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1. Introduction 

Energy harvesting – the ability to gather energy from the local environment to power 
wireless devices – has seen significant development over the past decade as the demand for 
portable electronics increases. Although on-board batteries provide a simple means of 
providing energy for these devices, their energy density can be insufficient for miniature 
devices or long-term deployment (Anton & Sodano, 2007). A means of replenishing on-
board energy storage has the potential to reduce the frequency of battery replacement or 
eliminate the need altogether. Vibration-based energy harvesting in particular has garnered 
much attention due to the ubiquity of vibrational energy in the environment (Roundy et al., 
2003). Several methods of electromechanical transduction from vibrations have been 
investigated, including electromagnetic induction, electrostatic varactance, and the 
piezoelectric effect, the latter being the province of this chapter. 

Mechanical energy is transformed into electricity by straining piezoelectric material 
mounted on a structure that is subjected to ambient vibrations. If a natural frequency of the 
structure is matched to the predominant excitation frequency, resonance occurs, where large 
strains are induced by relatively small excitations. A major problem with resonant vibration-
based energy harvesters is that their peak strain (and hence, power) only occurs near the 
natural frequencies of the transducer. For many potential applications, ambient vibrations 
are low frequency, requiring large or heavy structures for resonance (Roundy et al., 2003; 
Wickenheiser & Garcia, 2010a). In order to shrink the size and mass of these devices while 
reducing their natural frequencies, a variety of techniques have been employed. For 
example, changing the standard cantilevered beam geometry and manipulating the mass 
distribution along the beam have been investigated. Varying the cross sections along the 
beam length (Dietl & Garcia, 2010; Reissman et al., 2007; Roundy et al., 2005) and the ratio of 
tip mass to beam mass (Dietl & Garcia, 2010; Wickenheiser, 2011) have been shown to 
improve the electromechanical coupling (a factor in the energy conversion rate) over a 
uniform cantilever beam design. Changing the number and location of piezoelectric patches 
or layers along the beam can improve coupling and shift the natural frequency of the device 
(Guyomar et al., 2005; Wu et al., 2009). Multi-beam structures can compact the design by 
folding it in on itself while retaining a similar natural frequency to the original, straight 
configuration (Karami & Inman, 2011; Erturk et al., 2009). A nonlinear technique called 
“frequency up-conversion” also shows promise to boost power at frequencies more than an 
order of magnitude below resonance (Murray & Rastegar, 2009; Tieck et al., 2006; 
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Wickenheiser & Garcia, 2010b). Despite the prevalence of widely varying designs, no single 
analytic method exists for predicting the electromechanical behavior of these systems. 

In the energy harvesting literature, the piezoelectric transducer is commonly modeled as a 
lumped, single-degree-of-freedom (DOF) system, typically a current source in parallel with an 
intrinsic capacitance. To more accurately predict the dynamics of energy harvesters, mechanical 
models have been developed based on their geometry and material properties. Two common 
approaches to modeling and simulating these devices are lumped parameter (typically single 
DOF) (duToit et al., 2005; Roundy & Wright, 2004) and distributed parameter (multi-DOF) 
(duToit et al., Erturk & Inman, 2008; Sodano et al., 2004; Wickenheiser & Garcia, 2010c) 
models. Lumped parameter models are simple and accurate when vibrating near a resonant 
frequency and experimental data are available to estimate the model parameters. Distributed 
parameter models are more accurate when multiple modes of vibration are expressed, can 
predict geometric effects such as charge cancellation, and can be easily extended to include 
arbitrary DOFs. However, these models are much more complex, are designed for a specific 
geometry, and require experimental determination of some of their parameters. 

In this chapter, a straightforward analytic approach is taken for modeling beams of varying 

cross-sectional geometry and multiple discontinuities, including lumped masses and bends. 

This technique also correctly accounts for the changes in the mechanical response from 

adding piezoelectric layers with partial coverage to the structure. This method is derived 

from the classical transfer matrix method (TMM) for multi-component structures and 

trusses (Pestel & Leckie, 1963) combined with an existing model for constant cross section, 

Euler-Bernoulli beam energy harvesters (Wickenheiser & Garcia, 2010c). A variation of this 

technique is employed by (Karami & Inman, 2011) to find the natural frequencies and mode 

shapes of a zigzag structure; however, their formulation is specific to 180° bends between 

segments. The TMM has been shown to reduce to the classical solutions (e.g. cantilevered 

beam with or without tip mass) for structures consisting of a single segment (Reissman et al., 

2011). An advantage of this method is that increasing the complexity of the structure does not 

increase the size of the eigenvalue problem required to find the natural frequencies and mode 

shapes. Furthermore, the same formulation can be used for an arbitrary distribution of lumped 

masses, bends between members, and varying geometry beam segments. 

In the following sections, the equations of motion (EOMs) are derived for uniform beam 
segments and for lumped masses. Subsequently, it is shown how these subsystems can be 
combined to form an arbitrarily complex structure. The eigenvalue problem for this class of 
design is then solved for the natural frequencies and mode shapes. These solutions are 
incorporated into a partial differential equation (PDE) model that includes the linearized 
piezoelectric constitutive equations, enabling the solution of the coupled electromechanical 
dynamics. Finally, a few simple case studies are presented to highlight the usefulness of this 
technique. 

2. Derivation of TMM for Euler-Bernoulli beam structures 

2.1 Overview of methodology 

The transfer matrix method used in this study is derived from the methodology described in 
(Pestel & Leckie, 1963). This method is used to calculate the natural frequencies and mode 
shapes (i.e. the eigensolution) for piecewise continuous structures, such as the one shown in 
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Fig. 1. This figure shows a 3-segment beam with lumped masses connected to the tip of each 
segment. (In this discussion, the “base” of each segment is the end closest to the host 
structure, whereas the “tip” is the end furthest.) Each segment is assumed to have constant 
geometric and material properties; however, different segments may have different 
properties. The lumped masses and bend angles can vary for each segment, including the 
case of no lumped mass between two segments. Furthermore, each segment may have a 
different number and arrangement of piezoelectric and substructure layering – e.g. 
combining bimorph, unimorph, and bare substructure. 

 

Fig. 1. Layout and geometric parameters of an example piecewise continuous structure. 

Let  ,w x t  be the deflection of the beam in the transverse direction and  ,u x t  be the 
deflection in the axial direction, each measured relative to the equilibrium position of the 
structure. Separation of variables is adopted to decompose these deflections into spatial and 
temporal components: 

      
1

, r r
r

w x t t x 



  and      

1

, r r
r

u x t t x 



  (1) 

where  r t  is the rth modal displacement,  r x  is the rth transverse mode shape function, 

and  r x  is the rth axial mode shape function. The subscript r is henceforth dropped for 

clarity, since the following discussion applies to any mode. 

As will be discussed in the following sections, Euler-Bernoulli beam theory requires 4 states 

to describe the variation of   with respect to x , namely the mode shape itself  , its slope 

d dx , the internal bending moment M , and the internal shear force V . The state equation 

for the variation of   with respect to x  includes the mode shape itself   and the normal 

(i.e. axial force) N . Assembling these variables into a state vector 

 
T

d
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dx

     
z  (2) 

a 6x6 linear system of the form 
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will be derived subsequently. Using the state transition matrix Φ of Eq. (3), the state vectors 
at any two points along the structure can be related using 

      2 2 1 1,x x x xz Φ z  (4) 

At this stage, the power of the transfer matrix method becomes apparent. Consider the 

problem of relating the states (components of z ) between points 1x  and 2x  and between 

points 3x  and 4x  shown in Fig. 1. In the next sections, state transition matrices will be 

derived for each beam segment, called field transfer matrices, and each lumped mass, called 

point transfer matrices. Denoting the field transfer matrix for the jth segment jF  and the point 

transfer matrix for the jth lumped mass jP , it will be shown that Eq. (4) can be written as 

      2 2 1 1x x x x 1z F z  (5a) 

between points 1x  and 2x  and 

        4 4 2 2 3 3x x L L x x  3 2 2z F P F z  (5b) 

between points 3x  and 4x , using the semigroup property of state transition matrices. Eq. 

(5b) also displays another feature of the transfer matrix method: no matter how many beam 

segments and lumped masses there are in the structure, the problem never grows beyond a 

6x6 linear system. 

2.2 Derivation of EOMs for an Euler-Bernoulli beam segment 

In this section, the EOMs for the states across a uniform beam segment are derived using 
Euler-Bernoulli beam assumptions and linearized material constitutive equations. The 
approach taken herein is based on force and moment balances and is a generalization of the 
treatments by (Erturk & Inman, 2008; Söderkvist, 1990; Wickenheiser & Garcia, 2010c). It is 
assumed that each beam segment is uniform in cross section and material properties. 
Furthermore, the standard Euler-Bernoulli beam assumptions are adopted, including 
negligible rotary inertia and shear deformation (Inman, 2007). 

 

Fig. 2. Free-body diagram of Euler-Bernoulli beam segment 

Consider the free-body diagram shown in Fig. 2. Dropping higher order terms, balances of 
forces in the y-direction and moments yield 

        2
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    ,
,

M x t
V x t

x


 


 (6b) 

where  ,V x t  is the shear force,  ,M x t  is the internal moment generated by mechanical 

and electrical strain,  ,f x t  is the externally applied force per unit length (it will be shown 

later that this is the inertial force induced by the base excitation), and  A  is the mass per 

unit length (Inman, 2007). Note that if the segment is monolithic,  A  is simply the 

product of the density of the material and the cross-sectional area. For the case of a bimorph 

beam segment, this term is given by 

    2
2

s s p p
s s p p

t bl t blm
A b t t

l l

 
  


     (7) 

The internal bending moment is the net contribution of the stresses in the axial direction in 

the beam. The stress within the piezoelectric layers is found from the linearized constitutive 

equations 

 1 11 1 31 3

3 31 1 33 3

E

S

T c S e E

D e S E

 

 
 (8) 

where T is stress, S is strain, E is electric field, D is electric displacement, c is Young’s 

Modulus, e is piezoelectric constant, and ε is dielectric constant. The subscripts indicate the 

direction of perturbation; in the cantilever configuration shown in Fig. 1, 1 corresponds to 

axial and 3 corresponds to transverse. The superscript  E  indicates a linearization at 

constant electric field, and the superscript  S  indicates a linearization at constant strain 

(IEEE, 1987). The stress within the substrate layer(s) is given simply by the linear stress-

strain relationship 1 11, 1sT c S , where 11,sc  is Young’s Modulus of the substrate material in 

the axial direction. Since deformations are assumed small, the axial strain is the same as the 

case of pure bending, which is given by  2 2
1 ,S y w x t x    (Beer & Johnson, 1992), and 

the transverse electric field is assumed constant and equal to  3 pE v t t  , where  v t  is 

the voltage across the electrodes, and the top and bottom layer have opposite signs due to 

the parallel configuration wiring. (This approximation is reasonable given the thinness of 

the layers.) Consider the case of a bimorph beam segment of width b , substrate layer 

thickness st , and piezoelectric layer thickness pt . Then the bending moment is 
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 (9) 
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where  H   is the Heaviside step function, and ,L RL L  are the left and right ends of the 
segment, respectively. In Eq. (9), the constant multiplying the  2 2,w x t x  term is defined 
as  EI , the effective bending stiffness. (Note that if the beam segment is monolithic, this 
constant is simply the product of the Young’s Modulus and the moment of inertia.) The 
constant multiplying the  v t  term is defined as  , the electromechanical coupling 
coefficient. Substituting Eq. (9) into Eq. (6) yields 

                
2 4

2 4

, ,
,L Rw x t w x t d x L d x L

A EI v t f x t
dx dxt x

 
 

     
    

   
 (10) 

which is the transverse mechanical EOM for a beam segment. 

The electrical EOM can be found by integrating the electric displacement over the surface of 
the electrodes, yielding the net charge  q t  (IEEE, 1987): 
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 (11) 

where the constant multiplying the  v t  term is defined as C , the net clamped capacitance 
of the segment. Eqs. (10–11) provide a coupled system of equations; these can be solved by 
relating the voltage  v t  to the charge  q t  through the external electronic interface. 

To derive the EOMs for the axial motion of each segment, it is assumed that the deformations 
in this direction are negligible compared to the transverse deformations. This assumption is 

reasonable if the cross sections are very thin in the transverse direction, in which case A I . 
Thus, if the beam is assumed rigid in the x-direction, a balance of forces gives 

      2

2

, ,
0

u x t N x t
A

xt


 
 


 (12) 

which constitutes the EOM for the axial direction for each beam segment. It should be noted 
that in Eqs. (10–12), the constants in the equations have been derived for bimorph segments; 
constants for other configurations can be found in (Wickenheiser & Garcia, 2010c). These 
three equations are the EOMs for this structure, which are solved in Section 4. 

2.3 Field transfer matrix derivation 

To derive the state transition matrix between two points along a uniform beam segment, the 
Euler-Bernoulli EOMs derived in the previous section are employed, dropping the 
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electromechanical coupling effects and the inertial forces due to base excitation, i.e. setting 

  0v t   and  , 0f x t  . This is equivalent to the assumption of Euler-Bernoulli mode 

shapes when modeling piezoelectric benders, a prevalent simplification appearing in the 

literature (duToit et al., 2005; Erturk & Inman, 2008; Wickenheiser & Garcia, 2010c). Under 

these assumptions, Eqs. (6,9,12) become 
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 


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 
 
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2

,
,

j

w x t
M x t EI

x





 (13) 

for beam segment j. 

At this point, Eq. (1) is applied. Each mode shape has a natural frequency associated with 

it (dropping the r subscript). With this substitution, the first and third of the previous 

equations can be rewritten as 

 
     2

j

dV x
A x

dx
     and 

     2
j

dN x
A x

dx
    (14) 

Collecting Eqs. (13–14) and writing them in terms of the mode shapes yields the linear system 
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 (15) 

which is the form sought in Eq. (3). Note that the transverse and axial dynamics are 
decoupled. 

Within a beam segment, the cross sections are assumed constant along the length, which has 

resulted in a constant state matrix jA  in Eq. (15). Hence, from linear systems theory, the 

state transition matrix is simply a function of the difference in the positions along the beam, 

i.e.      2 1 2 1,x x x x x   Φ Φ Φ . Thus, the field transfer matrix for beam segment j can 

be written as   x
x e

  jA

jF . 

Since jA  is block diagonal, the matrix exponential can be computed for each block 

separately. The upper left block can be integrated explicitly. An analytical formula for the 

matrix exponential of the lower-right block, labeled jB , can be found using the Cayley-

Hamilton theorem, which states 
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      2 3

0 1 2 3
x

e c I c x c x c x
       jB

j j jB B B  (16) 

This equation must hold when jB  is replaced by any of its eigenvalues, which are given by 

    and i   , where 
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Substituting these eigenvalues into Eq. (16) yields a system of 4 equations for the unknowns 

0 3, ,c c . The solution of these equations is 
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c x x
x

c x x
x

 

 


 


 


      

      

      


      


 (18) 

Substituting these formulas back into Eq. (16) and concatenating with the upper-left block yields 

 

 

 
 

 
 

   
   

 
 

       

     
   

 

2

2 3

0 1 2 3

3 2 2

3 0 1 2

2 32 2
2 3 0 1

3 2
22 2

1 2 3 0

1 0 0 0 0 0

1 0 0 0 0

0 0

0 0

0 0

0 0

j

j j

j

j j j

j j

j

j j
j

x A

x x
c xc c c

EI EI

x A xx x
c c c c

EI EI EI

x A c x A c c xc

x A
x A c x A c c c

EI

 

 

   

 
   

 
 
 
 
  

  
 
 

   
 

 
 
   
 
      
 

jF

 (19) 

Eq. (19) is the field transfer matrix of a beam section for relating the state vectors z  at 
different positions within a single beam segment. A use of this matrix for that purpose is 
seen in Eq. (5a). 

2.4 Point transfer matrix derivation 

The point transition matrix P  is now derived, which accounts for discontinuities between the 
uniform beam segments. Consider the free-body diagram of the lumped mass shown in Fig. 2. 
This mass is considered a point mass with mass jm  and rotary inertia jI , located at jx L . 
Since the mass is assumed to be infinitesimal in size, the forces and moments are evaluated at 

jx L   and jx L  , meaning approaching jx L  from the left and the right, respectively. 
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Fig. 3. Forces and moments on a lumped mass located at jx L . 

The slope of the beam is continuous across the lumped mass, hence 

   j jd L dx d L dx    . However, due to the rotation of the local beam coordinate 

system from one side of the lumped mass to the other, the mode shapes are not continuous, 

i.e. 

 
 
 

 
 

cos sin

sin cos

j jj j

j jj j

L L

L L

  

  

                   

 (20) 

Furthermore, due to the lumped inertia, the shear force, normal force, and bending moment 

are not continuous. A balance of forces and moments on the lumped mass, referring to Fig. 

3, gives 

                 2 2cos sin cos sinj j j j j j j j j j jN L N L V L m L m L                 (21) 

                 2 2sin cos sin cosj j j j j j j j j j jV L N L V L m L m L                   (22) 

      2 j

j j j

d L
M L I M L

dx





      (23) 

Assembling these equations together yields 

  

 
 
 

 
 
 
 

2 2

2

2 2

cos 0 sin 0 0 0

cos cos sin 0 0 sin

sin 0 cos 0 0 0

0 0 0 1 0 0

0 0 0 1 0

sin sin cos 0 0 cos

j
j j

j
j j j j j j

j j j

j

j
j

j j j j j j
j

j

L

N L m m

L

d L dx

I
M L

m m
V L

L

  

     
  




     

 
  
     
         

   
   

   
       


jP

z

 


 
 
 

 
 
 
 

j

j

j

j

j

j

j

L

N L

L

d L dx

M L

V L

L







 
 
  
  
 

 
 

 
 
  

z

 


 (24) 

y

x

jj Im ,

jLx 
 jLx  jLx

 jLM  jLM

 jLV
 jLV

j

 jLN

 jLN
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which provides a formula for the point transition matrix jP  of the jth lumped mass. This 

formula is valid when the lumped mass is at the tip of the structure, in which case 

      0j j jM L V L N L       in Eq. (24) (i.e. the free end condition), or if there is no 

lumped mass between two beam segments, a situation given as a case study below. In this 

latter case, 0j jm I   in Eq. (16). If, furthermore, there is no angle between beam segments, 

i.e. 0j  , then jP  reduces to the identity matrix, indicating that all of the states are 

continuous through the junction. 

3. Eigensolution using the system transfer matrix 

3.1 Natural frequencies 

As discussed in section 2.1, the state transition matrix  2 1,x xΦ  relates the states of the 

system between any points along the beam through Eq. (2). Depending on the locations of 

1x  and 2x , the transition matrix is, in general, expressible as a product of field and point 

transfer matrices, as illustrated by Eqs. (5a–b). The number of matrices in this product is 

equal to the number of beam segments and junctions between the two points. 

It should be noted, though, that at this point the natural frequency  is still unknown; thus, 

 2 1,x xΦ  cannot be evaluated between any two points in general. However, the boundary 

conditions at the ends of the structure provide locations where some of the states are 

known. In the presently studied cantilever (or “fixed-free”) configuration, the following 

states are known: 

      0 0 0 0
d

dx

     and       0n n nN L M L V L    (25) 

where n is the total number of beam segments. These boundary conditions signify a fixed 

condition at 0x   and a free condition at nx L . To relate the fixed and free ends, Eq. (4) is 

employed: 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

1
1

0

0

0

0

0

0

n

n

n
n

n j n j
n j

n

n

L

N L N

L
L L

d L dx d dx

M L M

V L V

 

 
     



   
   
   
     

     
     

   
   
     

 n-j 1 n-j 1P F

U


 (26) 

where U , the product of all of the point and field transfer matrices (a result of the 

semigroup property of Φ ), is called the system transfer matrix. This matrix is the state 

transition matrix from the fixed end to the free end, across all of the beam segments and 

junctions. As will be demonstrated, this is the matrix that is used in the eigensolution of the 

structure. 

Substituting Eq. (25) into Eq. (26) and examining the 2nd, 5th, and 6th equations of the 

resulting linear system reveals 
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 
 
 

2 2 2 5 2 6

5 2 5 5 5 6

6 2 6 5 6 6

0 0

0 0

0 0

, , ,

, , ,

, , ,

U U U N

U U U M

U U U M

    
          
        

 (27) 

where i, jU  is the i,j component of the system transfer matrix U . Solving the characteristic 
equation of the matrix appearing in Eq. (27) yields the natural frequencies   of the 
structure, and hence, the conditions for the existence of non-trivial solutions to Eq. (27). The 
resulting characteristic equation is shown to reduce to the standard eigenvalue formulas for 
cantilevered beams (with or without tip mass) in (Reissman et al., 2011). 

3.2 Mode shapes 

To compute the mode shapes, Eq. (4) is again revisited, this time evaluated between the 
fixed end and an arbitrary point along the structure: 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

0

0

0
,0

0

0

0

x

N x N

x
x

d x dx d dx

M x M

V x V

 

 
 

   
   
   
   

   
   
   
   
      

Φ  (28) 

The first equation in Eq. (28) is evaluated for the mode shape: 

 
             

          
3,2 3,5 3,6

1 23,2 3,5 3,6

,0 0 ,0 0 ,0 0

,0 ,0 ,0 0

x x N x M x V

x k k x x M



 

             

               

Φ Φ Φ

Φ Φ Φ
 (29) 

where the constants are computed according to the following conditions: 

case 5,2 0U  : 

 5,5
1

5,2

U
k

U
 , 5,6

2
5,2

U
k

U
 , and 6,2 5,5 6,5 5,2

6,6 5,2 6,2 5,6

U U U U

U U U U






 (30a) 

case 6,2 0U  : 

 6,5
1

6,2

U
k

U
 , 6,6

2
6,2

U
k

U
 , and 6,2 5,5 6,5 5,2

6,6 5,2 6,2 5,6

U U U U

U U U U






 (30b) 

case 5,2 0U   and 6,2 0U  : 

 1 0k  , 2 0k  , and 6,5

6,6

U

U
    (30c) 

In Eq. (29), the scaling factor  0M  is not retained: instead the mode shapes are scaled in 

order to satisfy the appropriate orthogonality conditions, as discussed in section 4.2. 
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4. Solution to electromechanical EOMs via modal analysis 

4.1 Calculation of base excitation contribution 

In this section, the EOMs are solved using a modal decoupling procedure. However, before 
this can be accomplished, the external forcing term  ,f x t  appearing in Eq. (10) must be 
evaluated. This term represents an applied transverse force/length along the beam 
segments. A common use for this term is pressure loads due to flowing media into which 
the structure is immersed. In the present scenario, this load is the apparent inertial loading 
due to the excitation of the base in the vertical direction. 

 

Fig. 4. Forces due to base excitation on a beam element (a) and on a lumped mass located at 

jx L (b). 

In Fig. 4, the forces due to the apparent inertial loads from the base excitation are shown for an 

arbitrary element of a beam segment and a lumped mass. Due to rotations at the lumped mass 

interfaces, the inertial loads are not strictly transverse or axial, but have components in both 

directions. The absolute orientation of each component determines how the base excitation 

affects it; this orientation is the sum of the relative angles between the joints between the base 

and the component. Only the normal force due to base excitation, denoted bN , is included 

here; the other forces and moments have already been accounted for in section 2.2. 

A balance of forces in the transverse and axial directions for the element shown in Fig. 4(a) 
gives 

      21

2
0

, cos
j

ij
i

d y t
f x t A

dt
 





 
    

 
  (31) 

 and 
     21

2
0

,
sin

j
b

ij
i

N x t d y t
A

x dt
 





 
     

  (32) 

respectively, where 0 0  . Eq. (32) can be integrated to get 

        21

1 2
0

sin
j

b j b j j ij
i

d y t
N L N L A l

dt
 






 
      

 
  (33) 

Similarly, a balance of forces in the transverse and axial directions for the lumped mass 
shown in Fig. 4(b) gives 

y

jm

j jb LN

 jb LN

f

f

dx

bN

dx
x

N
N b
b 




(a) (b) jLx 
  jA
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        
21

2
0

, cos sin
j

j i b j j j
i

d y t
f x t m N L x L

dt
  





  
          

  (34) 

 and      21

2
0

cos sin
j

b j b j j j i
i

d y t
N L N L m

dt
 





 
       

 
  (35) 

respectively. Combining Eqs. (31,34) gives 

 
            

   

2 1

12
1 0

, cos

sin

jn

j j j j ij
j i

b j j j

d y t
f x t A H x L H x L m x L

dt

N L x L

  

 




 

  
                

  

 
 (36) 

where 

  0b nN L    and 

        
2

1 1 1 121
0

sin cos
j

b j j j i b j jj
i

d y t
N L A l m N L

dt
     



            
  (37) 

which can be evaluated inductively. 

4.2 Modal decoupling 

The EOMs for a single beam segment have been derived in section 2.2 and subsequently 
used to develop the field transfer matrix for such a segment. Using the transfer matrix 
method, the natural frequencies and mode shapes have been calculated. Now, the time 
response is found by decoupling the partial differential equations into a system of ordinary 
differential equations, one for each mode. By concatenating Eq. (10-11) for each segment, the 
following EOMs, which apply over the entire structure, can be found: 

 

           

       

2 4
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n
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j
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j

w x t w x t
A EI H x L H x L

t x

d x L d x L
v t f x t

dx dx



 





              
       
  


 (38) 

        
1 1

, ,

R L

n n

j j
j jx L x L

w x t w x t
q t C v t

x x


  

     
   

   (39) 

where the external forcing due to base excitation can be evaluated using Eq. (36). 

To orthonormalize the mode shapes, Eq. (38) is considered when there are no external loads 

(including electrical), i.e.   0v t   and  , 0f x t  . Substituting the modal decomposition 

given by Eq. (1), and assuming a sinusoidal time response gives 
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                
4

2
1 14
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
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 

                         
   (40) 

for each term r in the modal expansion. Subsequently, Eq. (40) is multiplied by  s x  and 
integrated from 0x   to nx L . After integrating by parts and applying the boundary and 

intermediate conditions (i.e. across the lumped masses), the following orthogonality 

condition is derived: 
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where rs  is the Kronecker delta. If the mode shapes are scaled appropriately such that Eq. 
(41) is satisfied, then automatically 
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is satisfied, thus decoupling Eq. (38). Subsequently, the natural frequencies and mode shape 
functions derived from the TMM can be adopted into existing piezoelectric energy harvester 
models for evaluating continuous and discontinuous structures. 

4.3 Frequency response functions 

Once the EOMs are decoupled by mode, the frequency response functions (FRFs) of the 
structure can be obtained in a straightforward manner by substituting the modal expansions 
given by Eq. (1) into Eq. (38-39) and applying the orthogonality conditions of Eqs. (41-42). 
The decoupled forms of Eqs. (38-39) are given for the rth mode: 
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where Eq. (43) represents the mechanical equation, in which the modal short-circuit 

frequencies r are equal to the natural frequencies derived from the TMM. (Setting   0v t  , 
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i.e. shorting the terminals of the device, is equivalent to decoupling the electrical from the 

mechanical dynamics.) The modal electromechanical coupling is given by 
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and the modal influence coefficient of the distributed inertial force along the beam is 
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Note that the modal damping term   2 /r r rd t dt    has been added at this point, 

although the value of the modal damping ratio is usually determined experimentally. 

Eq. (44) represents the electrical dynamics equation where the terminals of the device are 

assumed to be placed across an external resistor lR . The net clamped, i.e. constant strain, 

capacitance of the piezoelectric material, appearing in Eq. (44), is defined as 

 0
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which in the parallel bimorph configuration is simply the sum of the capacitances of the 

beam segments. On the right-hand side of Eq. (44), the same r  appearing in Eq. (43) is 

used to couple the two modal EOMs. It should be noted that only under mass-normalized 

conditions, i.e. Eq. (41), are these two coupling coefficients equal. 

To evaluate the FRFs of the structure, a harmonic base excitation ( ) i ty t Ye   is assumed. 

Given that the eigensolutions are derived from Euler-Bernoulli beam theory (resulting in a 

linear PDE), and the piezoelectric constitutive equations are also linearized (see Eq. (8)), the 

resulting motion and voltage output are also harmonic at the base excitation frequency. 

Thus, the relative transverse motion at a point x  from the base is given by 
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where 1i   , and the voltage output is 
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Finally, the current output of the device can be found from     li t v t R  and the power 

from     2

lp t v t R    . 

www.intechopen.com



 
Advances in Piezoelectric Transducers 68

5. Case studies 

In order to demonstrate the use of the TMM for analysis of multi-segmented beam 

structures, a few simple examples are given. Fig. 5 depicts the two cases under 

consideration. Fig. 5(a) shows a bimorph beam with varying piezoelectric layer coverage 

starting from the base and extending to the point divx , the dividing line between the two 

segments. Note that the point transfer matrix between the two segments, given in Eq. (24), 

reduces to the identity matrix in this case. Fig. 5(b) shows a bimorph beam with varying 

center joint angle. The special case 1 0    corresponds to a standard cantilevered bimorph, 

whereas the case 1 90    corresponds to an L-shaped structure, previously studied by 

(Erturk et al., 2009). In both cases, the overall length of the structure is kept constant. The 

geometry and material properties of the device are listed in Table 1. 

Fig. 6 plots the variation in fundamental (short-circuit) natural frequency as divx  is varied 

between 0 and L , the overall length of the structure, and the layer thickness ratio (over the 

segment with piezoelectric coverage) is varied between 0.05p st t   and 3p st t  . These 

curves indicate that in each case the beam with full coverage has a higher natural frequency 

than the beam with no coverage, with agrees with the fact that the effective stiffness 

increases when the piezoelectric layers are added, i.e.    1 2
EI EI . Furthermore, this effect 

is exacerbated with larger layer thickness ratio. Somewhat surprisingly, the natural 

frequency has a maximum at a point of partial coverage; this maximum shifts towards 

divx L  as p st t  increases. This phenomenon can be explained by considering that the 

partial coverage makes the beam effectively shorter, since the bare substructure section does 

not contribute to the stiffness as significantly. Increasing the layer coverage past this 

maximum effectively lengthens the beam, thus decreasing its natural frequency. The reverse 

effect occurs as the layer coverage decreases further: the bare substructure region 

dominates, reducing the natural frequency. 

 
 

 
 

 
 

Fig. 5. (a) Layout of bimorph structure with partial piezoelectric layer coverage. (b) Layout 
of bimorph structure with a variable-angle bend at half its overall length. 
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Beam properties:

L  length 100 mm 

b  width 20 mm 

st  thickness of substructure 0.75 mm 

pt  thickness of PZT layer 0.5 mm 

s  density of substructure 8070 kg/m3 

p  density of PZT 7800 kg/m3 

11,sc  Young’s modulus of substructure 102 GPa 

11
Ec  Young’s modulus of PZT 66 GPa 

31e  piezoelectric constant -12.54 C/m2 

33
S  permittivity 15.93 nF/m 

Table 1. Geometry and material properties. 

 
 
 

 

 

Fig. 6. Variation in fundamental (short-circuit) natural frequency with respect to patch 
coverage and layer thickness ratio. 
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Fig. 7. Variation in coupling coefficient ratio with respect to patch coverage and layer 
thickness ratio. 

To quantify the effects on the transduction capabilities of these two designs, the 

dimensionless electromechanical coupling coefficient is employed. The device (i.e. entire 

structure) coupling coefficient for the rth mode is given by  2 2 2
0e r rk C   , a term that has 

been used to non-dimensionalize power in the literature, e.g. (Shu and Lien, 2006; Liao and 

Sodano, 2008; Wickenheiser and Garcia, 2010c). It has been shown by (Wickenheiser, 2011) 

that this term can be written in the form 

 2 2
e t M EIk k    (50) 

for single segment beams (with or without tip mass), where  2 2
31 11 33

E S
tk e c   is the 

piezoelectric material coupling coefficient, M  is a dimensionless term that depends on the 

distribution of inertia between the beam and tip mass, and EI  is a dimensionless term that 

depends on the effective stiffness of the beam. Although the simple decomposition of Eq. 

(50) is not proven for more general structures, it can be shown that the ratio 2 2
e tk k is 

constant for a specific geometry. 

In the present study, the ratio 2 2
e tk k  is plotted, isolating the effects of geometry on the 

electromechanical coupling of the device. In Fig. 7, the piezoelectric layers are extended out 

from the base to divx . As the coverage decreases to 0, 2 2 0e tk k   as expected. As it 

increases, there is a maximum before divx L , similar to Fig. 6. This indicates that the extra 

coverage at the end of the beam is not utilized efficiently, which is due to the relative lack of 

strain there. Furthermore, increasing the piezoelectric layer thickness does not result in 

increased coupling past a certain point; this phenomenon is explored in more detail in 

(Wickenheiser, 2011). Briefly, the increased thickness increases the stiffness more quickly 

than the dimensional coupling coefficient, resulting in decreased 2
ek . 
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Figs. 8-10 show the results of the center joint angle parameter study for the design depicted 

in Fig. 5(b). In this study, the center joint angle 1  is varied between 0 and 180 deg. Both 

beam segments are identical bimorphs. As with the previous case, increasing the 

piezoelectric layer thickness increases the bending stiffness and therefore the natural 

frequencies, as shown in Fig. 8. This plot also indicates that the fundamental frequency 

increases with center joint angle, which causes an effective shortening of the beam. Fig. 9 

shows the variation in the ratio of the first two natural frequencies 2 1  . First, these 

results indicate that this ratio is independent of the thickness ratio of the layers; this result is 

confirmed by (Wickenheiser, 2011), who shows that this ratio is only a function of the ratio 

of non-dimensional eigenvalues of the device. Moreover, as the device is folded back on 

itself, i.e. 1  increases, the first natural frequency increases while the second decreases, both 

converging to a common value. As mentioned by (Erturk et al., 2009), this convergence is 

useful for broadband energy harvesting from a range of excitation frequencies between 

these two natural frequencies. Furthermore, energy exchange between modes becomes 

possible when the natural frequencies are commensurable (Nayfeh and Mook, 1979), a 

useful mechanism for exciting a higher frequency mode from a lower frequency excitation. 

Finally, Fig. 10 indicates that the coupling coefficient is relatively insensitive to center join 

angle. This insensitivity is mainly due to the small impact on the strain at the root, where 

most of the energy is harvested, by the rotation of the relatively strain-free tip segment. 

 
 
 

 

 

Fig. 8. Variation in fundamental (short-circuit) natural frequency with respect to center joint 
angle and layer thickness ratio. 
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Fig. 9. Variation in ratio of first two natural frequencies with respect to center joint angle and 
layer thickness ratio. 

 

Fig. 10. Variation in coupling coefficient ratio with respect to center joint angle and layer 
thickness ratio. 

6. Conclusions 

This chapter presents an electromechanical modeling technique for computing the 
eigensolution and frequency transfer functions for segmented beams using the transfer 
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matrix method. This method allows for multiple discontinuities in the beam structure, for 
example partial layer coverage, discontinuities in cross section, angles between members, 
and multiple lumped masses along the length. The electromechanical equations of motion, 
including distributed inertial effects from the base excitation, are derived in general terms 
for various piezoelectric layering configurations. Transfer matrices are derived for each 
continuous segment and each discontinuity, and a system transfer function is described 
using the semigroup property of state transition matrices. 

This method is general enough to be effective at analyzing many configurations of 
piezoelectric structures without requiring a re-derivation starting from first principles. Axial 
and transverse dynamics are shown to be decoupled, leading to block diagonal transfer 
matrices. Furthermore, it is shown that the size of the eigenvalue problem does not grow 
with added complexity to the structure, unlike finite element methods. In this chapter, this 
method is applied to structures with partial piezoelectric layer coverage, taking into account 
the discontinuity in cross section at the end of the piezoelectric layers. Additionally, 
variations in center angle are discussed, including the special cases of L-shaped and reflex 
beams. The natural frequencies and electromechanical coupling coefficients are computed 
and discussed, displaying the usefulness and versatility of this technique in the design and 
analysis of complex structures. 
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