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1. Introduction  

Developing computationally efficient processing techniques for massive volumes of 
hyperspectral data is critical for space-based Earth science and planetary exploration (see for 
example, (Plaza & Chang, 2008), (Henderson & Lewis, 1998) and the references therein). 
With the availability of remotely sensed data from different sensors of various platforms 
with a wide range of spatiotemporal, radiometric and spectral resolutions has made remote 
sensing as, perhaps, the best source of data for large scale applications and study. 
Applications of Remote Sensing (RS) in hydrological modelling, watershed mapping, energy 
and water flux estimation, fractional vegetation cover, impervious surface area mapping, 
urban modelling and drought predictions based on soil water index derived from remotely-
sensed data have been reported (Melesse et al., 2007). Also, many RS imaging applications 
require a response in (near) real time in areas such as target detection for military and 
homeland defence/security purposes, and risk prevention and response. Hyperspectral 
imaging is a new technique in remote sensing that generates images with hundreds of 
spectral bands, at different wavelength channels, for the same area on the surface of the 
Earth. Although in recent years several efforts have been directed toward the incorporation 
of parallel and distributed computing in hyperspectral image analysis, there are no 
standardized architectures or Very Large Scale Integration (VLSI) circuits for this purpose in 
remote sensing applications. 
Additionally, although the existing theory offers a manifold of statistical and descriptive 
regularization techniques for image enhancement/reconstruction, in many RS application 
areas there also remain some unsolved crucial theoretical and processing problems related 
to the computational cost due to the recently developed complex techniques (Melesse et al., 
2007), (Shkvarko, 2010), (Yang et al., 2001). These descriptive-regularization techniques are 
associated with the unknown statistics of random perturbations of the signals in turbulent 
medium, imperfect array calibration, finite dimensionality of measurements, multiplicative 
signal-dependent speckle noise, uncontrolled antenna vibrations and random carrier 
trajectory deviations in the case of Synthetic Aperture Radar (SAR) systems (Henderson & 
Lewis, 1998), (Barrett & Myers, 2004). Furthermore, these techniques are not suitable for 
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(near) real time implementation with existing Digital Signal Processors (DSP) or Personal 
Computers (PC).  
To treat such class of real time implementation, the use of specialized arrays of processors in 
VLSI architectures as coprocessors or stand alone chips in aggregation with Field 
Programmable Gate Array (FPGA) devices via the hardware/software (HW/SW) co-design, 
will become a real possibility for high-speed Signal Processing (SP) in order to achieve the 
expected data processing performance (Plaza, A. & Chang, 2008), (Castillo Atoche et al., 
2010a, 2010b). Also, it is important to mention that cluster-based computing is the most 
widely used platform on ground stations, however several factors, like space, cost and 
power make them impractical for on-board processing. FPGA-based reconfigurable systems 
in aggregation with custom VLSI architectures are emerging as newer solutions which offer 
enormous computation potential in both cluster-based systems and embedded systems area.  
In this work, we address two particular contributions related to the substantial reduction of 
the computational load of the Descriptive-Regularized RS image reconstruction technique 
based on its implementation with massively processor arrays via the aggregation of high-
speed low-power VLSI architectures with a FPGA platform. 
First, at the algorithmic-level, we address the design of a family of Descriptive-
Regularization techniques over the range and azimuth coordinates in the uncertain RS 
environment, and provide the relevant computational recipes for their application to 
imaging array radars and fractional imaging SAR operating in different uncertain scenarios. 
Such descriptive-regularized family algorithms are computationally adapted for their HW-
level implementation in an efficient mode using parallel computing techniques in order to 
achieve the maximum possible parallelism.  
Second, at the systematic-level, the family of Descriptive-Regularization techniques based 
on reconstructive digital SP operations are conceptualized and employed with massively 
parallel processor arrays (MPPAs) in context of the real time SP requirements. Next, the 
array of processors of the selected reconstructive SP operations are efficiently optimized in 
fixed-point bit-level architectures for their implementation in a high-speed low-power VLSI 
architecture using 0.5um CMOS technology with low power standard cells libraries. The 
achieved VLSI accelerator is aggregated with a FPGA platform via HW/SW co-design 
paradigm.  
Alternatives propositions related to parallel computing, systolic arrays and HW/SW co-
design techniques in order to achieve the near real time implementation of the regularized-
based procedures for the reconstruction of RS applications have been previously developed 
in (Plaza, A. & Chang, 2008), (Castillo Atoche et al., 2010a, 2010b). However, it should be 
noted that the design in hardware (HW) of a family of reconstructive signal processing 
operations have never been implemented in a high-speed low-power VLSI architecture 
based on massively parallel processor arrays in the past.       
Finally, it is reported and discussed the implementation and performance issues related to 
real time enhancement of large-scale real-world RS imagery indicative of the significantly 
increased processing efficiency gained with the proposed implementation of high-speed 
low-power VLSI architectures of the descriptive-regularized algorithms.  

2. Remote sensing background  

The general formalism of the RS imaging problem presented in this study is a brief 
presentation of the problem considered in (Shkvarko, 2006, 2008), hence some crucial model 
elements are repeated for convenience to the reader. 
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The problem of enhanced remote sensing (RS) imaging is stated and treated as an ill-

posed nonlinear inverse problem with model uncertainties. The challenge is to perform 

high-resolution reconstruction of the power spatial spectrum pattern (SSP) of the 

wavefield scattered from the extended remotely sensed scene via space-time processing of 

finite recordings of the RS data distorted in a stochastic uncertain measurement channel. 

The SSP is defined as a spatial distribution of the power (i.e. the second-order statistics) of 

the random wavefield backscattered from the remotely sensed scene observed through 

the integral transform operator (Henderson & Lewis, 1998), (Shkvarko, 2008). Such an 

operator is explicitly specified by the employed radar signal modulation and is 

traditionally referred to as the signal formation operator (SFO) (Shkvarko, 2006). The 

classical imaging with an array radar or SAR implies application of the method called 

“matched spatial filtering” to process the recorded data signals (Franceschetti et al., 2006), 

(Shkvarko, 2008), (Greco & Gini, 2007). A number of approaches had been proposed to 

design the constrained regularization techniques for improving the resolution in the SSP 

obtained by ways different from the matched spatial filtering, e.g., (Franceschetti et al., 

2006), (Shkvarko, 2006, 2008), (Greco & Gini, 2007), (Plaza, A. & Chang, 2008), (Castillo 

Atoche et al., 2010a, 2010b) but without aggregating the minimum risk descriptive 

estimation strategies and specialized hardware architectures via FPGA structures and 

VLSI components as accelerators units. In this study, we address a extended descriptive 

experiment design regularization (DEDR) approach to treat such uncertain SSP 

reconstruction problems that unifies the paradigms of minimum risk nonparametric 

spectral estimation, descriptive experiment design and worst-case statistical performance 

optimization-based regularization. 

2.1 Problem statement 

Consider a coherent RS experiment in a random medium and the narrowband assumption 

(Henderson & Lewis, 1998), (Shkvarko, 2006) that enables us to model the extended object 

backscattered field by imposing its time invariant complex scattering (backscattering) 

function e(x) in the scene domain (scattering  surface) X  x. The measurement data 

wavefield  u(y) = s(y) + n(y)  consists of the echo signals  s  and additive noise  n  and is 

available for observations and recordings within the prescribed time-space observation 

domain Y = TP,  where  y = (t, p)T  defines the time-space points in Y. The model of the 

observation wavefield u is defined by specifying the stochastic equation of observation (EO) 

of an operator form (Shkvarko, 2008): 

 u = Se  + n;  e  E;  u, n  U; S : E    U ,  (1) 

in the Hilbert signal spaces E and U with the metric structures induced by the inner 

products, [u1, u2]U = 1 2( ) ( )
Y

u u d y y y , and [e1, e2]E = 1 2( ) ( )
X

e e d x x x , respectively. The operator 

model of the stochastic EO in the conventional integral form (Henderson & Lewis, 1998), 
(Shkvarko, 2008) may be rewritten as 

 u(y) = ( ( )Se x )(y) = ( , )
X

S y x e(x)dx +4 n(y) = ( , )
X

S y x e(x)dx + ( , )
X

S y x e(x)dx + n(y) . (2) 
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The random functional kernel ( , ) = ( , )+ ( , )S S Sy x y x y x  of the stochastic signal formation 

operator (SFO) S  given by (2) defines the signal wavefield formation model. Its mean,    

< ( , )> = ( , )S Sy x y x , is referred to as the nominal SFO in the RS measurement channel 

specified by the time-space modulation of signals employed in a particular radar 

system/SAR (Henderson & Lewis, 1998), and the variation about the mean ( , )S y x  = 

(y,x)S(y,x)  models the stochastic perturbations of the wavefield at different propagation 

paths, where (y,x) is associated with zero-mean multiplicative noise (so-called Rytov 
perturbation model). All the fields , , e n u  in (2) are assumed to be zero-mean complex 

valued Gaussian random fields. Next, we adopt an incoherent model (Henderson & Lewis, 

1998), (Shkvarko, 2006) of the backscattered field ( )e x that leads to the -form of its 

correlation function, Re(x1,x2) = b(x1)(x1– x2). Here, e(x)  and  b(x) = <|e(x)|2> are referred to 
as the scene random complex scattering function and its average power scattering function 
or spatial spectrum pattern (SSP), respectively. The problem at hand is to derive an estimate 
ˆ( )b x  of the SSP ( )b x  (referred to as the desired RS image) by processing the available finite 

dimensional array radar/SAR measurements of the data wavefield  u(y) specified by (2). 

2.2 Discrete-form uncertain problem model 

The stochastic integral-form EO (2) to its finite-dimensional approximation (vector) form 
(Shkvarko, 2008) is now presented. 

 u = Se  + n = Se + Δe  + n ,      (3) 

in which the perturbed SFO matrix 

 S  = S  + Δ ,       (4) 

represents the discrete-form approximation of the integral SFO defined for the uncertain 
operational scenario by the EO (2), and e, n, u are zero-mean vectors composed of the 

decomposition coefficients 1{ }K
k ke  , 1{ }M

m mn  , and 1{ }M
m mu  , respectively. These vectors are 

characterized by the correlation matrices: Re = D = D(b) = diag(b) (a diagonal matrix with 

vector b at its principal diagonal), Rn, and Ru = < 
eSR S  >p(Δ ) + Rn, respectively, where  

<>p(Δ )  defines the averaging performed over the randomness of Δ  characterized by the 

unknown probability density function p(Δ ), and superscript + stands for Hermitian 

conjugate. Following (Shkvarko, 2008), the distortion term Δ  in (4) is considered as a 

random zero mean matrix with the bounded second-order moment   2|| ||Δ . Vector b 

is composed of the elements, bk = ( )ke  = ekek* = |ek|2;  k = 1, …, K, and is referred to as 

a K-D vector-form approximation of the SSP, where   represents the second-order 

statistical ensemble averaging operator (Barrett & Myers, 2004). The SSP vector b is 
associated with the so-called lexicographically ordered image pixels (Barrett & Myers, 2004). 

The corresponding conventional KyKx rectangular frame ordered scene image B = {b(kx, kx); 
kx, = 1,…,Kx; kv, = 1,…,Ky} relates to its lexicographically ordered vector-form representation 

b = {b(k); k = 1,…,K = Ky Kx} via the standard row by row concatenation (so-called 
lexicographical reordering) procedure, B = L{b} (Barrett & Myers, 2004). Note that in the 
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simple case of certain operational scenario (Henderson & Lewis, 1998), (Shkvarko, 2008), the 
discrete-form (i.e. matrix-form) SFO S is assumed to be deterministic, i.e. the random 

perturbation term in (4) is irrelevant, Δ = 0. 

The digital enhanced RS imaging problem is formally stated as follows (Shkvarko, 2008): to 

map the scene pixel frame image B̂  via lexicographical reordering B̂  = L{ b̂ } of the SSP 

vector estimate b̂  reconstructed from whatever available measurements of independent 

realizations of the recorded data vector u. The reconstructed SSP vector b̂  is an estimate of 

the second-order statistics of the scattering vector  e  observed through the perturbed SFO 

(4) and contaminated with noise n; hence, the RS imaging problem at hand must be 

qualified and treated as a statistical nonlinear inverse problem with the uncertain operator. 

The high-resolution imaging implies solution of such an inverse problem in some optimal 

way. Recall that in this paper we intend to follow the unified descriptive experiment design 

regularized (DEDR) method proposed originally in (Shkvarko, 2008).  

2.3 DEDR method 
2.3.1 DEDR strategy for certain operational scenario 

In the descriptive statistical formalism, the desired SSP vector b̂  is recognized to be the 

vector of a principal diagonal of the estimate of the correlation matrix Re(b), i.e. b̂ = { ˆ
eR }diag. 

Thus one can seek to estimate b̂ = { ˆ
eR }diag  given the data correlation matrix Ru pre-

estimated empirically via averaging J 1  recorded data vector snapshots {u(j)} 

 Y = ˆ
uR = aver

j J
{ ( ) ( )j j

u u } = 
( ) ( )1

1
j j

J

jJ


 u u ,       (5) 

by determining the solution operator (SO) F such that 

 b̂ = { ˆ
eR }diag = {FYF+}diag       (6) 

where {·}diag defines the vector composed of the principal diagonal of the embraced 
matrix. 
To optimize the search for F in the certain operational scenario the DEDR strategy was 

proposed in (Shkvarko, 2006) 

 F  min
F

{ (F)},       (7) 

  (F) = trace{(FS – I)A(FS – I)+} +  trace{FRnF+}       (8) 

that implies the minimization of the weighted sum of the systematic and fluctuation errors 

in the desired estimate b̂  where the selection (adjustment) of the regularization parameter  

and the weight matrix A provide the additional experiment design degrees of freedom 

incorporating any descriptive properties of a solution if those are known a priori (Shkvarko, 

2006). It is easy to recognize that the strategy (7) is a structural extension of the statistical 

minimum risk estimation strategy for the nonlinear spectral estimation problem at hand 

because in both cases the balance between the gained spatial resolution and the noise energy 

in the resulting estimate is to be optimized. 
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From the presented above DEDR strategie, one can deduce that the solution to the 
optimization problem found in the previous study (Shkvarko, 2006) results in 

 F = 1 
nKS R ,       (9) 

where                                                       K  = ( 1 
nS R S  + A–1)–1       (10) 

represents the so-called regularized reconstruction operator; 1
nR is the noise whitening 

filter, and the adjoint (i.e. Hermitian transpose) SFO  S+ defines the matched spatial filter in 
the conventional signal processing terminology. 

2.3.2 DEDR strategy for uncertain operational scenario 

To optimize the search for the desired SO F in the uncertain operational scenario with the 
randomly perturbed SFO (4), the extended DEDR strategy was proposed in (Shkvarko, 2006) 

 F =  arg min
F 2

( )|| ||
max

p    
 {ext (F)}  (11) 

 subject to    <||Δ ||2 >p(Δ )    (12) 

where the conditioning term (12) represents the worst-case statistical performance (WCSP) 

regularizing constraint imposed on the unknown second-order statistics <||Δ ||2>p(Δ ) of 

the random distortion component Δ  of the SFO matrix (4), and the DEDR “extended risk” 

is defined by 

 ext(F) = tr{<(F   – I)A(F   – I)+> p(Δ )} +  tr{FRnF+} (13) 

where the regularization parameter  and the metrics inducing weight matrix A compose 

the processing level “degrees of freedom” of the DEDR method.  

To proceed with the derivation of the robust SFO (11), the risk function (13) was next 

decomposed and evaluated for its the maximum value applying the Cauchy-Schwarz 

inequality and Loewner ordering (Greco & F. Gini, 2007) of the weight matrix A   I with 

the scaled Loewner ordering factor  = min{  : A   I


} = 1. With these robustifications, the 

extended DEDR strategy (11) is transformed into the following optimization problem 

 F = min
F

{(F) }       (14) 

with the aggregated DEDR risk function 

  (F)} = tr{(FS – I)A(FS – I)+} + tr{F R F+},       (15) 

Where (┚) R R  = (Rn + I);   = /   0.       (16) 

The optimization solution of (14) follows a structural extension of (9) for the augmented 

(diagonal loaded) R  that yields 

 F = 1 
 K S R ,       (17) 

S
~

S
~
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Where  K  = ( 1 
S R S  + A–1)–1    (18) 

represents the robustified reconstruction operator for the uncertain scenario. 

2.3.3 DEDR imaging techniques 

In this sub-section, three practically motivated DEDR-related imaging techniques 
(Shkvarko, 2008) are presented that will be used at the HW co-design stage, namely, the 
conventional matched spatial filtering (MSF) method, and two high-resolution 
reconstructive imaging techniques: (i) the robust spatial filtering (RSF), and (ii) the robust 
adaptive spatial filtering (RASF) methods. 

1. MSF: The MSF algorithm is a member of the DEDR-related family specified for  >> 
||S+S||, i.e. the case of a dominating priority of suppression of noise over the 
systematic error in the optimization problem (7). In this case, the SO (9) is approximated 
by the matched spatial filter (MSF): 

 FMSF  =  F(1)    S+.       (19) 

2. RSF: The RSF method implies no preference to any prior model information (i.e., A = I) 
and balanced minimization of the systematic and noise error measures in (14) by 
adjusting the regularization parameter to the inverse of the signal-to-noise ratio (SNR), 

e.g.  = N0/B0, where B0 is the prior average gray level of the image. In that case the SO 
F becomes the Tikhonov-type robust spatial filter  

 FRSF  =  F (2)  =  (S+S + RSFI )–1S+.       (20) 

in which the RSF regularization parameter RSF is adjusted to a particular operational 

scenario model, namely, RSF = (N0/b0) for the case of a certain operational scenario, and 

RSF = (N/b0) in the uncertain operational scenario case, respectively, where N0 
represents the white observation noise power density, b0 is the average a priori SSP 

value, and N = N0 +  corresponds to the augmented noise power density in the 
correlation matrix specified by (16). 

3. RASF: In the statistically optimal problem treatment,  and A are adjusted in an 

adaptive fashion following the minimum risk strategy, i.e.  A–1 = D̂  = diag( b̂ ), the 

diagonal matrix with the estimate b̂  at its principal diagonal, in which case the SOs (9), 

(17) become itself solution-dependent operators that result in the following robust 
adaptive spatial filters (RASFs): 

 FRASF =  F(3) =  ( 1 
nS R S  + 1 1ˆ ) D 1 

nS R   (21) 

for the certain operational scenario, and 

 FRASF =  F(4) =  ( 1 
S R S  + 1 1ˆ ) D 1 

S R   (22) 

for the uncertain operational scenario, respectively. 
Using the defined above SOs, the DEDR-related data processing techniques in the 
conventional pixel-frame format can be unified now as follows 

 B̂ = L{ b̂ } = L{{F(p)YF(p)+}diag }; );    p = 1, 2, 3, 4  (23) 
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with F (1)  = FMSF; F(2)  = FRSF, and F(3) = FRASF, F(4) =  FRASF, respectively.  
Any other feasible adjustments of the DEDR degrees of freedom (the regularization 

parameters , , and the weight matrix A) provide other possible DEDR-related SSP 
reconstruction techniques, that we do not consider in this study. 

3. VLSI architecture based on Massively Parallel Processor Arrays 

In this section, we present the design methodology for real time implementation of 
specialized arrays of processors in VLSI architectures based on massively parallel processor 
arrays (MPPAs) as coprocessors units that are integrated with a FPGA platform via the 
HW/SW co-design paradigm. This approach represents a real possibility for low-power 
high-speed reconstructive signal processing (SP) for the enhancement/reconstruction of RS 
imagery. In addition, the authors believe that FPGA-based reconfigurable systems in 
aggregation with custom VLSI architectures are emerging as newer solutions which offer 
enormous computation potential in RS systems. 
A brief perspective on the state-of-the-art of high-performance computing (HPC) techniques 

in the context of remote sensing problems is provided. The wide range of computer 

architectures (including homogeneous and heterogeneous clusters and groups of clusters, 

large-scale distributed platforms and grid computing environments, specialized 

architectures based on reconfigurable computing, and commodity graphic hardware) and 

data processing techniques exemplifies a subject area that has drawn at the cutting edge of 

science and technology. The utilization of parallel and distributed computing paradigms 

anticipates ground-breaking perspectives for the exploitation of high-dimensional data 

processing sets in many RS applications. Parallel computing architectures made up of 

homogeneous and heterogeneous commodity computing resources have gained popularity 

in the last few years due to the chance of building a high-performance system at a 

reasonable cost. The scalability, code reusability, and load balance achieved by the proposed 

implementation in such low-cost systems offer an unprecedented opportunity to explore 

methodologies in other fields (e.g. data mining) that previously looked to be too 

computationally intensive for practical applications due to the immense files common to 

remote sensing problems (Plaza & Chang, 2008). 

To address the required near-real-time computational mode by many RS applications, we 
propose a high-speed low-power VLSI co-processor architecture based on MPPAs that is 
aggregated with a FPGA via the HW/SW co-design paradigm. Experimental results 
demonstrate that the hardware VLSI-FPGA platform of the presented DEDR algorithms 
makes appropriate use of resources in the FPGA and provides a response in near-real-time 
that is acceptable for newer RS applications. 

3.1 Design flow 

The all-software execution of the prescribed RS image formation and reconstructive signal 
processing (SP) operations in modern high-speed personal computers (PC) or any digital 
signal processors (DSP) platform may be intensively time consuming. These high 
computational complexities of the general-form DEDR-POCS algorithms make them 
definitely unacceptable for real time PC-aided implementation.  
In this section, we describe a specific design flow of the proposed VLSI-FPGA architecture 
for the implementation of the DEDR method via the HW/SW co-design paradigm. The 
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HW/SW co-design is a hybrid method aimed at increasing the flexibility of the 
implementation and improvement of the overall design process (Castillo Atoche et al., 
2010a). When a co-processor-based solution is employed in the HW/SW co-design 

architecture, the computational time can be drastically reduced. Two opposite alternatives 
can be considered when exploring the HW/SW co-design of a complex SP system. One of 
them is the use of standard components whose functionality can be defined by means of 
programming. The other one is the implementation of this functionality via a 

microelectronic circuit specifically tailored for that application. It is well known that the first 
alternative (the software alternative) provides solutions that present a great flexibility in 
spite of high area requirements and long execution times, while the second one (the 
hardware alternative) optimizes the size aspects and the operation speed but limits the 

flexibility of the solution. Halfway between both, hardware/software co-design techniques 
try to obtain an appropriate trade-off between the advantages and drawbacks of these two 
approaches. 

In (Castillo Atoche et al., 2010a), an initial version of the HW/SW- architecture was 

presented for implementing the digital processing of a large-scale RS imagery in the 

operational context. The architecture developed in (Castillo Atoche et al., 2010a) did not 

involve MPPAs and is considered here as a simply reference for the new pursued 

HW/SW co-design paradigm, where the corresponding blocks are to be designed to 

speed-up the digital SP operations of the DEDR-POCS-related algorithms developed at 

the previous SW stage of the overall HW/SW co-design to meet the real time imaging 

system requirements.  

The proposed co-design flow encompasses the following general stages:  
i. Algorithmic implementation (reference simulation in MATLAB and C++ platforms);  
ii. Partitioning process of the computational tasks; 
iii. Aggregation of parallel computing techniques; 
iv. Architecture design procedure of the addressed reconstructive SP computational tasks 

onto HW blocks (MPPAs); 

3.1.1 Algorithmic implementation 

In this sub-section, the procedures for computational implementation of the DEDR-related 

robust space filter (RSF) and robust adaptive space filter (RASF) algorithms in the MATLAB 

and C++ platforms are developed. This reference implementation scheme will be next 

compared with the proposed architecture based on the use of a VLSI-FPGA platform. 

Having established the optimal RSF/RASF estimator (20) and (21), let us now consider the 

way in which the processing of the data vector  u  that results in the optimum estimate b̂  

can be computationally performed. For this purpose, we refer to the estimator (20) as a 

multi-stage computational procedure. We part the overall computations prescribed by the 

estimator (16) into four following steps. 

a. First Step: Data Innovations  

At this stage the a priori known value of the data mean    bu Sm   is subtracted from the 

data vector u. The innovations vector   bu u Sm  contains all new information regarding 

the unknown deviations b = (b – mb) of the vector b from its prescribed (known) mean 

value mb . 
b. Second Step: Rough Signal Estimation 
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At this stage we obtain the vector q = S+ u
. The operator S+ operating on u  is mapped. 

Thus, the result,  q, can be interpreted as a rough estimate of b = (b – mb)  referred to as a 

degraded image.  
c. Third Step: Signal Reconstruction 

At this stage we obtain the estimate -1 1
┙ RSF

ˆ ( ┙ )   b A q S S I q  of the unknown signal 

referred to as the reconstructed image frame. The matrix A–1 = (S+S + RSFI)–1 operating on 
q produces some form of inversion of the degradations embedded in the operator S+S. It is 

important to note that in the case   = 0, we have 1 #
(┙ = 0)

ˆ  b A q S u , where matrix 

# 1( )  S S S S  is recognized to be the pseudoinverse (i.e., the well known Moore-Penrouse 

pseudoinverse) of the SFO matrix S .  

d. Fourth Step: Restoration of  the Trend 

Having obtained the estimate b̂  and known the mean value mb, we can obtain the 

optimum RSF estimate (20) simply by adding the prescribed mean value mb  (referred to as 

the non-zero trend) to the reconstructed image frame as b̂  = mb  + b̂ . 

3.1.2 (ii) Partitioning process of the computational tasks 
One of the challenging problems of the HW/SW co-design is to perform an efficient 
HW/SW partitioning of the computational tasks. The aim of the partitioning problem is to 
find which computational tasks can be implemented in an efficient hardware architecture 
looking for the best trade-offs among the different solutions. The solution to the problem 
requires, first, the definition of a partitioning model that meets all the specification 
requirements (i.e., functionality, goals and constraints). 
Note that from the formal SW-level co-design point of view, such DEDR techniques (20), (21), 
(22) can be considered as a properly ordered sequence of the vector-matrix multiplication 
procedure that one can next perform in an efficient high performance computational fashion 
following the proposed bit-level high-speed VLSI co-processor architecture. In particular, for 
implementing the fixed-point DEDR RSF and RASF algorithms, we consider in this 
partitioning stage to develop a high-speed VLSI co-processor for the computationally complex 
matrix-vector SP operation in aggregation with a powerful FPGA reconfigurable architecture 
via the HW/SW co-design technique. The rest of the reconstructive SP operations are 
employed in SW with a 32 bits embedded processor (MicroBlaze). 
This novel VLSI-FPGA platform represents a new paradigm for real time processing of 
newer RS applications. Fig. 1 illustrates the proposed VLSI-FPGA architecture for the 
implementation of the RSF/RASF algorithms. 
Once the partitioning stage has been defined, the selected reconstructive SP sub-task is to be 
mapped into the corresponding high-speed VLSI co-processor. In the HW design, the 
precision of 32 bits for performing all fixed-point operations is used, in particular, 9-bit 
integer and 23-bits decimal for the implementation of the co-processor. Such precision 
guarantees numerical computational errors less than 10-5 referring to the MATLAB Fixed 
Point Toolbox (Matlab, 2011). 

3.1.3 Aggregation of parallel computing techniques 
This sub-section is focused in how to improve the performance of the complex RS 
algorithms with the aggregation of parallel computing and mapping techniques onto HW-
level massively parallel processor arrays (MPPAs).  
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Fig. 1. VLSI-FPGA platform of the RSF/RASF algorithms via the HW/SW co-design 
paradigm. 

The basic algebraic matrix operation (i.e., the selected matrix–vector multiplication) that 

constitutes the base of the most computationally consuming applications in the 

reconstructive SP applications is transformed into the required parallel algorithmic 

representation format. A manifold of different approaches can be used to represent parallel 

algorithms, e.g. (Moldovan & Fortes, 1986), (Kung, 1988). In this study, we consider a 

number of different loop optimization techniques used in high performance computing 

(HPC) in order to exploit the maximum possible parallelism in the design:  

- Loop unrolling,  
- Nested loop optimization,  
- Loop interchange. 
In addition, to achieve such maximum possible parallelism in an algorithm, the so-called 
data dependencies in the computations must be analyzed (Moldovan & Fortes, 1986), (Kung, 
1988). Formally, these dependencies are to be expressed via the corresponding dependence 
graph (DG). Following (Kung, 1988), we define the dependence graph G=[P, E] as a 
composite set where P represents the nodes and E represents the arcs or edges in which each 

eE  connects 1 2,p p P that is represented as 1 2e p p  . Next, the data dependencies 

analysis of the matrix–vector multiplication algorithms should be performed aimed at their 
efficient parallelization. 
For example, the matrix-vector multiplication of an n×m matrix A with a vector x of 
dimension m, given by y=Ax, can be algorithmically computed as 

1

, 1,...,
n

j ji i
i

y a x for j m


  , where y and jia  represents an n-dimensional (n-D) output 

vector and the corresponding element of A, respectively. The first SW-level transformation 
is the so-called single assignment algorithm (Kung, 1988), (Castillo Atoche et al., 2010b) that 
performs the computing of the matrix-vector product. Such single assignment algorithm 
corresponds to a loop unrolling method in which the primary benefit in loop unrolling is to 
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perform more computations per iteration. Unrolling also reduces the overall number of 
branches significantly and gives the processor more instructions between branches (i.e., it 
increases the size of basic blocks). 
Next, we examine the computation-related optimizations followed by the memory 
optimizations. Typically, when we are working with nests of loops, we are working with 
multidimensional arrays. Computing in multidimensional arrays can lead to non-unit-stride 
memory access. Many of the optimizations can be perform on loop nests to improve the 
memory access patterns. The second SW-level transformation consists in to transform the 
matrix-vector single assignment algorithm in the locally recursive algorithm representation 
without global data dependencies (i.e. in term of a recursive form). At this stage, nested-
loop optimizations are employed in order to avoid large routing resources that are 
translated into the large amount of buffers in the final processor array architecture. The 
variable being broadcasted in single assignment algorithms is removed by passing the 
variable through each of the neighbour processing elements (PEs) in a DG representation.  
Additionally, loop interchange techniques for rearranging a loop nest are also applied. For 
performance, the loop interchange of inner and outer loops is performed to pull the 
computations into the center loop, where the unrolling is implemented. 

3.1.4 Architecture design onto MPPAs 

Massively parallel co-processors are typically part of a heterogeneous hardware/software-

system. Each processor is a massive parallel system consisting of an array of PEs. In this 

study, we propose the MPPA architecture for the selected reconstructive SP matrix-vector 

operation. This architecture is first modelled in a processor Array (PA) and next, each 

processor is implemented also with an array of PEs (i.e., in a highly-pipelined bit-level 

representation). Thus, we achieved the pursued MPPAs architecture following the space-

time mapping procedures. 

First, some fundamental proved propositions are given in order to clarify the mapping 
procedure onto PAs. 
Proposition 1. There are types of algorithms that are expressed in terms of regular and 

localized DG. For example, basic algebraic matrix-form operations, discrete inertial 

transforms like convolution, correlation techniques, digital filtering, etc. that also can be 

represented in matrix formats (Moldovan & Fortes, 1986), (Kung, 1988). 

Proposition 2. As the DEDR algorithms can be considered as properly ordered sequences 

vector-matrix multiplication procedures, then, they can be performed in an efficient 

computational fashion following the PA-oriented HW/SW co-design paradigm (Kung, 

1988). 

Following the presented above propositions, we are ready to derive the proper PA 
architectures. (Moldovan & Fortes, 1986) proved the mapping theory for the transformation 

T . The transformation 1ˆ' : N NT G G  maps the N-dimensional DG ( NG ) onto the (N–1)-

dimensional PA ( 1ˆ NG ), where N represents the dimension of the DG (see proofs in (Kung, 

1988) and details in (CastilloAtoche et al., 2010b). Second, the desired linear transformation 

matrix operator T can be segmented in two blocks as follows 

 ,
 

  
 

Π
T

Σ
       (24) 
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where Π  is a (1×N)-D vector (composed of the first row of T ) which (in the segmenting 

terms) determines the time scheduling, and the (N – 1)×N sub-matrix Σ  in (24) is composed 

of the rest rows of T  that determine the space processor specified by the so-called 
projection vector d (Kung, 1988).Next, such segmentation (24) yields the regular PA of (N–
1)-D specified by the mapping  

 ,TΦ Κ        (25) 

where K  is composed of the new revised vector schedule (represented by the first row of 
the PA) and the inter-processor communications (represented by the rest rows of the PA), 

and the matrix Φ  specifies the data dependencies of the parallel representation algorithm. 
 

 1 0 T
d

Matrix-vector DG

Mapping
transformation

 1 1Π

Hyper-planes

03
a

13
a 23

a
33
a

02
a

12
a 22

a
32
a

01
a

11
a 21

a
31
a

00
a

10
a

20
a 30

a

0 0 0 0

03
x

02
x

01
x

00
x

0
y

1
y

2
y

3
y

For n=m=4

33 23 13 03 0 0 0a a a a

33 23 13 03 0 0a a a a

33 23 13 03 0a a a a

33 23 13 03a a a a

D

D

D

D

D

D

D

D

y

3
P

2
P

1
P

0
P

Data-Skewed

Matrix-Vector
Processor Array 

(PA)

 1 0d

Bit-level Multiply-Acumulate 
DG

Mapping
transformation

 1 2Π

00

1

a

0

4

x

For m=4

0

3

x

0

2

x

0

1

x

00

2

a
00

3

a
00

4

a

0

1

P

0

2

P

0

3

P

0

4

P
0

5

P
0

6

P
0

7

P
Bit-level

Array of PEs
for Processor

2D

0

1

x
00 00 00

2 1


m

a a a

D

2D

0

2

x

D

0

m

x
2D

D

P

0
P

 

Fig. 2. High-Speed MPPA approach for the reconstructive matrix-vector SP operation 

For a more detailed explanation of this theory, see (Kung, 1988), (CastilloAtoche et al., 
2010b). In this study, the following specifications for the matrix-vector algorithm onto PAs 

www.intechopen.com



 
Applications of Digital Signal Processing 

 

146 

are employed:  1 1Π  for the vector schedule,  1 0d  for the projection vector and, 

 0 1Σ  for the space processor, respectively. With these specifications the transformation 

matrix becomes
1 1

0 1

   
    
   

Π
T

Σ
. Now, for a simplified test-case, we specify the following 

operational parameters: m = n = 4, the period of clock of 10 ns and 32 bits data-word length.  
Now, we are ready to derive the specialized bit-level matrix-format MPPAs-based 
architecture. Each processor of the vector-matrix PA is next derived in an array of 
processing elements (PEs) at bit-level scale. Once again, the space-time transformation is 
employed to design the bit-level architecture of each processor unit of the matrix-vector PA. 
The following specifications were considered for the bit-level multiply-accumulate 

architecture:  1 2Π  for the vector schedule,  1 0d  for the projection vector and, 

 0 1Σ  for the space processor, respectively. With these specifications the transformation 

matrix becomes
1 2

0 1

   
    
   

Π
T

Σ
. The specified operational parameters are the following: 

l=32 (i.e., which represents the dimension of the word-length) and the period of clock of 10 
ns. The developed architecture is next illustrated in Fig. 2. 
From the analysis of Fig. 2, one can deduce that with the MPPA approach, the real time 
implementation of computationally complex RS operations can be achieved due the highly-
pipelined MPPA structure.      

3.2 Bit-level design based on MPPAS of the high-speed VLSI accelerator 

As described above, the proposed partitioning of the VLSI-FPGA platform considers the 
design and fabrication of a low-power high-speed co-processor integrated circuit for the 
implementation of complex matrix-vector SP operation. Fig. 3 shows the Full Adder (FA) 
circuit that was constantly used through all the design. 
An extensive design analysis was carried out in bit-level matrix-format of the MPPAs-based 
architecture and the achieved hardware was studied comprehensively. In order to generate 
an efficient architecture for the application, various issues were taken into account. The 
main one considered was to reduce the gate count, because it determines the number of 
transistors (i.e., silicon area) to be used for the development of the VLSI accelerator. Power 
consumption is also determined by it to some extent. The design has also to be scalable to 
other technologies. The VLSI co-processor integrated circuit was designed using a Low-
Power Standard Cell library in a 0.6µm double-poly triple-metal (DPTM) CMOS process 
using the Tanner Tools® software. Each logic cell from the library is designed at a transistor 
level. Additionally, S-Edit® was used for the schematic capture of the integrated circuit 
using a hierarchical approach and the layout was automatically done through the Standard 
Cell Place and Route (SPR) utility of L-Edit from Tanner Tools®. 

4. Performance analysis 

4.1 Metrics 

In the evaluation of the proposed VLSI˗FPGA architectue, it is considered a conventional 
side-looking synthethic aperture radar (SAR) with the fractionally synthesized aperture as 
an RS imaging system (Shlvarko et al., 2008),  (Wehner, 1994). The regular SFO of such SAR 
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Fig. 3. Transistor-level implementation of the Full Adder Cell. 

is factored along two axes in the image plane: the azimuth or cross-range coordinate 
(horizontal axis, x) and the slant range (vertical axis, y), respectively. The conventional 

triangular, r(y), and Gaussian approximation, a(x)=exp(–(x)2/a2) with the adjustable 
fractional parameter a, are considered for the SAR range and azimuth ambiguity function 
(AF), (Wehner, 1994). In analogy to the image reconstruction, we employed the quality 
metric defined as an improvement in the output signal-to-noise ratio (IOSNR) 

 IOSNR = 10 log10 
 
 

2( )

1

2( )

1

ˆ

ˆ

K MSF
kkk

K p
kkk

b b

b b












; p = 1, 2       (26) 

where kb represents the value of the kth element (pixel) of the original image B, ( )ˆ MSF
kb  

represents the value of the kth element (pixel) of the degraded image formed applying the 

MSF technique (19), and ( )ˆ p
kb represents a value of the kth pixel of the image reconstructed 

with two developed methods, p = 1, 2, where p = 1 corresponds to the RSF algorithm and p = 
2 corresponds to the RASF algorithm, respectively.  
The quality metrics defined by (26) allows to quantify the performance of different image 
enhancement/reconstruction algorithms in a variety of aspects. According to these quality 
metrics, the higher is the IOSNR, the better is the improvement of the image 
enhancement/reconstruction with the particular employed algorithm. 

4.2 RS implementation results 

The reported RS implementation results are achieved with the VLSI-FPGA architecture 

based on MPPAs, for the enhancement/reconstruction of RS images acquired with different 
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fractional SAR systems characterized by the PSF of a Gaussian "bell" shape in both 

directions of the 2-D scene (in particular, of 16 pixel width at 0.5 from its maximum for the 

1K-by-1K BMP pixel-formatted scene). The images are stored and loaded from a compact 

flash device for the image enhancement process, i.e., particularly for the RSF and RASF 

techniques. The initial test scene is displayed in Fig. 4(a). Fig. 4(b) presents the same original 

image but degraded with the matched space filter (MSF) method. The qualitative HW 

results for the RSF and RASF enhancement/reconstruction procedures are shown in Figs. 

4(c) and 4(d) with the corresponding IOSNR quantitative performance enhancement metrics 

reported in the figure captions (in the [dB] scale). 

 

 
(a)                                                               (b) 

 
(c)                                                                   (d) 

Fig. 4. VLSI-FPGA results for SAR images with 15dB of SNR: (a) Original test scene;      

(b) degraded MSF-formed SAR image; (c) RSF reconstructed image (IOSNR = 7.67 dB);      

(d) RASF reconstructed image (IOSNR = 11.36 dB). 
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The quantitative measures of the image enhancement/reconstruction performance achieved 
with the particular employed DEDR-RSF and DEDR-RASF techniques, evaluated via IOSNR 
metric (26), are reported in Table 1 and Fig. 4. 
 

SNR 
[dB] 

RSF Method RASF Method 

IOSNR [dB] IOSNR [dB] 

5 4.36 7.94 

10 6.92 9.75 

15 7.67 11.36 

20 9.48 12.72 

Table 1. Comparative table of image enhancenment with DEDR-related RSF and RASF 
algorithms 

From the RS performance analysis with the VLSI-FPGA platform of Fig.4 and Table 1, one 
may deduce that the RASF method over-performs the robust non-adaptive RSF in all 
simulated scenarios. 

4.3 MPPA analysis 

The matrix-vector multiplier chip and all of modules of the MPPA co-processor architecture 

were designed by gate-level description. As already mentioned, the chip was designed 

using a Standard Cell library in a 0.6µm CMOS process (Weste & D. Harris, 2004), (Rabaey 

et al., 2003). The resulting integrated circuit core has dimensions of 7.4 mm x 3.5 mm. The 

total gate count is about 32K using approximately 185K transistors. The 72-pin chip will be 

packaged in an 80 LD CQFP package and can operate both at 5 V and 3 V. The chip is 

illustrated in Fig. 5.  

 
 
 

 
 
 

Fig. 5. Layout scheme of the proposed MPPA architecture 
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Next, Table 2 shows a summary of hardware resources used by the MPPA architecture in 

the VLSI chip. 

 

Function Complexity For m = 32 

AND m x m 1024 

Adder (m + 1) x m 1056 

Mux M 32 

Flip-Flop [(4m + 2) x m] + m 4160 

Demux M 32 

 

Table 2. Summary of hardware resource utilization for the proposed MPPA architecture 

Having analyzed Table 2, Fig. 4 and 5, one can deduce that the VLSI-FPGA platform based 

on MPPAs via the HW/SW co-design reveals a novel high-speed SP system for the real time 

enhacement/reconstruction of highly-computationally demanded RS systems. On one hand, 

the reconfigurable nature of FPGAs gives an increased flexibility to the design allowing an 

extra degree of freedoom in the partitioning stage of the pursued HW/SW co-design 

technique. On the other side, the use of VLSI co-processors introduces a low power, high-

speed option for the implementation of computationally complex SP operations. The high-

level integration of modern ASIC technologies is a key factor in the design of bit-level 

MPPAs. Considering these factors, the VLSI/ASIC approach results in an attractive option 

for the fabrication of high-speed co-processors that perform complex operations that are 

constantly demanded by many applications, such as real-time RS, where the high-speed 

low-power computations exceeds the FPGAs capabilities. 

5. Conclusions 

The principal result of the reported study is the addressed VLSI-FPGA platform using 

MPPAs via the HW/SW co-design paradigm for the digital implementation of the 

RSF/RASF DEDR RS algorithms. 

First, we algorithmically adapted the RSF/RASF DEDR-related techniques over the range 

and azimuth coordinates of the uncertain RS environment for their application to imaging 

array radars and fractional imaging SAR. Such descriptive-regularized RSF/RASF 

algorithms were computationally transformed for their HW-level implementation in an 

efficient mode using parallel computing techniques in order to achieve the maximum 

possible parallelism in the design.  

Second, the RSF/RASF algorithms based on reconstructive digital SP operations were 

conceptualized and employed with MPPAs in context of the real time RS requirements. 

Next, the bit-level array of processors elements of the selected reconstructive SP operation 

was efficiently optimized in a high-speed VLSI architecture using 0.6um CMOS technology 

with low-power standard cells libraries. The achieved VLSI accelerator was aggregated with 

a reconfigurable FPGA device via HW/SW co-design paradigm. 

Finally, the authors consider that with the bit-level implementation of specialized arrays of 

processors in VLSI-FPGA platforms represents an emerging research field for the real-time 

RS data processing for newer Geospatial applications.  
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