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The Role of PDE-5 Inhibitors in Prostate Cancer 
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Division of Cardiology, Pauley Heart Center, Department of Internal Medicine  

Virginia Commonwealth University, Richmond 
USA 

1. Introduction 

Prostate cancer currently stands as the most frequently diagnosed solid tumor in men, and 
remains one of the leading causes of cancer mortality in men in the Western world, accounting 
for an estimated 32,050 deaths in the United States in 2010 (Jemal et al., 2010). With the well-
known use of serum prostate-specific antigen (PSA) as a screening tool, men are being 
diagnosed with earlier stage disease at younger ages. However, a significant number of men 
continue to be diagnosed with high-risk localized prostate cancer. Radical prostatectomy, 
radiotherapy, cryotherapy, high-intensity focused ultrasound, radiation therapy, and 
androgen deprivation as well as androgen receptor blockade have been the mainstays of 
treatment for cancer patients with localized and androgen-dependent prostate cancer. 
As prostate cancer cell growth is androgen dependent, its deprivation is an important 
therapeutic strategy. However, long-term androgen-ablation results in androgen-
independent cancer cell growth in metastatic patients, leading to hormone refractory 
prostate cancer (HRPC) (Sonpavde et al., 2006). Prostate cancer tends to invade the pelvic 
lymph nodes and spread to distant organs, mainly via the blood stream, showing a strong 
predilection for bones (Koutsilieris, 1993;Sourla et al., 1996). This disease frequently 
metastasizes to bone and almost invariably progresses from an androgen-sensitive to an 
androgen-independent status, greatly limiting therapeutic options and significantly 
reducing life expectancy in patients. Skeletal metastases occur in more than 80% of cases of 
advanced-stage prostate cancer and they confer a high level of morbidity. Metastasis of 
prostate cancer, like that of other solid tumors, involves multiple steps, including 
angiogenesis, local migration, invasion, intravasation, circulation and extravasation of 
tumor cells and then angiogenesis and colonization in the new site. Treatment-naive 
metastatic prostate cancer is largely sensitive to androgen-deprivation therapy (ADT), but 
the effectiveness of ADT is temporary, and tumors in the majority of patients eventually 
relapse and evolve into castration-resistant prostate cancer (CRPC), from which most 
patients die (Eisenberger and Walsh, 1999). These tumors eventually become incurable or 
resistant to antihormonal therapy. Indeed, there is an association between ADT and high 
risk of cardiovascular disease and mortality, and men with a history of recent or active 
cardiac disease are particularly at risk (Saigal et al., 2007). In men with a history of coronary 
artery disease, chronic heart failure, or myocardial infarction, ADT was associated with an 
increased risk of mortality (Nguyen et al., 2011). Continuous ADT use for at least 6 months 
in older men is also associated with an increased risk of diabetes and fragility fracture 
(Alibhai et al., 2009). For this reason, new agents and therapeutic modalities are needed, 
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including non-hormonal systemic chemotherapy, which can provide another option for 
patients with non-localized HRPC or CRPC. 

2.1 Chemotherapeutic agents 

Chemotherapy is often used as a main regimen in the overall treatment of most cancers. In 
the past, clinical trial design has focused on sequential development of chemotherapeutic 
drugs based on symptoms and number of prior therapies. There are four chemotherapeutic 
agents that the US Federal Drug Administration (FDA) approved for CRPC: estramustine, 
mitoxantrone, docetaxel and cabaxitaxel. 

2.2 Docetaxel 

Chemotherapy, using Taxotere (docetaxel), a member of taxane family, remains the 
standard option for patients at the advanced stages, in particular, HRPC (Schurko and Oh, 
2008). As of April 2010, only one approved chemotherapeutic agent, docetaxel, showed 
promising results in improving survival in patients with metastatic CRPC (Abdulla and 
Kapoor, 2011). This drug is a microtubule-polymerizing agent with a well-established 
antimitotic chemotherapy action. It causes downregulation of  anti-apoptotic protein, Bcl-2  
(Li et al., 2005;Schiff and Horwitz, 1980;Schurko and Oh, 2008;Stein, 1999;Yoo et al., 2008), 
enhances the apoptosis induced by “tumor necrosis factor-related apoptosis-inducing ligand” 
(TRAIL) (Yoo et al., 2008), down regulates genes involved in cell cycle progression (cyclin A, 
cyclin F, CDC2, CDK2, BTG, etc.), transcription factors (transcription factor A, ATF5, TAF 1 
31L, etc.), oncogenes (GRO, BRCA1, p120, etc.) and apoptosis as GADD45A (Li et al., 2005;Stein, 
1999;Yoo et al., 2008). A recent study showed that docetaxel upregulates p53 and p21 in a p38-
dependent manner to desensitize prostate cancer cells (Gan et al., 2011). The p38/p53/p21 
signaling pathway could be important for regulating the susceptibility towards docetaxel in 
prostate cancer. Docetaxel regimens have been shown to increase survival compared to 
previous treatment modalities in HRPC, although prognosis remains poor and median 
survival ranges from 10 to 20 months (Petrylak et al., 2004;Tannock et al., 2004). Cancer cells 
become resistant to taxanes and other microtubule-binding chemotherapeutic agents and 
therefore docetaxel therapy is limited. Makarovskiy et al. found that continuity of docetaxel 
exposure induces the formation of resistant giant multinucleated clones (Makarovskiy et al., 
2002). Lack of curative treatments at the advanced prostate cancer, underline the importance of 
additional trials for the successful development of an effective therapeutic approach. Another 
study showed that docetaxel and sodium selenite combination plays an antiproliferative 
synergistic and additive cell death effect (Freitas et al., 2011). That study suggested that 
docetaxel and sodium selenite combination may be more effective in prostate cancer 
treatment than docetaxel alone warranting further evaluation of this combination in prostate 
cancer therapeutic approach. 
Docetaxel in combination with prednisone compared with mitoxantrone in combination with 
prednisone yielded an extension in median survival with HRPC, however, patients eventually 
developed progressive disease associated with poor outcomes (Berthold et al., 2008). 
Carbazitaxel, a tubulin-binding semi-synthetic taxane, is the first drug to improve survival in 
patients with metastatic CRPC whose disease has progressed during or after docetaxel-based 
therapy, providing a 30% reduction in the risk of death and an improved median overall 
survival compared with mitoxantrone (de Bono et al., 2010). Carbaxitaxel in combination with 
prednisone was approved by the FDA in June 2010 for the treatment of patients with 
metastatic CRPC who had been previously treated with docetaxel (Wu et al., 2011). 
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Although there are several options after failing hormone therapy to help achieve disease 
control, HRPC remains incurable, and there continues to be an ongoing need for the 
development of new therapies that provide significant survival benefits without severely 
impacting quality of life. Today, not only are hormonal and cytotoxic treatment modalities 
available to patients with metastatic CRPC, but also more novel treatments in the areas of 
immune and targeted therapies are being offered. Newer agents currently being 
investigated for their potential role in metastatic CRPC are sipuleucel T (an autologous 
dendritic cell-based vaccine), denosumab (antibody), abiraterone (hormonal therapy), TAK-
700 (hormonal therapy), MDV3100 (hormonal therapy) and ipilimumab (immune therapy), 
zibotentan (endothalin-receptor antagonists) and dasatinib (tyrosine kinase inhibitor). 

2.3 Doxorubicin 

Anthracyclines rank among the most important chemotherapeutic drugs with a large 
spectrum of antitumor activity, including prostate cancer. The precise mechanisms of action of 
anthracyclines in tumor cells remain a matter of controversy. The suggested mechanisms 
include (i) DNA intercalation, leading to inhibition of synthesis of macromolecules; (ii) 
generation of reactive oxygen species (ROS), leading to DNA damage or lipid peroxidation; 
(iii) DNA binding and alkylation; (iv) DNA cross-linking; (v) interference with DNA 
unwinding or DNA strand separation and helicase activity; (vi) direct membrane effects; (vii) 
initiation of DNA damage via inhibition of topoisomerase II; and (viii) induction of apoptosis 
in response to topoisomerase II inhibition (Takemura and Fujiwara, 2007). Doxorubicin (DOX, 
Adriamycin) and its analogue epirubicin, or 4-epidoxorubicin, are the most potent 
anthracyclines, and have a broad spectrum of activity against solid tumors and hematological 
malignancies. Monotherapy with DOX or in combination with other agents, have been used 
extensively for the treatment of HRPC, however, controversial results have been reported 
(Petrioli et al., 2008). Acquisition of chemoresistance remains one of the major problems of 
chemotherapy failure in cancer patients. Therefore, there is an urgent need to identify a 
strategy that can overcome chemoresistance and sensitize tumor cells to chemotherapeutic 
agents. For this reason, a clinical chemotherapeutic regimen consisting of a combination of 
drugs can achieve a higher therapeutic efficacy than that provided by a single drug. 

2.4 Cardiotoxicity 

Despite its clinical efficacy, the use of DOX is associated with their severe toxicity, including a 
myelosuppression and dose-dependent delayed and progressive irreversible cardiomyopathy 
often observed several years after cessation of treatment eventually results in refractory 
cardiac dysfunction (Steinherz et al., 1991;Steinherz et al., 1995). It has been shown that DOX 
induces cardiomyopathy and heart failure in >30% patients receiving 500 mg/m2 or higher 
cumulative doses (Menna et al., 2011;Minotti et al., 2004). The molecular basis for this 
cardiotoxic effect remains a matter of debate. Several hypotheses have been suggested to 
explain the acute and chronic cardiotoxicity of DOX; these include the increased level of ROS 
and lipid peroxidation by DOX-iron cmplexes (Myers, 1998), along with a reduction in the 
levels of antioxidants and sulfhydryl groups (Takemura and Fujiwara, 2007), alterations in 
cardiac muscle gene expression, sensitization of Ca2+ release from sarcoplasmic reticulum 
channels, mitochondrial DNA damage and dysfunction and alteration of membrane 
potentials, and induction of apoptosis (Arola et al., 2000;Burke et al., 2002;Kumar et al., 
2001;Olson and Mushlin, 1990). Of these options, the free radical and ROS hypothesis of 
DOX-induced cardiotoxicity has gained the most support in previous studies. 
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The target organelles of DOX toxicity in cardiomyocytes are mitochondria wherein DOX 
accumulates with time (Kalyanaraman et al., 2002;Konorev et al., 1999). DOX-induced 

cardiomyopathy occurs predominantly via the generation of ROS in the cardiomyocyte 
mitochondria, a mechanism that is separate from its antineoplastic activity, which occurs 

primarily through inhibition of topoisomerase II (Myers, 1998). DOX is known to generate free 
radicals either by redox cycling between a semiquinone form and a quinone form or by 
forming a DOX-Fe3+ complex (Davies and Doroshow, 1986). In both pathways, molecular 
oxygen is reduced to superoxide anion (O2- ·), which is converted to other forms of reactive 
oxygen species such as hydrogen peroxide (H2O2) and hydroxyl radical (OH·). Mitochondrial 
enzymes (e.g. NADH dehydrogenase) activate DOX by converting it to the corresponding 
semiquinone which generates superoxide in the presence of molecular oxygen. The 
dismutation of the superoxide, spontaneous or catalyzed by superoxide dismutase (SOD) 
enzymes, generates hydrogen peroxide in mitochondria (Kalyanaraman et al., 2002). The heart 
is particularly vulnerable to free radical injury because the drug causes the disappearance of 
cardiac glutathione peroxidase, leaving the heart with no means of disposing of the hydrogen 
peroxide (Myers, 1998). These free radicals could then cause membrane and macromolecule 
damage, both of which lead to injury to the heart, an organ that has a relatively low level of 
antioxidant enzymes such as SOD and catalase (Doroshow et al., 1980). Several studies 
demonstrated that DOX-induced cardiotoxicity can be largely reduced by the overexpression 
of the antioxidant enzymes mitochondrial superoxide dismutase (MnSOD), metallothionein, 
or catalase (Kang et al., 1996;Kang et al., 1997;Yen et al., 1996). Moreover, free radical scavengers 
including probucol, amifostine, and dexrazoxane have demonstrated protection from 
doxorubicin-induced cardiotoxicity, further substantiating the role of ROS in DOX-induced 

cardiotoxicity (Koning et al., 1991;Kumar et al., 2001;Nazeyrollas et al., 1999). On the other 
hand, all of these agents have pronounced clinical disadvantages, including a significant 

decline in high-density lipoprotein (HDL) levels, an inability to prevent DOX-induced 

mortality and weight loss, and potentiation  of myelosuppression (Liu et al., 2002b). 
DOX induce cardiotoxicity ultimately results in myocyte apoptosis which plays an 
important role in the development of heart failure (Hosseinzadeh et al., 2011;Mizutani et al., 
2005;Spallarossa et al., 2004;Spallarossa et al., 2009). In fact, apoptosis contributes to 
cardiomyocyte loss, which eventually leads to structural changes maladaptive to normal 
cardiac physiological demands (Narula et al., 1996;Singal et al., 2000). Strategies for the 
prevention of DOX-induced cardiotoxicity during chemotherapy have focused on three 
main approaches: dose optimization, synthesis of analogues and combination therapy. 
However, none of the analogues available clinically appear to have any advantage over 
DOX (Weiss, 1992); a better anthracycline has yet to be found. Today, liposomal 
formulations of anthracyclines are available; treatments have lower toxicity profiles, 
especially in terms of cardiac side-effects (Safra, 2003). The activity of anthracyclines is 
therefore an area worthy of further research in this clinical setting. 

3.1 PDE-5 inhibitors 

Cyclic nucleotide phosphodiesterases (PDEs) are a family of related phosphohydrolases that 
selectively catalyze the hydrolysis of the 3’ cyclic phosphate bonds of cAMP and cGMP, 
second messengers in the cell (Bender and Beavo, 2006). The PDE enzymes, of at least 11 types, 
are ubiquitous through out the body, and perform a variety of functions (Kukreja et al., 2004). 
PDE-5 is the primary enzyme in the corpus cavernosum, and plays a crucial role in vascular 
smooth muscle contraction through controlling the rate of hydrolyzation and subsequent 

www.intechopen.com



 
The Role of PDE-5 Inhibitors in Prostate Cancer 

 

275 

degradation of cGMP (Bender and Beavo, 2006). Three widely prescribed PDE-5 inhibitors, 
sildenafil (Viagra), vardenafil (Levitra), and tadalafil (Cialis), have proven very effective for the 
treatment of erectile dysfunction (ED) in men (Boolell et al., 1996;Porst et al., 2001;Porst et al., 
2003) and more recently for pulmonary artery hypertension (Galie et al., 2005;Galie et al., 2010). 
In the lung, inhibition of PDE-5 opposed smooth muscle vasoconstriction and attenuated the 
rise in pulmonary artery pressure and vascular remodeling (Sebkhi et al., 2003). 
Several studies have shown that PDE-5 inhibitors induce a preconditioning-like effect  
against ischemia/reperfusion (I/R) injury in the intact heart and adult cardiomyocytes 
(Bremer et al., 2005;Das et al., 2004;Das et al., 2005;Das et al., 2008;Das et al., 2009;Ockaili et al., 
2002;Salloum et al., 2003;Salloum et al., 2007;Salloum et al., 2008). The mechanisms of 
cardioprotection include nitric oxide (NO) generation by activation of eNOS/iNOS 
(endothelial nitric oxide synthase/inducible nitric oxide synthase), activation of protein 
kinase C, cGMP-dependent protein kinase (PKG) and ERK, and inactivation of GSK3ǃ and 
opening of the mitoKATP channels (Das et al., 2004;Das et al., 2005;Das et al., 2008;Das et al., 
2009;Ockaili et al., 2002;Salloum et al., 2003). PDE-5 inhibition attenuated cardiomyocytes cell 
death resulting from necrosis and apoptosis after SI-RO (simulated ischemia and 
reoxygenation) by NOS-dependent up-regulation of the Bcl-2/Bax ratio (Das et al., 2005). 
Sildenafil attenuated ischemic cardiomyopathy in mice by limiting necrosis and apoptosis 
and by preserving left ventricular (LV) function possibly through a NO-dependent pathway 
following myocardial infarction by left anterior descending coronary artery ligation 
(Salloum et al., 2008). Tadalafil also limits myocardial I/R injury and dysfunction through 
hydrogen sulfide (H2S) signaling in a PKG-dependent fashion (Salloum et al., 2009). 

3.2 PDE-5 inhibitors protect against DOX-induced cardiomyopathy 

Sildenafil attenuated cardiomyocyte apoptosis and left ventricular (LV) dysfunction in a 
chronic model of DOX-induced cardiotoxicity (Fisher et al., 2005). Treatment with clinically 

relevant doses of sildenafil (0.7 mg/kg IP) prior to DOX treatment inhibited cardiomyocyte 
apoptosis, preserved mitochondrial membrane potential (∆ψm) and myofibrillar integrity, 
prevented of LV dysfunction as well as ST prolongation. Reduction in fractional shortening 
and abnormalities in the nonspecific T wave and ST segment of Electrocardiography (ECG) 
was typically observed in DOX-induced ventricular dysfunction (van Acker et al., 1996). Our 
ECG study indicated the most marked increase in ST interval occurred between week 4 and 
week 8 of DOX treatment. Furthermore, ST interval of sildenafil and DOX groups remained 
unchanged from baseline during the course of the study. This study demonstrated that 
sildenafil significantly protected against ST-interval prolongation throughout the study period. 
Exposure of adult mouse ventricular myocytes to DOX resulted in dissipation of ∆ψm as 
illustrated via JC-1 immunofluorescent staining (Figure 1C, G), which leaded to the induction 
of apoptosis (Figure 1H) compared to control (Figure 1A). In contrast, sildenafil pretreatment 
with DOX demonstrated preservation of the ∆ψm (Figure 1D, G) and reduction of apoptosis 
(Figure 1H). However, sildenafil-induced protection was abolished by NG-nitro-L-arginine 
methyl ester (L-NAME, an inhibitor of NOS) and 5-hydroxydecanoate (5-HD, mitoKATP 
channel blocker). These findings implied that sildenafil-mediated protection from DOX-
induced cardiomyocyte apoptosis is NOS dependent and established a significant role of 
mitoKATP channel opening in sildenafil-induced cardioprotection. Additionally, the anti-
apoptotic protein Bcl-2 was significantly declined after treatment in the DOX group compared 
with the sildenafil + DOX and control groups, suggesting a pivotal role of Bcl-2 in altering the 
pathological process leading to end-stage heart failure. 
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Fig. 1. Effect of sildenafil on ∆ψm and apoptosis in adult mouse ventricular myocyte. A to F, 
JC-1 staining of cardiomyocytes. Red fluorescence represents the mitochondrial aggregate, 
indicating intact mitochondrial membrane potential. Green fluorescence represents the 
monomeric form of JC-1, indicating dissipation of ∆ψm. A, Control; B, sildenafil (1 µmol/L); 
C, DOX (1 µmol/L); D, sildenafil (1 µmol/L) plus DOX (1 µmol/L); E, L-NAME (100 
µmol/L)+sildenafil+DOX; F, 5-HD (100 µmol/L) +sildenafil+DOX; G, ratio of mitochondrial 
aggregates to monomeric form of JC-1; H, Apoptotic Index for TUNEL-positive 
cardiomyocytes. Data are mean±SEM (n=3; magnification X200). Reprinted from Fisher, P. 
W. et al. Circulation 2005;111:1601-1610 with permission. 

More recently, we showed that tadalafil, the long acting PDE-5 inhibitor, also improved LV 
function by preserving fractional shortening (LVFS) and ejection fraction (LVEF) compared 
with DOX-treated mice (Figure 2) (Koka et al., 2010). This study also demonstrated that 
tadalafil improved survival rates in mice without interfering with the anti-tumor effect of 
DOX. Tadalafil prevented cardiomyocyte apoptosis in DOX-induced cardiomyopathy 
through up-regulation of cGMP (Figure 3A) and PKG activity (Figure 3B), by restoring Bcl-2 
and GATA-4 in the myocardium, and by reducing the oxidative stress via the up-regulation 
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of mitochondrial superoxide dismutase (MnSOD). Moreover, tadalafil did not interfere with 
the efficacy of DOX in killing human osteosarcoma cells in vitro or its antitumor effect in vivo 
in tumor xenograft model. These studies suggest that prophylactic treatment with the class 
of PDE-5 inhibitors might become a promising therapeutic intervention for managing the 
clinical concern of DOX-induced cardiotoxicity in patients. 
 

 

Fig. 2. Transthorasic echocardiography represented the effect of tadalafil on ventricular 
contractile dysfunction caused by DOX. A, representative M-mode images for control, DOX 
and tadalafil +DOX- treated mice. B and C, the averaged data of fractional shortening (B) 
and ejection fraction (C) in the mice are presented as mean ± S.E. (n = 6 per group; *, P < 0.05 
versus control; #, P < 0.05 versus DOX). Reprinted from Koka, et al. J Pharmacol Exp Ther. 
2010 Sep 1;334(3):1023-1030 with permission. 
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Fig. 3. Tadalafil augments cGMP and protein kinase G after DOX treatment. cGMP level (A) 

and PKG activity (B) in the cardiac tissue. Results are presented as mean ± S.E. (n = 5–
7/group). *, P < 0.05 versus control; #, P < 0.05 versus DOX group. Partial data reprinted 
from Koka, et al. J Pharmacol Exp Ther. 2010 Sep 1;334(3):1023-1030 with permission. 

3.3 PDE-5 inhibitors in cancer 

Increased PDE-5 expression is reported in multiple human carcinomas including metastatic 
breast cancers, colon adenocarcinoma, bladder squamous carcinoma, and lung cancers as 
compared to adjacent normal tissues (Epstein and Hachisu, 1984;Joe et al., 2003;Lim et al., 
2003;Piazza et al., 2001;Porst et al., 2001;Singer et al., 1976;Whitehead et al., 2003). PDE-5 was 
also detected as a predominant isoform of cGMP-PDEs in many carcinoma cells lines in 
culture, including colonic adenocarcinoma (SW480, HCT116, HT29, T84), breast cancer 
(HTB-26, MCF-7), lung cancer, bladder and prostate cancer (LNCAP, PC-3), and leukemia 
(Thompson et al., 2000;Whitehead et al., 2003;Zhu et al., 2005). These studies suggest a 
functional role of an up-regulated PDE-5 in controlling tumor cell growth and death. PDE-5 
selective inhibitors, sildenafil and vardenafil induced caspase dependent apoptosis and 
antiproliferation in B-cell chronic lymphatic leukemia (Sarfati et al., 2003;Zhu et al., 2005). 
Vardenafil when given in combination with DOX significantly improved the survival and 
reduced the tumor size in the brain-tumor-bearing rats (Black et al., 2008). In this study, oral 
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administration of vardenafil and sildenafil increased the rate of transport of compounds 
across the blood-tumor-brain and improved the efficacy of DOX in treatment of brain 
tumors. The selective increase in tumor capillary permeability appeared to be mediated by a 
selective increase in tumor cGMP levels and increased vesicular transport through tumor 
capillaries, and could be attenuated by iberiotoxin, a selective inhibitor for calcium-
dependent potassium (KCa) channels, that are effectors in cGMP signaling. This study 
supported the use of PDE5 inhibitors as a novel therapy to selectively increase drug 
transport to malignant brain tumors. Another PDE-5 inhibitor, exisulind (sulindac sulfone) 
and its higher affinity analogues also induced apoptosis and inhibited cell proliferation in 
colon tumor cells lines by activating PKG and increasing phosphorylation of ǃ-catenin (Lim 
et al., 2003;Liu et al., 2002a). 
One of the major causes of chemotherapy failure in cancer treatment is multidrug 

resistance (MDR). One of the known causes of MDR is overexpression of the ATP-binding 

cassette (ABC) transporters, such as P-glycoprotein (ABCB1/P-gp/MDR1), multidrug 

resistance proteins (ABCCs/MRPs) and breast cancer resistant protein (ABCG2/BCRP). 

Among these transporters, the ABCB1 transporter is the most important mediator of MDR 

(Ambudkar et al., 2003), and is responsible for chemotherapeutic drug resistance to a 

variety of drugs, including vinca alkaloids, anthracyclines, epipodophyllotoxins and 

taxanes (Szakacs et al., 2006). These transporters actively efflux a variety of structurally 

and functionally diverse chemotherapeutic drugs out of cancer cells, thereby reducing the 

intracellular drug accumulation, increasing the likelihood of decreased cytotoxic and thus 

unsuccessful treatment (Dean et al., 2001;Gillet et al., 2007;O'Connor, 2007). Therefore, a 

promising approach is to inhibit these transporters to restore the sensitivity of drug-

resistant cancer cells to chemotherapeutic drugs, which leads to a more efficacious 

treatment for cancer patients. As a result, a number of compounds have been identified 

with the ability to inhibit individual or several transporters by blocking drug efflux, 

increasing drug accumulation and thus sensitizing resistant cancer cells. Several of these 

agents, including cyclosporine A, VX-710 (biricodar), Verapamil(Germann et al., 

1997;Minderman et al., 2004;Qadir et al., 2005), LY475776 (Dantzig et al., 2004), V-104 and 

GF-120918 (elacridar) (Evers et al., 2000) can inhibit/suppresses the function of multiple 

transporters including ABCB1, ABCC1, and ABCG2. Unfortunately, most of these 

inhibitors have not been translated into clinical trials due to unfavorable side effects, toxic 

pharmacokinetic interactions, or simply because the magnitude of improvement in 

therapeutic outcome of these inhibitors with conventional chemotherapeutic agents is 

either nonsignificant or inconclusive (Szakacs et al., 2006). Several tyrosine kinase 

inhibitors (TKIs), including imatinib (Shen et al., 2009), nilotinib (Tiwari et al., 2009), 

lapatinib (Dai et al., 2008), and erlotinib (Shi et al., 2007), can also reverse MDR to 

antineoplastic drugs mediated by ABC-transporters. However, the reversal potential of 

these TKIs has not been determined in clinical trials. Consequently, there is an urgent 

need for the discovery of more efficacious, non-toxic and less expensive novel agents to 

reverse MDR in cancer cells. Recent study showed that the PDE-5 inhibitor, vardenafil, 

significantly reversed MDR in ABCB1 overexpressing cancer cells, and its efficacy was 

greater than that of tadalafil (Ding et al., 2011). Sildenafil also inhibited cell surface ABC 

transporters ABCB1 and ABCG2-midiated drug efflux, resulting in an increase in the 

intracellular concentrations of anticancer drugs and ensuing drug sensitivity (Shi et al., 

2011). However, sildenafil had no effect on efflux mediated by ABCC1. Based on these 
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recent studies, it is reasonable to suggest that sildenafil may have the potential to improve 

the chemotherapeutic outcome of cancer patients by enhancing the distribution and 

accumulation of chemotherapeutic drugs and ensuing drug sensitivity. 

3.4 PDE-5 inhibitors in prostate cancer 

All forms of prostate cancer therapy cause significant risk of erectile dysfunction due to 

trauma sustained by the cavernosal nerves (Rambhatla et al., 2008). As mentioned earlier, 

PDE-5 is the predominant enzyme in the corpus cavernosum and plays an essential role in 

vascular smooth muscle contraction through specific regulation of cGMP. There is an 

increasing amount of evidence suggesting that PDE-5 inhibitors significantly improve 

erectile function in men after post-radical prostatectomy (Mydlo et al., 2005;Ohebshalom et 

al., 2005;Schiff et al., 2006;Teloken et al., 2007). Their efficacy and safety have triggered a 

number of attempts to determine their potential benefits in non-urological conditions 

(Vlachopoulos et al., 2009). The rationale behind the use of PDE-5 inhibitors on a prolonged 

and continuous basis in the post-prostatectomy patient has never been fully and 

scientifically delineated (Rambhatla et al., 2008). The prolonged and continuous 

administration of vardenafil, prevented both fibrosis and loss of smooth muscle, 

subsequently reduced corporal veno-occlusive dysfunction (CVOD) following bilateral 

cavernosal nerve resection (Ferrini et al., 2006). Similar results were reported both in the 

unilateral and bilateral nerve resection models using continuous long-term administration 

of sildenafil (Kovanecz et al., 2008a). A long-term single daily dose of tadalafil also 

prevented CVOD and the underlying corporal fibrosis in the rat caused by cavernosal nerve 

damage, as effectively as the previously reported continuous treatment with vardenafil or 

sildenafil, through a cGMP-related mechanism that appeared to be independent of iNOS 

induction (Kovanecz et al., 2008b). Sildenafil treatment was also effective for improving 

erectile function in men with post-radiation, particularly, in the early stages after the 

completion of radiation (Teloken et al., 2007). Treatment with exisulind, another PDE-5 

inhibitor, at 250 mg bid had been evaluated in men with prostate cancer following radical 

prostectomy (Goluboff et al., 2001). In a randomized, 12 month study; exisulind suppressed 

the overall rise in prostate specific antigen (PSA) levels compared to placebo group. In 

addition, PSA doubling time was increased more than two fold for high-risk patients who 

continued with exisulind. Another study also reported that the early use of PDE-5 inhibitor 

after prostate brachytherapy maintained erectile function at both 6 and 12 months (Pahlajani 

et al., 2010). Emerging studies focusing on the molecular mechanisms of apoptosis and 

fibrosis are beginning to shed some light on the beneficial use of PDE-5 inhibitors. 

In recent years, extensive and diverse preclinical and clinical studies indicated that PDE-5 
inhibitors also had beneficial effects to enhance the chemotherapeutic efficacy of 
anticancer drugs in prostate and other cancer. PDE-5 inhibitors, sulindac sulfide and 
exisulind, inhibited growth and induced apoptosis in both the androgen-sensitive 
(LNCaP) and androgen-insensitive (PC-3) human prostate cancer cell lines (Lim et al., 
1999;Lim et al., 2003). Exisulind also suppressed the growth of human prostate cancer cells 
in a nude mouse xenograft model (Goluboff et al., 1999). At a low dose, combination of 
colecoxib, a cyclooxygenase-2 (COX-2) inhibitor, with exisulind prevented prostate 
carcinogenesis by altering key molecular events (Narayanan et al., 2007). Combination of 
celecoxib and exisulind not only enhanced apoptosis, but also exerted an anti-
inflammatory effect by the reduced levels of COX-2, prostaglandin E2, and tumor necrosis 
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factor  (TNF-ǂ). Therefore, a combination of potential agents at low doses is considered 
to be very efficacious in minimizing toxicity compared with the use of individual agents 
at higher dose levels.  
Recently, we demonstrated that co-treatment with the PDE-5 inhibitor, sildenafil, 
potentiated the antitumor efficacy of DOX in prostate cancer cells, while simultaneously 
reducing the risk of cardiomyopathy (Das et al., 2010). Cell proliferation of PC-3 and 
DU145, prostate cancer cells, were reduced in a dose-dependent manner with DOX 
treatment (Figure 5 A, B). Co-treatment with sildenafil resulted in an additive effect on 
DOX-induced reduction of cell proliferation (Figure 4 A, B). Co-treatment with sildenafil 
also enhanced DOX-induced cell killing (Figure 4 C, D). Sildenafil and DOX combination 
also enhanced the killing of ovarian cancer and sarcoma cells, suggesting a potential 
efficacy of sildenafil in chemosensitization in multiple malignancies. Co-treatment with 
sildenafil and DOX enhanced PC-3 and DU145 prostate cancer cell killing through further 
enhancing ROS generation compared to DOX alone. In contrast, the sildenafil and DOX 
combination attenuated DOX-induced ROS generation in normal prostate cells. It has 
been suggested that the basic difference in mitochondrial respiration between normal and 
cancer cells makes cancer cells more sensitive to oxidative stress (Deberardinis et al., 
2008;Vander Heiden et al., 2009). Further investigations need to be warranted to define 
how sildenafil sensitizes cancer cells to amplify DOX-mediated ROS generation. 
Interestingly, sulindac, also selectively enhanced killing of cancer cells exposed to 
oxidizing agents via production of ROS (Resnick et al., 2009). However, low levels of 
sulindac also induced delayed preconditioning response against I/R injury in the heart 
through up-regulation of putative effectors of cardioprotection including iNOS and 
HSP27 (Moench et al., 2009). 
We further demonstrated that co-treatment with sildenafil and DOX enhanced DOX-

induced apoptosis in PC-3 and DU145 prostate cancer cells ( Figure 4 E, F) (Das et al., 

2010). The increased apoptosis by sildenafil and DOX was associated with enhanced 

expression of proapoptotic proteins Bad and Bax and suppression of Bcl-2 and Bcl-xL. 

Also, sildenafil and DOX combination dephosphorylated Bad, which may enhance Bad 

heterodimerization with Bcl-xL thereby promoting DOX-induced apoptosis. The ectopic 

overexpression of Bcl-xL in DU145 cells attenuated the synergistic effect of sildenafil and 

DOX on cell killing. Caspase-3 and -9 activities were also increased following sildenafil 

and DOX co-treatment. Overexpression of dominant negative procaspase-9 in DU145 cells 

blocked the enhanced cell killing by combined treatment with sildenafil and DOX 

compared with DOX alone. 

Treatment with sildenafil and DOX in mice bearing prostate tumor xenografts resulted in 

significant inhibition of tumor growth (Figure 5A) (Das et al., 2010). The ratio of tumor 

weight to body weight was also reduced with sildenafil co-treatment with DOX compared 

to DOX alone (Figure 5B). The reduced tumor size was associated with amplified apoptotic 

cell death (Figure 6) and increased expression of activated caspase-3. The anti-tumor effect 

of sildenafil and DOX combination ameliorated DOX-induced cardiac dysfunction, which 

was consistent with our previous study showing improved left ventricular (LV) function 

with PDE5 inhibitors (sildenafil and tadalafil) in DOX-treated mice (Fisher et al., 2005;Koka 

et al., 2010). Fractional shortening (LVFS) and ejection fraction (LVEF) declined in DOX-

treated mice. Sildenafil co-treatment with DOX improved LVFS and LVEF compared with 

the DOX-treated groups. 
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Fig. 4. Sildenafil (Sild) enhances DOX-induced prostate cancer cell death. Cell viability of (A) 
PC-3 and (B) DU145 cells after 72 h of treatment with different concentrations of DOX 
and/or sildenafil (10 µM). (*p<0.001 vs respective concentration of DOX; n=6). Cell death 
assessed after 24 h treatment of (C) PC-3 with 1.5 µM DOX and 10 µM sildenafil and (D) 

DU145 with 0.5 µM DOX and 10 µM sildenafil (*p<0.001 vs control and p<0.001 vs DOX; 
n=6). Apoptosis is assessed by TUNEL staining after 72 hr of treatment. Percentage of 
TUNEL-positive nuclei in (E) PC-3 cells following treatment with 1.5 µM DOX and 10 µM 
sildenafil and (F) DU145 with 0.5 µM DOX and 10 µM sildenafil (*p<0.001 vs control and 
p<0.001 vs DOX; n=3). Results are presented as mean ± S.E. Reprinted from Das et al. Proc 
Natl Acad Sci U S A. 2010 Oct 19;107(42):18202-18207 with permission. 
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Fig. 5. Oral administration of sildenafil (Sild) potentiates DOX-induced inhibition of prostate 
tumor xenograft growth. Male nude mice bearing PC-3 human prostate tumors were treated 
with DOX (3 mg/kg, i.p., twice per week, a total of six times) or sildenafil (10 mg/ kg, 
orally, everyday) or DOX+sildenfil for 30 days. (A) Tumor growth during 30 d of different 
treatments (n=8). (B) Bar diagram showing the ratio of tumor weight to body weight after 30 
d of treatment (*p<0.05 vs. DOX alone; n=8). Reprinted from Das et al. Proc Natl Acad Sci U 
S A. 2010 Oct 19;107(42):18202-18207 with permission. 
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Fig. 6. Sildenafil enhances DOX-induced apoptosis in PC-3 prostate tumors. Bar diagram 
showing TUNEL-positive cells (*p<0.001 vs. control and p<0.001 vs. DOX; n=3). Results are 
reported as means ±SE. Reprinted from Das et al. Proc Natl Acad Sci U S A. 2010 Oct 
19;107(42):18202-18207 with permission. 
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4. Concluding comments and future perspective 

PDE-5 inhibitors including sildenafil, vardenafil and tadalafil are safe and efficacious first-
line on-demand agents for the treatment of erectile dysfunction (Boolell et al., 1996;Porst et 
al., 2001). Their mechanism of action involves inhibition of the PDE-5 enzyme and resulting 
increase in cGMP and smooth muscle relaxation in the penis. Their target enzyme, PDE-5 is 
expressed in several tissues throughout the human body, including the pulmonary and 
systemic vasculature, hypertrophied myocardium and cancer cells. Preclinical studies have 
demonstrated that PDE-5 inhibitors have powerful cardioprotective effect in the setting of 
I/R injury, pressure overload-induced hypertrophy, heart failure and DOX-induced 
cardiomyopathy. The effects of PDE-5 inhibitors on the pulmonary circulation and 
hypertrophied right ventricle have made these agents first-line therapy for many patients 
with pulmonary hypertension. Several reports have indicated that PDE-5 inhibitors improve 
erectile function following radiation therapy or post-radical prostatectomy in prostate 
cancer patients. Recent research from our laboratory has reported provocative findings that 
sildenafil is both a powerful sensitizer of DOX-induced killing of prostate cancer and 
provides concurrent cardioprotective benefit (Das et al., 2010). Moreover, sildenafil and 
vardenafil have been shown to block or reverse the drug efflux function of the ABC 
transporters, thereby suggesting that sildenafil can be used as a modulator of ABCB1 and 
ABCG2 to reverse MDR in cancer cells. Considering the well-established safety profile of 
PDE-5 inhibitors, clinical studies are needed to fully exploit the beneficial effect of the 
combination treatment of anti-tumor agents such as DOX with the PDE-5 inhibitors as a 
therapeutic tool in prostate cancer patients. Also, further studies are needed to gain in depth 
understanding of the molecular mechanisms by which PDE-5 inhibitors increase the efficacy 
of chemotherapeutic agents. 
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