i]], {i, Ng*Nh}]];
T11 = nyd; T12 = nxd; T13 = nyd; T14 = nxd;
T21 = Dot[nyd, ξ]; T22 = nI∧2*Dot[nxd, ξinv]; T23 = −Dot[nyd, ξ];
T24 = −nI∧2*Dot[nxd, ξinv];
T31 = −nxd; T32 = nyd; T33 = −nxd; T34 = nyd;
T41 = Dot[nxd, ξ]; T42 = −nI∧2*Dot[nyd, ξinv]; T43 = −Dot[nxd, ξ];
T44 = nI∧2*Dot[nyd, ξinv];
T1i = Join[T11, T12, T13, T14, 2]; T2i = Join[T21, T22, T23, T24, 2];
T3i = Join[T31, T32, T33, T34, 2]; T4i = Join[T41, T42, T43, T44, 2];
Ti = Join[T1i, T2i, T3i, T4i]; (* transform matrix Ti*)
Tiinv = Inverse[Ti]; (* inverse of the transform matrix Ti *)
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(*Solution(1) : solve diffractions and reflections with multi − reflections*)
(*set incident plane wave indfd, e.g. set the value of the component withg = h = 0 to be 1*)
indfd = Table[0, {i, 2*Ng*Nh}]; indfd[[Round[(Ng*Nh + 1)/2]]] = 1.0; (* forward incidence*)

(* Calculate the matrix Winv*)
expκ = DiagonalMatrix[Table[Exp[I*κa[[i, i]]*dz*2π/λ], {i, 4*Ng*Nh}]];
Winv = Dot[Tiinv, Ta, expκ, Tainv, Ti]; (* the total transfer matrix *)
W = Inverse[Winv];

(* Calculate the diffraction and reflection fields *)
diff1 = Table[0, {i, 2*Ng*Nh}]; ref1 = Table[0, {i, 2*Ng*Nh}]; (*initialize*)
W1 = W[[1;;2*Ng*Nh, 1;;2*Ng*Nh]];
W3 = W[[(2*Ng*Nh + 1);;4*Ng*Nh, 1;;2*Ng*Nh]];
diff1 = Dot[Inverse[W1], indfd]; (* diffraction fields *)
ref1 = Dot[W3, Inverse[W1], indfd]; (* reflection fields *)

(*Print diffraction and reflection fields as well as the corresponding g, h orders*)
Print["TE mode with multi-reflections"];
For[i = 1, i ≤ Ng*Nh,
Print[gindx[[i]], ", ", hindx[[i]], ", ", Abs[diff1[[i]]], ", ", Abs[ref1[[i]]]]; i++; ];

(*Solution(2) : solve diffractions and reflections without multi − reflections *)
(*Calculate the matrixes related to virtual layer with n = (ne + no)/2*)
ξavg = DiagonalMatrix[Table[Sqrt[((ne + no)/2.0)∧2
− nx[[i, i]]∧2 − ny[[i, i]]∧2], {i, Ng*Nh}]];
ξavginv = DiagonalMatrix[Table[1.0/ξavg[[i, i]], {i, Ng*Nh}]];
T11 = nyd; T12 = nxd; T13 = nyd; T14 = nxd; T21 = Dot[nyd, ξavg];
T22 = nI∧2*Dot[nxd, ξavginv]; T23 = −Dot[nyd, ξavg]; T24 = −nI∧2*Dot[nxd, ξavginv];
T31 = −nxd; T32 = nyd; T33 = −nxd; T34 = nyd; T41 = Dot[nxd, ξavg];
T42 = −nI∧2*Dot[nyd, ξavginv]; T43 = −Dot[nxd, ξavg]; T44 = nI∧2*Dot[nyd, ξavginv];
T1i = Join[T11, T12, T13, T14, 2]; T2i = Join[T21, T22, T23, T24, 2];
T3i = Join[T31, T32, T33, T34, 2]; T4i = Join[T41, T42, T43, T44, 2];
Tavg = Join[T1i, T2i, T3i, T4i]; (* transform matrix Ti*)
Tavginv = Inverse[Tavg]; (* inverse of the transform matrix Ti *)
ClearAll[T11, T12, T13, T14, T21, T22, T23, T24, T31, T32, T33, T34, T41, T42, T43, T44];
ClearAll[T1i, T2i, T3i, T4i];

(* Calculate the transfer matrixes *)
S1 = Dot[Ta, expκ, Tainv];
Sent = Table[0, {i, 4*Ng*Nh}, {j, 4*Ng*Nh}];
Sext = Table[0, {i, 4*Ng*Nh}, {j, 4*Ng*Nh}];
W’ = Inverse[Dot[Tavginv, Ti]]; W1’ = W’[[1;;2*Ng*Nh, 1;;2*Ng*Nh]];
W” = Inverse[Dot[Tiinv, Tavg]]; W1” = W”[[1;;2*Ng*Nh, 1;;2*Ng*Nh]];
Sent[[1;;2*Ng*Nh, 1;;2*Ng*Nh]] = Inverse[W1’]; Sent = Dot[Tavg, Sent];
Sext[[1;;2*Ng*Nh, 1;;2*Ng*Nh]] = Inverse[W1”]; Sext = Dot[Sext, Tavginv];
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(* Calculate the diffraction and reflection fields *)
indfd2 = Table[0, {i, 4*Ng*Nh}]; indfd2[[Round[(Ng*Nh + 1)/2]]]
= 1.0; (* ignore backward *)
diff2 = Dot[Sext, S1, Sent, indfd2];

(*Print diffraction and reflection fields as well as the corresponding g, h orders*)
Print["TE mode without multi-reflections"];
For[i = 1, i ≤ Ng*Nh,
Print[gindx[[i]], ", ", hindx[[i]], ", ", Abs[diff2[[i]]]]; i++; ];

5. References

Berreman, D. W. (1972). Optics in Stratified and Anisotropic Media: 4-by-4-Matrix
Formulation, Journal of the Optical Society of America, Vol. 62, Iss. 4, April 1972, pp.
502-510.

Blinov, L. M.; Cipparrone, G.; Pagliusi, P.; Lazarev, V. V. & Palto, S. P. (2006). Mirrorless lasing
from nematic liquid crystals in the plane waveguide geometry without refractive
index or gain modulation, Applied Physics Letters, Vol. 89, Iss. 3, July 2006, pp.
031114-3.

Blinov, L. M.; Lazarev, V. V.; Palto, S. P.; Cipparrone, G.; Mazzulla, A. & Pagliusi, P. (2007).
Electric field tuning a spectrum of nematic liquid crystal lasing with the use of a
periodic shadow mask, Journal of Nonlinear Optical Physics & Materials, Vol. 16, Iss. 1,
March 2007, pp. 75-90.

Galatola, P; Oldano, C & Kumar, P. B. S. (1994). Symmetry properties of anisotropic dielectric
gratings, Journal of the Optical Society of America A, Vol. 11, Iss. 4, April 1994, pp.
1332-1341.

Glytsis, E. N. & Gaylord, T. K. (1987), Rigorous three-dimensional coupled-wave diffraction
analysis of single and cascaded anisotropic gratings, Journal of the Optical Society of
America A, Vol. 4, Iss. 11, November 1987, pp. 2061-2080.

Ho, I. L.; Chang, Y. C.; Huang, C. H.& Li, W. Y. (2011), A detailed derivation of
rigorous coupled wave algorithms for three-dimensional periodic liquid-crystal
microstructures, Liquid Crystals, Vol. 38, No. 2, February 2011, 241ąV252.
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Kriezisa, E. E. & Elston, S. J. (1999). A wide angle beam propagation method for the analysis of
tilted nematic liquid crystal structures, Journal of Modern Optics, Vol. 46, Iss. 8, 1999,
pp. 1201-1212.

Kriezis, E. E.; Filippov, S. K. & Elston, S. J. (2000). Light propagation in domain walls
in ferroelectric liquid crystal devices by the finite-difference time-domain method,
Journal of Optics A: Pure and Applied Optics, Vol. 2, No. 1, January 2000, pp. 27-33.

Kriezis, E. E. & Elston, S. J. (2000). Wide-angle beam propagation method for liquid-crystal
device calculations, Applied Optics, Vol. 39, Iss. 31, November 2000, pp.5707-5714.

Kriezis, E. E.; Newton, C. J. P.; Spiller, T. P. & Elston, S. J. (2002). Three-dimensional simulations
of light propagation in periodic liquid-crystal microstructures, Applied Optics, Vol. 41,
Issue 25, September 2002 , pp. 5346-5356.

85Electromagnetic Formalisms for Optical Propagation 
in Three-Dimensional Periodic Liquid-Crystal Microstructures

www.intechopen.com



24 Will-be-set-by-IN-TECH

Lien, A.(1997). A detailed derivation of extended Jones matrix representation for twisted
nematic liquid crystal displays, Liquid Crystals, Vol. 22, No. 2, February 1997, pp.
171-175.

Olivero, D & Oldano, C. (2003). Numerical methods for light propagation in large LC cells: a
new approach, Liquid Crystals, Vol. 30, Iss. 3, 2003, pp. 345-353.

Rokushima K. & Yamakita, J. (1983). Analysis of anisotropic dielectric gratings, Journal of the
Optical Society of America, Vol. 73, Iss. 7, July 1983, pp. 901-908.

Sutkowski M.; Grudniewski T.; Zmijan R.; Parka J. & Nowinowski K. E. (2006). Optical
data storage in LC cells, Opto-Electronics Review, Vol. 14, No. 4, December 2006, pp.
335-337.

Witzigmann, B; Regli, P & Fichtner, W. (1998). Rigorous electromagnetic simulation of liquid
crystal displays, Journal of the Optical Society of America A, Vol. 15, Iss. 3, March 1998,
pp.753-757.

Zhang, B. & Sheng, P. (2003). Optical measurement of azimuthal anchoring strength in nematic
liquid crystals, Physical Review E, Vol. 67, Iss. 4, April 2003, pp. 041713-9.

86 Features of Liquid Crystal Display Materials and Processes

www.intechopen.com



Features of Liquid Crystal Display Materials and Processes

Edited by Dr. Natalia Kamanina

ISBN 978-953-307-899-1

Hard cover, 210 pages

Publisher InTech

Published online 30, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Following the targeted word direction of Opto- and Nanoelectronics, the field of science and technology related

to the development of new display technology and organic materials based on liquid crystals ones is meeting

the task of replacing volume inorganic electro-optical matrices and devices. An important way in this direction

is the study of promising photorefractive materials, conducting coatings, alignment layers, as well as electric

schemes that allow the control of liquid crystal mesophase with good advantage. This book includes advanced

and revised contributions and covers theoretical modeling for optoelectronics and nonlinear optics, as well as

includes experimental methods, new schemes, new approach and explanation which extends the display

technology for laser, semiconductor device technology, medicine, biotechnology, etc. The advanced idea,

approach, and information described here will be fruitful for the readers to find a sustainable solution in a

fundamental study and in the industry.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

I-Lin Ho and Yia-Chung Chang (2011). Electromagnetic Formalisms for Optical Propagation in Three-

Dimensional Periodic Liquid-Crystal Microstructures, Features of Liquid Crystal Display Materials and

Processes, Dr. Natalia Kamanina (Ed.), ISBN: 978-953-307-899-1, InTech, Available from:

http://www.intechopen.com/books/features-of-liquid-crystal-display-materials-and-processes/electromagnetic-

formalisms-for-optical-propagation-in-three-dimensional-periodic-liquid-crystal-micr



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


