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1. Introduction 

hRSV is the leading cause of respiratory disease in infants, elderly, and immunocompromised 
populations worldwide (Falsey et al., 2005; Nair et al., 2010). Most individuals are infected at a 
young age, before 3 years old (Glezen et al., 1986). In fact, RSV infection is the most common 
cause of hospitalization in children 5 years old and below. When severe infection occurs, 
respiratory airways and pulmonary development are affected. However, the viral 
determinants of disease severity are not well defined, as little is known about its molecular 
mechanism of pathogenesis.  

Disease caused by hRSV infection is unique in the sense that repeated infections throughout 
life can take place even though genetic diversity is not extreme, and antigenic sites are 
highly conserved between strains (Glezen et al., 1986). It is likely that natural RSV infection 
only confers imperfect immunity against subsequent infections; the virus probably has 
evolved to evade the natural immune system so that the durability of antibody response for 
life-long immunity is poor.  

Although the virus was identified half a century ago, there are still no licensed vaccines 
against infection, and current vaccine-based antiviral therapies are not effective. Reviews 
describing efforts in the development of antiviral vaccines have been published over the 
years, e.g. (Collins & Murphy, 2006) and recently (Murata, 2009; Chang, 2011). In the initial 
trial of RSV vaccine with formalin-inactivated RSV (FI-RSV) during the 1960s, the vaccine 
proved to be poorly protective and actually enhanced the severity of RSV disease (Kapikian 
et al., 1969). This failure significantly increased safety concerns surrounding RSV vaccine 
development. The several hurdles in the development of a pediatric RSV vaccine, and the 
use of attenuated viruses, subunit particles, peptides, virus-like particles, and live viral 
vectors as vaccine candidates, which show potential for further development, have been 
discussed elsewhere, e.g., (Chang, 2011).  

In general, currently available prophylactic and therapeutic methods are limited (Murata, 
2009; Olszewska & Openshaw, 2009; Weisman, 2009; Chang, 2011). For example, a 
humanized monoclonal antibody, palivizumab (S. Johnson et al., 1997) targeting hRSV F 
glycoprotein, a trimeric fusion protein, is licensed for use as prophylactic therapy for the 
high-risk pediatric population. The drug ribavirin is the only antiviral therapy for patients 
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with hRSV infection, although not recommended in most cases for its unsatisfactory clinical 
efficacy and safety concerns (Vujovic & Mills, 2001). In addition to the approved monoclonal 
antibody palivizumab (Group, 1998), several small molecule inhibitors, e.g., disulfonated 
stilbenes (Razinkov et al., 2001), benzotriazoles (Cianci et al., 2004), benzimidazoles (Andries 
et al., 2003), and triphenol compounds (McKimm-Breschkin, 2000) that target F protein are 
also potent inhibitors of hRSV infectivity.  

hRSV is a member of the Paramyxoviridae family of nonsegmented negative strand RNA 

viruses, and encodes 11 proteins, 9 of which are structural. Amongst these, the genome of 

hRSV encodes three membrane proteins that are accessible on the surface of the virion: 

fusion (F), attachment (G), and small hydrophobic (SH) protein. Protein G and F are key 

factors during virus entry, attachment and fusion (Lamb, 1993; Krusat & Streckert, 1997), 

and are the only hRSV proteins that induce neutralizing antibodies (Walsh et al., 1987; 

Connors et al., 1991).  

Based on the reactive patterns to monoclonal antibodies, hRSV can be divided into two 

antigenic subgroups, A and B (P. R. Johnson et al., 1987), which co-circulate in human 

populations. Although antibodies against both F and G proteins were found in the serum of 

hRSV infected patients, they only provide temporary protection . Thus, the combination of 

low immunoprotection and lack of suitable antivirals leads logically towards the search and 

characterization of new drug targets for the effective treatments of hRSV infection.  

2. SH protein 

2.1 Topology, polymorphism and localization 

In contrast to F and G proteins, little is known about the specific functions played by SH 

protein in hRSV infection and replication. The SH protein is the smallest transmembrane 

(TM) surface glycoprotein encoded by hRSV (Murphy et al., 1986; Collins & Mottet, 1993), 

with 64 to 65 amino acids, depending on the viral strain, A or B, respectively (Collins et al., 

1990). Biochemical studies have shown that the SH protein is a type II integral membrane 

protein with a single TM domain (Fig. 1), where the C-terminus is confirmed to be oriented 

extracellularly (Collins & Mottet, 1993). The TMHMM algorithm,  based on the Hidden 

Markov Model (Krogh et al., 2001) indicates that the TM domain spans residues 20 to 42 

(Fig. 1, red line). This has been confirmed experimentally by us using a synthetic peptide 

corresponding to the TM domain of SH protein, SH-TM (residue 18-43), which when 

inserted into supported lipid bilayers was protected from hydrogen/deuterium (H/D) 

exchange and was -helical (Gan et al., 2008).  

During infection, the majority of the SH protein accumulates at lipid-raft structures of the 

Golgi complex, the endoplasmic reticulum (ER), and the cell surface (Rixon et al., 2004). 

Lipid rafts are enriched in cholesterol and sphingolipids and form a platform for various 

protein-protein interactions necessary during signal transduction events (Dykstra et al., 

2003), protein trafficking (Helms & Zurzolo, 2004), and also virus entry, assembly, and 

budding (Suzuki & Suzuki, 2006). Indeed, hRSV has been shown to utilize lipid rafts, and in 

particular caveolae, a caveolin-1 enriched subdomain (Werling et al., 1999; Brown et al., 

2002), to gain entry and in the assembly of virus particles. Only a very low amount of SH 

protein is associated with the viral envelope (Rixon et al., 2004).  
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Several forms of SH protein are present during infection, which vary in their glycosylation 
status (Olmsted & Collins, 1989): two non-glycosylated forms, a full length 7.5 kDa (SH0) 
form, a truncated 4.5 kDa species (SHt), an N-linked glycosylated form (SHg), and a 
polylactosaminoglycan-modified form (SHp). All these, except the truncated SHt, are 
incorporated at the surface of the infected cells, where the non-glycosylated SH0 appears to 
be the most abundant form (Collins & Mottet, 1993). In addition to these modifications, the 
tyrosine residues of SH protein are phosphorylated during infection, and this modification 
affects cellular distribution (Rixon et al., 2005). 

 

 

Fig. 1. Prediction of TM helices for SH protein by TMHMM (Krogh et al., 2001) 

(http://www.cbs.dtu.dk/services/TMHMM/). Only one TM -helix is predicted (thick red 
line). The blue line represents residues inside the cell, whereas the magenta line indicates 
residues outside the cell, although this prediction turns out to be wrong (see text).  

2.2 The role of SH protein 

The function of SH protein in RSV replication cycle remains unclear. SH has no crucial role in 
viral survival in in vitro cell culture systems (Bukreyev et al., 1997), but it is essential for 
effective infection in animal models: mouse and chimpanzee (Bukreyev et al., 1997; Whitehead 
et al., 1999). This suggests a potential role for SH in immune evasion or in immunomodulation. 
Interestingly, a vaccine based on the use of live attenuated virus carrying a deletion of the SH 
gene, rA2cpts248/404/1030/∆SH, showed significant improvement of disease symptoms and 
protection against re-infection when compared to another version, cpts248/404, which only 
carried mutations at other two genes, L and M (Karron et al., 2005). 

Some studies suggest an ancillary role for SH protein in virus-mediated cell fusion (Heminway 
et al., 1994; Techaarpornkul et al., 2001). More recently, it has been shown that SH protein from 
simian virus 5 (SV5) (He et al., 2001), parainfluenza virus 5 (PIV 5) (Fuentes et al., 2007), Mump 
virus (MuV) (Wilson et al., 2006), and hRSV (Fuentes et al., 2007), all members of the 
paramyxoviridae family, inhibit apoptosis in several mammalian cell lines.  
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While promotion of apoptosis helps release the virus from the cell, it is possible that 
inhibition of apoptosis in host cells during infection gives an advantage to the virus in 
replication. For RSV and PIV 5, SH protein is necessary for the inhibition of tumor necrosis 

factor alpha (TNF-)-induced apoptosis (Y. Lin et al., 2003; Fuentes et al., 2007). However, this 

is also the case in A549 cells, which are insensitive to TNF- induced cell death (Fuentes et al., 

2007). This suggests that this effect is not uniquely mediated by a TNF- pathway. 

In addition to the above, SH increases membrane permeability to low-molecular-weight 
compounds, as shown when expressed in Escherichia coli (Perez et al., 1997). Thus, SH 
protein has been suggested to belong to the viroporin class, a group of small, highly 
hydrophobic virus proteins that can oligomerize and form pores (Gonzalez & Carrasco, 
2003). Support for this hypothesis was gained when we confirmed that the synthetic peptide 
corresponding to the predicted TM domain of SH protein (SH-TM) forms pentameric cation-
selective ion channels in model planar lipid bilayers (Gan et al., 2008).  

Ion leakage may lead to dissipation of membrane potential and disruption of cell 

homeostasis, but the consequences of these are not clear. Further studies on hRSV infected 

cells should gain insight into the significance of SH viroporin activity in the hRSV life cycle. 

One possible indication may be derived from experiments in MDBK and L929 cells, where 

SH from PIV5 or from RSV A or B subgroups has a protective role against the cytopathic effect 

(CPE) produced by PIV5 (He et al., 2001; Y. Lin et al., 2003; Wilson et al., 2006). Similarly, the 

SH protein from PIV5 could be substituted by SH from mumps virus (Wilson et al., 2006), even 

though these two SH proteins have no sequence homology. These data argue against a 

mechanism mediated by a specific protein-protein interaction with an unknown protein, and 

for a possible functional role of a membrane permeabilizing pentameric structure that would 

be common to all these species.  

2.3 Interaction of SH with viral and host proteins 

Extensive protein-protein interactions have been observed between the three membrane 

proteins on the RSV envelope, F, G, and SH (Feldman et al., 2001; Techaarpornkul et al., 

2001; Low et al., 2008) and these interactions have an effect on fusion activity of hRSV on the 

host (Heminway et al., 1994; Techaarpornkul et al., 2001). In cells transiently expressing 

hRSV membrane proteins, the presence of G and SH proteins enhanced fusion activity 

mediated by F protein (Heminway et al., 1994). However, using virus-infected cells the 

presence of G protein alone enhanced F-mediated fusion activity (Techaarpornkul et al., 

2001), whereas SH protein in the absence of G protein inhibited it, suggesting a possible 

interaction between SH and G (Techaarpornkul et al., 2001).  

Protein complexes F-G and G-SH have been detected on the surface of infected cells using 
immunoprecipitation (Low et al., 2008) and heparin agarose affinity chromatography 
(Feldman et al., 2001). Direct evidence of the existence of an F-SH complex has never been 
reported. A trimeric complex F-G-SH was not detected on the surface of hRSV infected Hep-
2 line cells (Low et al., 2008), but it was present in Vero cell lines co-transfected with F, G, 
and SH proteins (Feldman et al., 2001), suggesting that this hypothetical ternary interaction 
may be short lived, or takes place in very specific conditions. These three proteins not only 
form hetero-oligomers, but also homo-oligomers: F forms trimers (Calder et al., 2000), G 
forms tetramers (Escribano-Romero et al., 2004), and SH forms pentamers (Collins & Mottet, 
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1993; Rixon et al., 2005; Gan et al., 2008). Thus, a complicated regulatory network of 
interactions may exist which probably includes both homo- and hetero-oligomeric forms.  

In addition to interactions with viral proteins, the fact that SH proteins of RSV and PIV 5 are 

necessary for the inhibition of tumor necrosis factor alpha (TNF-)-induced apoptosis (Y. 
Lin et al., 2003; Fuentes et al., 2007) also suggests a possible interaction with host proteins, 
although this has not been confirmed experimentally.  

2.4 Oligomerization of SH protein 

Hetero- or homo-dimerization at the TM domain is very common in membrane proteins, 
e.g. homo- and hetero-dimeric integrins (X. Lin et al., 2006), or trimeric viral fusion proteins 
(Lamb et al., 1999). Tetramers and above suggest pore or channel formation, e.g., in 
influenza A M2 (a tetrameric proton channel) (Kovacs & Cross, 1997), CorA (a pentameric 
divalent cation transporter) (Eshaghi et al., 2006), and MscL (a hexameric mechanosensitive 
channel) (Sukharev et al., 1997). SH protein can be cross-linked with disuccinimidyl suberate 
and dithiobis-(succinimidyl)-propionate, to produce higher oligomers, from dimers to 
pentamers (Collins & Mottet, 1993; Rixon et al., 2005). 

 

 
 (a)            (b)            (c)  

Fig. 2. PAGE analysis of SH protein and SH-TM in SDS ad PFO. (a) SDS-PAGE of SH protein 
and SH-TM. Lane 1, protein markers; lane 2, SH protein (expected M.W. 7,808 Da); lane 3, 
SH-TM (expected M.W. 2,983 Da); (b) PFO-PAGE of SH protein. Lane 1, protein markers; 
lane 2, SH protein; (c) PFO-PAGE of SH-TM. Lane 1 is protein markers and lane 2 is SH-TM. 

We have studied SH protein oligomerization using a purified recombinant form 
corresponding to subgroup A. The protein was successfully over-expressed in E. coli and 
purified by RP-HPLC to high purity. One of the methods that can be used to study 
oligomerization is SDS-PAGE electrophoresis, which can maintain native oligomeric size in 
some cases, e.g., glycophorin A and phospholamban (Lemmon et al., 1992; Simmerman et 
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al., 1996). Usually, however, SDS destabilizes oligomer formation, induces non-specific 
oligomer formation, or results in anomalous migration (Rath et al., 2009). Thus, in the 
presence of SDS, SH protein migrated as a diffused band with a molecular weight (~ 17 kDa) 
consistent with either dimers, or slow monomers (Fig. 2A, lane 2). In contrast, the TM 
domain of SH protein, SH-TM (residue 18-43), formed only monomers (~3 kDa) in SDS-
PAGE (Fig. 2A, lane 3). This indicates that SDS destabilizes possible SH protein oligomers. 
In contrast to SDS, perfluoro-octanoic acid (PFO) is a milder detergent that protects weak 
interactions and maintains native oligomeric size (Ramjeesingh et al., 1999). In presence of 
PFO, SH protein produced a band consistent with a higher molecular weight (~35-40 kDa) 
compatible with pentamers (Fig. 2B, lane 2). Consistently, the TM domain, SH-TM (residues 
18-43), also formed pentamers (~ 15 kDa) in PFO-PAGE (Fig. 2C, lane 2), confirming that the 
TM domain of SH protein is the main driving force for SH protein pentamerization. 

 

 

 

   (a)        (b)   

Fig. 3. BN-PAGE and AUC-SE analysis of SH protein and H22A mutant reconstituted in  
C14 betaine micelles. (a) BN-PAGE of SH protein and H22A mutant. Lane 1 is AqpZ 
(monomeric size 25 kDa), which forms oligomers of several sizes in these conditions was 
used as protein markers; lane 2 is SH protein (expected MW 7808 Da), and lane 3 is H22A 
mutant (expected MW 7742 Da); (b) Representative traces of a global fit analysis of SH 
protein to a monomer-pentamer self-association model (red line), and H22A mutant to a 
monomer-tetramer model (blue line). The data shown were collected with 80 μM protein 
solubilized in 5 mM C14 betaine micelles, centrifuged at 24,000 rpm. The data is shown as 
black filled circles. The residuals of the fit are shown below.  
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As both SDS and PFO are anionic charge detergents, we also studied SH oligomerization in 
C14 betaine, a zwitterionic detergent. This was assessed in both Blue Native-PAGE (BN-
PAGE) and in analytical ultracentrifugation sedimentation equilibrium (AUC-SE) 
experiments (Fig. 3). In the presence of  C14 betaine, SH protein migrates as a single band in 
BN-PAGE, between monomeric and dimeric AqpZ (i.e., between 25 and 50 kDa), consistent 
with an SH pentamer (~40 kDa) (Fig. 3A, lane 2). The AUC-SE data for SH protein 
reconstituted into C14 betaine micelles was also best fitted to a monomer-pentamer model 
(Fig. 3B, red line). Therefore, the above studies point unequivocally to a pentameric form for 
SH. Recent electron microscopy studies using a >80 residue long construct containing SH 
protein have produced ambiguous results that could be assigned to a pentamer or a 
hexamer (Carter et al., 2010). 

The energetics of the interaction between SH monomers was also obtained from AUC-SE 
data. These studies provide dissociation constant and distribution of oligomeric species over 
a wide range of concentrations for a reversibly associating system in solution. The calculated 
standard free energy (∆G°) was -16.3 kcal/mol, i.e., 78% to 88% of SH protein forms 
pentamers in these conditions. For comparison, SARS-CoV E protein, also a small 
membrane protein of 76 amino acids with a single ǂ-helical TM domain (Torres et al., 2006), 
associates forming pentamers with standard free energy of -9.45 kcal/mol, therefore SH 
protein has a higher propensity for pentamerization.  

2.5 His22 mutation destabilizes the pentameric form of SH protein 

The pentameric structure of SH-TM has been modeled by combining evolutionary 
conservation data in global search molecular dynamics (GSMD) simulations and 
orientational restrains derived from infrared linear dichroism analysis of an isotopically 
labeled SH-TM peptide in lipid bilayers (Gan et al., 2008). In this model, His22 was located 
facing the lumen or inter-helical region of the pentamer. This is reminiscent of a similar 
residue (His37) found at the TM domain of Influenza A M2 proton channel. In M2, this 
histidine residue is located in a lumenal orientation, and it has been shown to be important 
for the tetramerization of M2 (Howard et al., 2002), as well as an essential residue involved 
in proton transport.  

Consistent with this lumenal or interfacial location, a H22A mutant in C14 betaine migrated 
faster than wild type (WT) SH protein, likely as tetramers (Fig. 3A, lane 3). Also, AUC-SE 
data in C14 betaine micelles could not be fitted to a monomer-pentamer equilibrium model, 
but it could be fitted to a monomer-tetramer model (Fig. 3B, blue line). The standard free 
energy of association was -12.83 kcal/mol. Indeed, histidine is a good candidate to mediate 
TM -helix association; the polar Nǅ and Nǆ atoms of the imidazole ring are capable of 
being both hydrogen bond donor and acceptor. 

2.6 SH protein as a viroporin 

Viroporin is a general term applied to small hydrophobic proteins encoded by viruses that 
increase membrane permeability (Gonzalez & Carrasco, 2003). Generally, these proteins are 
60-120 amino acids long with one or two ǂ-helical TM domains. They oligomerize in 
membranes to form pores, allowing passage of ions or small molecules across the lipid bilayer. 
It has been suggested that viroporins acts as a virulence factor during infection. They are not 
essential for virus replication but their presence enhances virus growth. Forming an ion 
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channel may be one of the strategies for viruses to survive in the host system. The channel 
activity of viroporins leads to the dissipation of the membrane potential and disruption of cells 
homeostasis, leading to gradually damage of cells as infection progresses. To date, more than 
ten viroporins have been identified from various viruses, and influenza A virus M2 proton 
channel is probably the best studied example (Zhou et al., 2001; Schnell & Chou, 2008; Stouffer 
et al., 2008). Structural and in vivo electrophysiological studies of viroporins are lacking, 
partially due to the difficulty in expression and purification of the hydrophobic membrane 
proteins. Nonetheless, structures of the SARS-CoV E protein (Pervushin et al., 2009), the HCV 
p7 protein(Cook & Opella, 2009), and the HIV-1 Vpu proteins (Park et al., 2003; Sharpe et al., 
2006) have been studied  by NMR methods. Channel activities for these proteins have been 
confirmed using black lipid membranes (BLM) and can be blocked by hexamethylene 
amiloride (HMA) (Ewart et al., 2002; Premkumar et al., 2004; Pervushin et al., 2009), whereas 
we have shown that SARS-CoV E protein also displays channel activity in a mammalian 
whole-cell patch clamp set-up (Pervushin et al., 2009).  

In the case of SH protein, both SH-TM (residues 18-43) (Gan et al., 2008) and full-length SH 
protein have channel activity when reconstituted in BLMs (Fig. 4A). More direct evidence 
for channel activity is provided using whole-cell patch clamp experiments of SH protein- 
transfected HEK293 cell lines. In these experiments, expression of full-length SH gene was 
monitored by GFP, and the fluorescence intensity was correlated with expression level of 
SH protein (Marshall et al., 1995). The full-length SH protein displayed channel activity 
when transiently expressed in HEK293 cells (Fig. 4B). When placed in bath solution with 
neutral pH, the transfected cells produced significant higher channel activity than the 
controls, the cells transfected with vector alone (Fig. 4B, left panel). Molecular modeling of 
the ǂ-helical region of SH protein shows several polar residues lining the lumen of the pore, 
including charged residues: His22, Lys43, and His51. The pKa for lysine and histidine are 
about 11.1 and 6, respectively. Therefore, histidines are most likely contributing to changes 
in SH channel activity if the pH of the bath solution was changed from neutral to acidic pH.  

We have shown in a BLM experiment that SH-TM which contains His22 was acid sensitive 
(Gan et al., 2008). To test the effect of acidification on channel activity for the full-length SH 
protein, the bath solution were changed to pH 5.5 after a stable conductance were recorded 
in neutral pH. In contrast to the control, in which no changes were observed upon pH 
changes (Fig. 4B, right panel), the SH channel responded more actively in acidic solution. 
Larger outward current was detected upon exposure of SH channel to acidic solution, 
therefore we have shown that SH channel activity is pH dependent. Whether residue His22 
or His51 is involved in the pH regulation, and the role of the channel activity in virus life 
cycle, requires further investigation.  

Recently, studies have indicated that SH protein can inhibit apoptosis in several mammalian 

cell lines by blocking the tumor necrosis factor alpha (TNF-)-mediated apoptotic signaling 
pathway (Fuentes et al., 2007). However, ion channels may also control apoptosis in cells 
(Szabo et al., 2004; Lang et al., 2005; Burg et al., 2006; Madan et al., 2008). Disruption of cells 
homeostasis is a common sign of apoptosis, leading to plasma membrane depolarization 
associated with intracellular cation overload and cell volume decreases due to anion and 
water efflux (Burg et al., 2006). In fact, the viroporin of Sindbis virus 6K, murine 
hepatitisvirus E protein, Influenza A M2 protein, HCV p7 protein, poliovirus 2b and 3A 
protein have been reported to manipulate apoptosis of infected cells (Neznanov et al., 2001; 
Campanella et al., 2004; Madan et al., 2008). While promotion of apoptosis helps to release 
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the virus, inhibition of apoptosis in host cells during infection gives an advantage to the 
virus to replicate. In future, drugs that block ion channel of several viroporins, such as 
amantadine, rimantadine, and HMA could be tested on SH ion channel to obtain further 
understanding of the channel properties of SH protein. 

 

 
(a) 

 
(b) 

Fig. 4. SH is a viroporin. (a) Single channel elicited by SH protein when inserted into BLMs, 
recorded in 300 mM KCl, 5 mM Hepes, pH 5.5 buffer solution; (b) Traces of currents evoked 
in HEK-292 cells transfected with a vector carrying SH protein or vector alone, in neutral or 
acidic pH bath solutions. 

2.7 Secondary structure of SH protein using attenuated total reflection fourier 
transform infrared (ATR-FTIR) spectroscopy 

The amide I region in the infrared spectrum (Fig. 5A) can be assigned to different secondary 
structure elements (Byler & Susi, 1986). Full length SH protein shows a major peak centered at 
1653 cm-1 and a shoulder centered at 1632 cm-1 indicating a mixture of ǂ-helix and ǃ-strand 
(Fig. 5A, upper panel). For SH-TM, a narrow band centered at 1654 cm-1 indicates a large 
fraction of ǂ-helix (Fig. 5A, middle panel). For a synthetic peptide that consists of the last 20 C-
terminal residues (SH-C20) the spectrum is centered at 1635 cm-1, indicating a majority of ǃ-

strand structure (Fig. 5A, bottom panel). A quantification of the -helix present in full length 
SH protein produced ~40 residues whereas only ~20 were present in the TM domain alone. 

This suggests that some -helix is present in the extramembrane domain.  
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      (a)     (b)  

 
(c) 

Fig. 5. ATR-FTIR spectra and H/D exchange of SH protein and fragments. (a) Amide I 
region corresponding to SH protein, SH-TM, and SH-C20. Lines for original spectrum (blue) 
and Fourier self deconvolved spectrum (red) are shown; (b) Amide II region of the same 
samples before (blue) and after (red) 1 hour exposure to D2O (Torres et al., 2006); (c) Sketch 
representing the main features of SH according to the data in (A-B). 
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The amide II band in the infrared spectrum, due to peptide backbone N-H bending 

vibration, is used to monitor protein hydrogen-deuterium (H/D) exchange kinetics. Upon 

H/D exchange, the frequency of amide II downshifts from ~1545 to ~1450 cm-1 (~100 cm-

1). Thus, amide exchange can be measured following the decrease in intensity of the 

unexchanged amide II. H/D exchange can be used to determine the number of residues 

embedded in the bilayer. The spectra of the amide II band of SH protein, SH-TM, and SH-

C20 recorded in H2O and after one hour exposure to D2O (Fig. 5B) shows 45%, 80% and 

11% of protected residues, respectively. These results suggest that the only embedded 

fraction corresponds to TM -helix whereas SH-C20 is not inserted into the membrane. A 

preliminary sketch of the pentameric model and its secondary structural elements is 

shown in Fig. 5C.  

2.8 Effects of SH, SH-TM and SH-C20 on lipid order 

ATR-FTIR is a most suitable tool to study lipid-protein interactions because lipids absorb in 

many regions of the infrared spectrum. Further, lipid orientational order parameter 

determination and lipid phase information can be obtained because the frequencies of 

methylene stretching change upon gel-to-liquid crystal phase transition. The lipid 

methylene C-H stretching transition dipole is oriented perpendicular to the long axis of an 

all-trans fatty acid chain, therefore measuring linear dichroism of lipid methylene stretching 

vibrations can be used to probe the orientation of lipid bilayers when deposited on a 

germanium trapezoid. The order parameter SL (Tamm & Tatulian, 1997) is calculated for 

lipid bilayer deposited on the surface of a germanium trapezoid, with electric field 

components for the evanescent field (Arkin et al., 1997). Thus, a decrease in the dichroic 

ratio, RL, corresponds to an increase in the acyl chain order parameter, SL. Lipid-protein 

interactions of SH protein, SH-TM, and SH-C20 were investigated in supported DMPC and 

POPC bilayers (Fig. 6) using both lipid methylene symmetric (~2851 cm-1) and 

antisymmetric (~2919 cm-1) stretching vibrations to calculate RL and SL. The measured 

values of RL for DMPC bilayers were 1.14 (SL = 0.59) for symmetric, and 1.20 (SL =0.55) for 

antisymmetric vibrations. These values are in good agreement with published data (Hubner 

& Mantsch, 1991), indicating well-ordered lipid bilayers. 

The frequency of the lipid methylene C-H stretching bands of DMPC (Tm = 23°C) indicated 

that the membranes were in the gel phase (Tamm & Tatulian, 1997). Therefore, spectra for 

SH protein and SH-TM were recorded also in POPC (Tm = -2°C), which should form a fluid 

liquid crystal phase due to the presence of unsaturated bonds in the sn-2 chain of the POPC 

acyl chain. This was evident from the shift in the lipid symmetric stretching vibration, from 

2851 to 2853 cm-1, and the anti-symmetric methylene stretching vibration, from 2919 to 2923 

cm-1 (Tamm & Tatulian, 1997). The values of RL for POPC bilayers measured in our system 

were 1.31 (SL = 0.38) and 1.32 (SL = 0.37) for symmetric and antisymmetric vibrations, 

respectively. These values are lower than those of DMPC.  

In the presence of protein, for simplicity, only lipid methylene symmetric vibrations were 

measured. Although no changes in lipid order parameter were observed after SH protein 

was reconstituted in DMPC (RL = 1.14 and SL = 0.59), disorder was observed in POPC (RL = 

1.46 and SL = 0.23). In contrast, SH-TM increased the order of the acyl chains in both DMPC 
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(RL = 1.07 and SL = 0.69) and POPC (RL = 1.27 and SL = 0.43). Interaction of SH-C20 was 

measured only in DMPC, where a 20% increase in disorder was observed (RL = 1.27 and SL = 

0.43). Thus, this short ǃ-structure forming peptide (Fig. 5C) is able to destabilize membranes. 

 

 
(a)          (b)  

 

Fig. 6. Polarized ATR-FTIR spectra of the lipid methylene stretching vibrations. Supported 
DMPC (a) and POPC (b) lipid bilayers in the absence or presence of SH protein, SH-TM, and 
SH-C20. Blue and red lines correspond to parallel and perpendicular polarizations, 
respectively. 

2.9 Detection of an intra-helical hydrogen bond in SH-TM 

During our attempts to measure the dichroism of labeled SH-TM, we observed that the 
13C=18O isotope label at L31 was shifted to a lower frequency, from 1592 cm-1 to 1576 cm-1 

(Gan et al., 2008). According to the harmonic oscillator model, downshift of a vibrational 

frequency can occur if the reduced mass is increased, or the strength of a bond is weakened. 

This data is consistent with the presence of an intra-helical hydrogen bond between the 

hydroxyl side chain of Ser35 and the backbone carbonyl oxygen from Leu31 (Fig. 7B). 

Indeed, when Ser35 was replaced by alanine, the frequency of the 13C=18O isotope label at 

L31 reverted to its expected range, at 1589 cm-1 (Fig. 7A). This indicates that an intra-helical 

hydrogen bond exists in the TM domain of SH protein, which weakens the carbonyl bond, 

resulting in the downshift observed. 

There is a high tendency for serine or threonine residues in -helices to form intrahelical 

hydrogen bonds to carbonyl oxygen at position i-4 (Baker & Hubbard, 1984), which could 

induce a kink in the ǂ-helix that may be important for functionality (Ballesteros et al., 

2000). Indeed, viral ion channels display certain degree of structural flexibility, as seen in 

the influenza A virus M2 protein (Li et al., 2007) and SARS-CoV E protein (Parthasarathy 

et al., 2008). 
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(a)      (b)  
 

Fig. 7. Hydrogen bonding in SH-TM detected by FTIR. (a) Infrared spectra of SH-TM labeled 
at L31 13C=18O (solid line) and for a S35A mutant (broken line); (b) Schematic representation 
of the proposed hydrogen bond between Ser35 side chain and Leu31 backbone C=O. 

2.10 Structural determination of SH protein in detergent micelles by solution NMR 

The HSQC spectrum of 15N labeled SH protein was tested in three detergents: DPC 

(medium-chain, zwitterionic), DHPC (short-chain, zwitterionic), and SDS (anionic) (Fig. 8). 

Although SDS is a harsh detergent, well-resolved spectra of membrane proteins have been 

recorded (Howell et al., 2005; Franzin et al., 2007; Teriete et al., 2007). In contrast, DPC and 

DHPC have a headgroup that closely mimics that of phosphatidylcholine, the most 

abundant headgroup in natural membranes, successfully used in KcsA (Yu et al., 2005), 

human phospholamban (Oxenoid & Chou, 2005), diacylglycerol kinase (Van Horn et al., 

2009), Rv1761c from Mycobacterium tuberculosis (Page et al., 2009), influenza A M2 (Schnell 

& Chou, 2008) or HIV Vpu (Park et al., 2003). 

For SH protein, 1H/15N-HSQC spectra showed limited peak dispersion, resonances not well-

resolved, and overlapping peaks (Fig. 8). Only about 50% of the peaks could be observed in 

SDS and DHPC, whereas DPC appeared to be the best detergent with about 75% of peaks  

observed. Sample heterogeneity was observed in all three detergents, evidenced by the 

double resonance observed for the tryptophan indole side chain, Nǆ-Hǆ, at around 10.0-10.5 
1H ppm (see the inserts of Fig. 8). As only one tryptophan residue is present in SH protein, 

only one peak should be observed. This indicates the presence of two backbone 

conformations, or two different rotameric states of the tryptophan indole side chain.  
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Fig. 8. Effect of different micellar environments on SH protein shown by 1H/15N-HSQC 
spectra. The detergents SDS (left), DHPC (middle), and DPC (right) were used to obtain the 
spectra. In each graph, the resonance of Trp15 side chain is shown in the insert.  

3. Summary and conclusions 

Viral respiratory diseases pose serious threats to human health and effective antiviral agents 

are limited. Specifically, hRSV is one of the main agents responsible to widespread infection 

causing millions of clinical cases each year. Vaccines, antibodies and small drugs are being 

sought, but effective treatments are not yet available. The discovery of proteins known as 

‘viroporins’ in many viruses has opened a potentially effective field for antiviral therapy. In 

hRSV, biochemical and biophysical studies have shown that SH protein has the 

characteristics of a viroporin, and this chapter has described biophysical properties of this 

purified protein that ultimately may help elucidate its role in RSV infection.  

A first step in the characterization of a protein is its successful expression and 

purification. Both the full length and the TM domain of SH protein assemble as 

homopentamers, with His22 having a stabilizing role. The study of SH protein by solution 

NMR methods is in progress, and it shows good potential, especially in DPC micelles and 

in bicelles, although at present dual conformations are observed. Other lower resolution 

techniques, such as FTIR, have provided data that allow to obtain a preliminary model of 

full length SH protein, based on H/D exchange, -structure in the last 20 amino acids, and 

the higher than expected helical content in the full length protein, when compared to the 

TM domain. The C-terminal -structure has a destabilizing effect on membranes and may 

fold as a -hairpin. FTIR of isotopically labeled TM domain has detected an intra-helical 

hydrogen bond between the backbone carbonyl oxygen of Leu31 and the side chain of 

Ser35 in the TM domain that could be important for channel activity. Conductance studies 

of SH protein provide compelling evidence that SH behaves as an ion channel, where 

histidine side chains may have an important regulatory role. The involvement of histidine 

as a pH sensor has been observed in other ion channels. In influenza A M2, His 37 is 

responsible for pH sensitivity (Schnell & Chou, 2008; Stouffer et al., 2008), and other 

examples of histidine regulated pH sensitive ion channels exist, for example the bacterial 

potassium channel KscA (His25) (Takeuchi et al., 2007), the potassium channel ROMK1 
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(four histidine residues are involved) (Chanchevalap et al., 2000), the potassium channel 

TASK1 (His98) (Yuill et al., 2007), potassium channel TREK-1 (His126) or TREK-2 (His151) 

(Sandoz et al., 2009). Therefore, the hypothesis that the TM histidine in SH protein (His22) 

has a regulatory role is worth exploring.  

SH protein has been associated with fusion activity during infection, and with membrane 
permeabilization, and the structural features observed seem to reflect these functions.  

Finally, channel activity in other viroporins can be blocked, e.g., the influenza A virus M2 
proton channel blocked by amantadine and rimantadine (Wang et al., 1994; Chizhmakov et 
al., 1996), the amiloride derivative hexamethylene amiloride (HMA) inhibits ion channel 
activity of HIV-1 Vpu proteins (Ewart et al., 2002), SARS-CoV E protein (Pervushin et al., 
2009), and HCV p7 protein (Premkumar et al., 2004). At present, there are no drugs reported 
that can block SH channel activity. The discovery of such compounds is important both for 
antiviral therapy and to understand the biology of SH protein.  
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