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1. Introduction  

Bacterial Artificial Chromosomes (BAC) are low copy plasmids that stably maintain 

genomic DNA sequences hundreds of kilobases (Kb) in length. Thus, BAC plasmids usually 

contain the entire locus of one or more genes, enabling their use for genetic engineering and 

for the creation of genomic libraries for large-scale gene sequencing projects. 

The use of BAC plasmids for transgenic gene expression is also gaining popularity over 

traditional proximal promoter driven transgene expression because the BAC typically 

contain most, if not all, of the important regulatory elements required to recapitulate 

endogenous gene expression (Giraldo and Montoliu 2001). Maintaining the coding 

sequence within its regulatory locus insulates the transgene from integration position 

dependent effects on expression enforced by nearby enhancers and heterochromatin 

(Wilson, Bellen et al. 1990). 

Harnessing the power of BAC plasmids requires developing and optimizing methods for 

manipulation of the gene loci within the BAC, generally referred to as “Recombineering”. 

This chapter will discuss the use of such technology to modify BAC DNA, specifically for 

the introduction of a fluorescent reporter to mark the expression of a gene of interest. We 

will also discuss the characterization of BAC transgenic mice and their experimental utility. 

2. Overview of recombineering technology 

Traditional cloning approaches rely on the presence of unique restriction enzyme sites for 
modification of plasmid DNA via a series of digestions and ligations to incorporate or 
remove desired DNA sequences. Unfortunately, most restriction enzyme sequences are not 
unique or conveniently located within the genomic sequence. Thus, the availability/use of 
restriction sites is often a limiting factor when attempting to modify plasmid DNA using 
such approaches. 

Recombineering technology achieves DNA modification using a phage homologous 
recombination system, which uses linear DNA as template. Thus, an investigator can use 
linear targeting vectors containing 5’ and 3’ arms with homology to a target locus to 
introduce new DNA sequence. Subtle changes can now be achieved, including single point 

www.intechopen.com



 
Bacterial Artificial Chromosomes 24

mutations. Since the modification to the locus is based solely on sequence present in the 
target and not restriction enzymes, DNA can be introduced to the target wherever needed. 
Thus, recombineering technology has opened up an unlimited number of possibilities for 
genetic modifications. 

Prior to the use of lambda phage in Recombineering, the study of homologous 
recombination in E. coli laid the groundwork for the use of this technology. Homologous 
recombination via linear DNA is suppressed in E. coli by the recBCD enzyme complex. In 
the recBCD model, the enzyme complex moves destructively along double strand breaks. 
The recB and recC subunits operate as helicases while recD operates as an exonuclease. 
Thus, in recBCD wild type E. coli strains, recombination does not occur through linear 
DNA, as reviewed elsewhere (Myers and Stahl 1994; Yeeles and Dillingham 2010).  

The recBCD complex moves destructively along linear DNA until it encounters a DNA 
motif called a chi site. The chi site motif is a “recombination hotspot” that facilitates 
homologous recombination by ejecting the recD subunit responsible for the exonuclease 
activity of the complex, but does not affect the helicase activity. The helicase activity results 
in single strand DNA that serves as substrate for homologous recombination. This 
molecular reaction was exploited by incorporation of chi sites into targeting vectors to 
enable homologous recombination of target genes. 

Cloning by homologous recombination was also studied in recBCD deficient strains. These 
experiments used recBCD mutants in an attempt to modify bacterial chromosomal and 
plasmid DNA with a linear DNA targeting construct (Jasin and Schimmel 1984; Oliner, 
Kinzler et al. 1993). The success of these studies demonstrated the effectiveness of cloning by 
homologous recombination, but was dependent on the use of specialized bacterial strains 
with constitutively active recombination enzymes. This enzyme activity resulted in 
unwanted intramolecular rearrangements in the modified plasmid (Copeland, Jenkins et al. 
2001). Therefore, the recBCD mutant strains were limited in their use in cloning by 
homologous recombination. 

The Recombineering technology used today is based on the lambda phage Red double 
strand break repair system, which uses the phage proteins exo, bet, and gam. This system is 
initiated when the 5’to3’ exonuclease exo digests linear double stranded (ds) DNA leaving a 
3’ overhang of single stranded (ss) DNA. The resultant 3’ssDNA is coated by the bet protein, 
which facilitates its annealing to a complementary strand of DNA. Once the homologous 
DNA is annealed, the 3’OH becomes a priming site for DNA replication resulting in double 
strand break repair.  

The activities of exo, bet, and gam have been adapted for BAC cloning by homologous 
recombination. The dsDNA substrate for exo is a linear targeting construct with 5’ and 3’ 
homology to the target locus. The linear targeting construct can be generated by PCR or 
excised from a plasmid. The resultant 3’ssDNA is coated by the bet protein and facilitates the 
annealing of the 3’ssDNA of the targeting construct to the targeted sequence on the BAC 
containing the gene locus. The linear targeting construct is unaffected by recBCD activity 
due to the presence of the gam protein, which inhibits recBCD binding to the dsDNA 
targeting construct (Murphy 2007).  

Studies that employed the introduction of lambda phage Red double strand break repair 
into E. coli demonstrated that it was an efficient system for cloning by homologous 
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recombination (Murphy 1998). Other studies demonstrated the use of homology arms as 
short as 27nt in length facilitated cloning by homologous recombination, with increasing 
efficiency with increased homology length. This study also investigated insert length 
between homologous arms and found it useful for inserts from 0-3100bp in length (Zhang, 
Buchholz et al. 1998). It was with these findings that lambda phage Red double strand break 
repair was adopted for cloning by homologous recombination.  

3. Recombineering materials for BAC modification 

There are currently two different resources for phage based Recombineering tools, 
Genebridges and NCI Frederick Systems. The major differences between the systems are 
how the phage genes are introduced into bacteria and what types of gene modifications they 
are capable of. 

3.1 Genebridges plasmid based system 

Genebridges (http://www.genebridges.com/) has adopted a plasmid based system to 
introduce the phage recombination proteins under a pBAD promoter (Noll, Hampp et al. 
2009). In this system, expression of the lambda phage genes is repressed by araC dimer. 
Gene expression is induced when the araC dimer is released from the pBAD promoter in the 
presence of L-arabinose. This system introduces the recombineering apparatus into the E. 
coli strain containing the BAC and does not require specialized bacterial strains that 
endogenously express the recombination proteins. 

3.2 NCI Frederick bacterial based system 

The National Cancer Institute http:// web.ncifcrf.gov/ research/ brb/ recombineering 
Information.aspx offers E. coli strains that contain the phage recombination proteins stably 
integrated into the genome. The proteins are under transcriptional control of the ┣Pl 
promoter in concert with the temperature sensitive cl857 repressor. Transcription of the 
lambda phage proteins is repressed at 32˚C. Repression of the ┣ Pl promoter is released by 
incubating cells at 42˚C for 15 minutes. Placing the stably integrated phage proteins under 
tight transcriptional control circumvents the problems of unwanted recombination 
associated with constitutive expression (Warming, Costantino et al. 2005). NCI offers strains 
with an L-arabinose inducible Cre or Flpe expression, which are useful for excision of the 
selectable antibiotic markers used for positive selection of recombinants. 

In addition, NCI has developed plasmids to facilitate the cloning of sequence from BAC 
DNA into high copy plasmids for downstream use as targeting vectors (Liu, Jenkins et al. 
2003). Plasmids for epitope tagging new proteins of interest have also been developed, 
allowing the investigator to localize and purify proteins. This application speeds the 
functional characterization of proteins by eliminating the lengthy process of generating 
antibodies that would serve similar functions (Poser, Sarov et al. 2008). 

4. Recombineering methods and applications for BAC modification 

In this section, we will discuss the protocols and approaches used, in conjunction with NCI 
recombineering E. coli strains, for the modification of a BAC plasmid, which was used for 
the creation of a new mouse reporter line. 
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4.1 Experimental design 

In our studies, we were interested in generating a reporter mouse line to monitor the 

expression of Smooth Muscle--Actin (SMA) in vivo and track the fate of cells expressing 

this gene. Transcriptional control of the SMA locus had been well defined in previous 

studies (Mack and Owens 1999; Mack, Thompson et al. 2000). Using that information, we 

decided to replace exon 2 (the first coding exon of SMA) and 50bp distal of the 3’ end of 

exon 2, with a myristoylated mCherry fluorescent reporter (Shaner, Campbell et al. 2004). 

Our rationale for this design was to a) insert the reporter in a manner where the first codon 

of the reporter replaced the first codon of SMA, and b) to avoid generating a fusion protein 

by removing the exon 2 splice site donor (Fig. 1a). 

Our targeting construct consisted of a mCherry expression sequence with a 
myristoylation sequence upstream of a PGK-neomycin resistance cassette (Fig. 1a). The 
PGK-neomycin resistance cassette was flanked at the 5’ and 3’ end by FRT recombination 
sites. Inclusion of the PGK-neomycin resistance cassette facilitated selection of positive 
recombinant clones by kanamycin (Fig. 1b). Inclusion of the FRT recombination sites 
allowed for subsequent excision of the PGK-neomycin resistance cassette by Flpe 
recombinase, thus eliminating any unwanted transcription effects of the PGK promoter on 
the reporter (Fig. 1c). The targeting construct ended with a SV40 polyadenylation 
sequence to enable efficient transcription (Fig. 1a). 

 

Fig. 1. Experimental design for the generation of a Smooth-Muscle--Actin (SMA) reporter 
construct. (a) The endogenous SMA locus and linear targeting construct. (b) The SMA locus 
correctly targeted by recombineering. (c) The final reporter construct following excision of 
PGK-neomycin selection cassette. 
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Our immunohistochemistry on cultured cells selected for mCherry expression by 

Fluorescent Activated Cell Sorting (FACS) showed a distinctly different membrane 

localization of our mCherry reporter compared to the cytoskeletal staining pattern of 

SMA indicating we had avoided generating a SMA-mCherry fusion (Armstrong, Larina et 

al. 2010). 

4.2 Isolation of BAC DNA 

Isolation of BAC DNA can be achieved using a standard alkaline lysis phenol/chloroform 

extraction followed by alcohol precipitation. However, these types of BAC DNA 

preparations are subject to contamination by genomic DNA. Column purification of BAC 

DNA, such as that achieved using NucleoBond BAC 100 kit by Clontech, will yield more 

pure and less degraded BAC DNA. With either procedure, the removal of fragmented 

linear genomic DNA can be achieved using ExoV exonuclease or increasing lysis of the 

bacterial wall using lysozyme, as needed. However, large BAC DNA sequences are 

susceptible to shearing, so one must take care during preparation so as not to degrade the 

intact BAC DNA. 

Quick BAC prep 

Although there is a considerable genomic DNA contamination using this Quick BAC Prep 
procedure, we found it to be sufficient for isolating BAC DNA for introduction into the 
SW105 recombineering bacterial strain. 

1. Pick colony and place in 5ml LB with appropriate selection reagent and place in shaking 

incubator at proper temperature (30°C for SW bacterial series; 37°C for DH10 bacteria) 

overnight. 

2. Pellet bacteria by centrifugation at 4,000xg for 15min. 

3. Resuspend pellet in 1000ul of P1 buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA) with 

100ug/ml RNaseA. 

4. Add 1000ul P2 buffer (200 mM NaOH, 1% SDS) for lysis reaction for 5 min at RT. 

5. Add 1000ul P3 buffer (3.0 M potassium acetate, pH 5.5 adjusted with glacial acetic acid) 

for cell debris precipitation. Do not vortex! Vortexing BAC DNA will destroy it. Swirl to 

mix, and then incubate on ice for 5 min. 

6. Centrifuge the prep at 4,000xg for 45 min at 4°C. Decant supernatant. 

7. Precipitate BAC DNA with 2 ml 2-propanol, incubated at -20°C for 30min or more. 

8. Centrifuge at 4,000xg for 30 min at 4°C to pellet DNA. 

9. Decant supernatant and wash with 1 ml 70% ethanol. Centrifuge 4,000xg for 15 min at 

4°C. 

10. Decant supernatant and dry DNA pellet, but do not allow to completely dry. BAC DNA 

that has completely dried is difficult to resuspend. 

11. Resuspend pellet in 200 ul TE at 4°C overnight. This prep should yield 500 ng-1 ug/ul 

DNA with approximately 50-75% genomic contamination. 

4.3 Electroporation of BAC DNA into bacteria 

Electroporation of bacteria is usually performed with an exponential decay electroporation 
instrument, although square wave instruments can be adapted for bacterial electroporation. 
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We found that for the initial electroporation of BAC DNA into recombineering bacterial 
strains, a “dirty” prep of BAC DNA containing genomic DNA prepared by alkaline lysis 
alcohol precipitation was sufficient. 

With “Quick Prep” BAC DNA (described above), electroporation can be performed at 1.8KV 

with a time constant of 5µs. Cells are then resuspended in 1ml LB media and incubated for 

1hr at 30˚C. As with standard practice, 100ul cells are streaked on selection plates and 

incubated at 30˚C overnight. To the remaining electroporated cells, 4ml LB medium are 

added and incubated overnight at 30˚C. The following day, cells were plated on selection 

plates and transformed cells are obtained from this selection. 

4.4 Preparation of induced electrocompetent cells 

Electrocompetent cells are prepared by inoculation of 50 ml LB plus appropriate reagent to 
select for the BAC clone of interest at 1:50 dilution from an overnight culture. Cells are 
incubated at 30˚C until the culture achieves an OD600 of 0.50, which is usually 3-4 hrs. Cells 
are then divided into two aliquots, one for induction of lambda phage proteins and one un-
induced control.  

To induce the lambda phage proteins, cells are incubated at 42˚C for 15 minutes, and then 

harvested by centrifugation at 5000xg for 15 minutes at 4˚C. Cells are then washed 3 times in 

25ml ice-cold 0.2µm-filtered ddH2O containing 10% glycerol, resuspended in 30µl 10% 

glycerol in ddH2O, and then transferred to cooled cuvettes for electroporation.  

4.5 Generating a targeting vector 

Recombineering modifies the genomic locus using a linear targeting construct. The linear 

targeting construct can be generated either by PCR or excision from plasmid DNA, as 

discussed below. 

4.5.1 PCR based approach 

A convenient method for generating linear targeting vectors is via a PCR based approach in 

which primers are designed against two important sequence elements. The 5’ end of the 

primer contains sequence homology to the targeted locus while the 3’ end contains sequence 

for PCR amplification of the targeting construct. When these primers are used in a PCR 

reaction, the product produced contains both homology to the target and the targeting 

construct. Using a PCR based approach allows an investigator to use the same template to 

target an alternative locus. By changing the 5’ homology of the primers to match an 

alternative locus, a new linear targeting construct can be generated. Therefore, the template 

used for generating the linear targeting construct is modular. 

4.5.2 Plasmid based approach 

Cloning longer (100-500 bp) homology arms into the targeting construct is an alternative 
approach to generating a linear targeting vector. Using this type of construct is also useful 
for cloning sequence from BAC DNA into high copy plasmids for subsequent 
modification and use for in vitro cell targeting (i.e. embryonic stem cells). The linear 
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targeting construct is released from the vector by restriction enzyme digest and gel 
purified. This approach reportedly reduces base changes that are sometimes generated 
during PCR. 

4.6 Preparation and electroporation of targeting vector for BAC modification 

In our studies, we generated a linear targeting vector by PCR. Following PCR, the reaction is 
DpnI digested to remove the plasmid template. This step is incorporated in an attempt to 
reduce background and false positive clones that would result from electroporation of 
plasmid template. The PCR product is then gel purified and used to electroporate cells 
containing the BAC clone. Cells are electroporated with 1ug of linear targeting vector using 
the parameters previously described in section 4.3. Recombinants are obtained by plating of 
the overnight culture, as described above. 

4.7 Selection of positive recombinants 

Selection of positive recombinants can be facilitated by inclusion of a PGK-neomycin 

selection cassette in the targeting vector that confers kanamycin resistance to recombinant 

clones. Cells are plated on LB agar plates containing 15ug/ml kanamycin and grown at 

30˚C overnight, as described above. Following antibiotic selection, clones are screened for 

correct targeting using DNA isolated from kanamycin resistant clones in a PCR reaction 

using two different sets of primers that would amplify a product across the 5’ and 3’ 

recombination sites. PCR reactions are then analyzed on 1% agarose gel to correctly 

targeted clones. The PCR products are then sequenced to ensure the recombination had 

taken place as expected. Southern Blot analysis is another method for identifying the 

inclusion of the targeting construct into the BAC. While Southern Blot is sensitive, it gives 

no information on the sequence and requires additional time and labeling reagents (i.e. 

radioactive nucleotides).  

4.7.1 Identifying false positive recombinants 

In most cases, the template DNA used in the PCR reaction generating the linear targeting 

vector is eliminated by a DpnI digest, followed by gel purification. However, despite using 

DpnI to digest methylated DNA used as template in the generation of linear targeting vector 

by PCR, some plasmid template may be introduced into bacteria during the electroporation 

(Fig. 2). Identification of this contamination can be facilitated by gel electrophoresis of uncut 

BAC DNA isolated from kanamycin resistant clones. Even though the linear targeting 

construct is gel purified, the plasmid template can transform kanamycin resistant clones. For 

example, the undigested supercoiled plasmid DNA and the linear targeting vector can run 

at approximately the same molecular weight, thus contaminating the linear targeting vector 

during gel purification, as occurred in our studies. 

5. Characterization of BAC transgenic mice 

5.1 BAC reporter expression recapitulates endogenous expression 

To verify that the transgenic BAC reporter is expressed in the same temporal and spatial 
pattern as the protein of interest, immunohistochemistry is employed to evaluate tissue 
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and cellular specificity. Not only is it important to demonstrate that the reporter and the 
protein of interest are co-expressed, but it is also important to demonstrate that the 
reporter does not exhibit ectopic expression, beyond endogenous expression. In situ 
hybridization can also be utilized to characterize the co-expression of the reporter and 
targeted gene of interest. 

 

Fig. 2. Identification of PCR template contamination in selected BAC clones. 
Uncut BAC DNA preps run on 1% agarose gel. BAC DNA is in the upper box, and 
contaminating PCR template in the lower box. Lane 1 - Hi Mark Ladder. Lanes 3, 4, and 6 
are true positive recombinants without contaminating PCR template used to generate the 
linear targeting construct. 

5.2 BAC transgene copy number 

An assay was developed by Chandler and coworkers (Chandler, Chandler et al. 2007) to 

determine the number of copies of BAC transgene integrated into the genome. We adopted 

this method to measure copy number in our SMA-mCherry transgenic lines (Armstrong, 

Larina et al. 2010), and found that the level of expression of the reporter correlated with 

BAC copy number, which is useful for the comparative evaluation of the mouse lines. 

5.3 Integration site of BAC transgene 

Chandler and coworkers were also able to identify multiple integration sites in BAC 

reporters. This was achieved by employing the BAC transgene copy number assay described 

above and analyzing outcrossed F2 generations for the number of transgene copies 

(Chandler, Chandler et al. 2007). Since the level of reporter expression is dependent on 

transgene copy number, it is useful to identify founders that transmit a single integration 

site, ensuring consistent reporter expression in future progeny. 
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6. Utility of BAC transgenics 

6.1 FACS analysis and isolation of live cells based on intracellular protein expression 

One advantage of introducing a reporter into the gene locus of an intracellular protein is 

that one can then use the reporter mouse or cell line to identify and isolate live cells by 

Fluorescence Activated Cell Sorting (FACS) for in vitro applications. For example, we used 

the SMA-mCherry mice that we developed to isolate live cells expressing SMA from tissues 

during embryonic development (Fig. 3a), and demonstrated that the cells retain reporter 

expression after culture in vitro (Fig. 3b). 

 

 
 

Fig. 3. Isolation of SMA positive cells by flow cytometry. (a) FACS analysis of E9.5 yolk sac 
endothelium reveals that a subset of endothelium expressed the mesenchymal marker SMA. 
(b) Expression of SMA was retained when the cells were cultured in vitro.  
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6.2 In vivo imaging of embryonic vascular development 

BAC transgenic mice expressing reporter constructs can also be used to monitor and 
measure the dynamic emergence and fate of distinct cell types. For example, in our studies,  

we adopted an embryo culture system previously used for in vivo imaging of the 

cardiovascular system and hemodynamics (Garcia, Udan et al. 2011; Garcia, Udan et al. 

2011). We used the SMA-mCherry reporter mice, crossed to an endothelial specific Flk1-YFP 

reporter mouse line, to monitor endothelial-mesenchymal interactions during vascular 

development (Fraser, Hadjantonakis et al. 2005). Still images of a time-lapse experiment are 

shown in Figure 4. At early time points in the experiment (~E8.5), only (YFP+) endothelial 

cells are present within the developing yolk sac (Fig. 4a,d). As vascular development 

progresses during embryo culture (~E9.0), SMA expressing cells appear (Fig. 4b,e, 

arrowhead); their migration within the tissue can be monitored over time (Fig. 4c,f, 

arrowhead). Heart development and function can also be monitored and measured using 

these mice, as previously reported (Armstrong et al. 2010). 

 

 

 

 

Fig. 4. Still series from in vivo imaging. (a,d) YFP+ endothelial cells prior to the emergence 
of SMA+ cells. At later time points, SMA-expressing cells beginning to appear (b,e), and 
their movement within the tissue can be monitored over time (c,d). 
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7. Conclusions 

In summary, BAC clones provide a stable source of starting material for gene targeting. BAC 

clones, used in conjunction with Recombineering technology, provide investigators with 

numerous gene modifications approaches such as those needed to create transgenic reporter 

mouse lines. In addition to BAC transgenics, Recombineering technology can be employed 

for the construction of conditional alleles, point mutations, insertions and deletions. Thus, 

this technology is versatile and powerful. 
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