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1. Introduction 

Much of our understanding of the molecular basis of endocrinology has been the product of 

highly productive studies that have focused on specific molecules (e.g., hormones) and their 

specific immediate interacting partners. However, biomolecules are not isolated particles, 

but instead they are elements of highly integrated interaction networks, and specific 

interactions among them drive virtually all cellular functions and underlie phenotypic 

complexity and diversity. Many hormones, and their specific receptors and other interacting 

proteins, are known to be evolutionarily related, which raises intriguing questions 

concerning how specificity originated within these systems. 

Our previous studies have illustrated that biochemical entities are developmentally and 

evolutionarily fluid, with capabilities to be altered both in composition and behavior. Gene 

birth and death are widespread phenomena in genome evolution and accounts for the great 

diversity of gene families involved in endocrinology. While concordance of evolutionary 

histories both in pattern and process of hormones, receptors and interacting proteins might 

be expected for integrated systems, studies have shown that the evolutionary history of 

receptors need not mirror that of their ligands. Simultaneous emergence, or loss, of multiple 

interacting partners by multiple gene duplication or gene loss is unlikely in evolution. Gene 

duplication is essential in the development of complex endocrinology. It is creative in 

producing elements that allow evolutionary tinkering and thus plays a major role in gene 

co-option (i.e., recruitment for novel functions) facilitating the evolution of greater biological 

complexity. Alternatively, if an interacting partner is lost, the retained partner may either be 

subsequently lost or, more interestingly, serve as raw material in evolution and become 

recruited into a new interaction yielding a new function. Thus, a stepwise process of 

elaboration through mutation and optimization ensues, adapting genes (and their encoded 

proteins) into the physiology of an organism.  

Here we review several recent advances in our understanding of the evolution of hormone 
signalling pathways that illustrate the power of an evolutionary perspective. Among our 
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examples are the motilin and ghrelin signalling pathways where we have demonstrated that 
both the hormones (motilin and ghrelin) and their specific receptors descended from 
common ancestors through independent gene duplications. The motilin receptor originated 
well before the evolution of the hormone, and the motilin-motilin receptor specificity has 
arisen, as the result of ligand-receptor coevolution, after the hormone gene duplicated. 
Similarly, motilin and its specific receptor gene specifically lost on the rodent lineage 
followed a stepwise process. Once one of the interacting partners is lost, the retained partner 
may subsequently be lost, or serve as raw material in evolution and become recruited into a 
new function. 
Given the evolutionary dynamics of the genome and the plasticity of biomolecule networks, 
an evolutionary perspective is necessary to understand many aspects of the molecular basis 
of endocrinology. An integrated evolutionary comparative strategy helps enhance our 
understanding of the assemblage of the complex endocrine systems, provide important 
clues in interaction capacity exploration, and identify the main diversification events of the 
endocrine systems and potential cross-talk between them through evolutionary related 
interacting proteins. In addition, knowledge of how elements of the endocrine systems that 
underlie cellular functions are evolutionarily and developmentally interact, help not only in 
choosing appropriate species to examine function, but also provide genetic makers to probe 
the emergence of specific traits and characteristics, uncovering the genetic basis that 
underlie the morphological and behavior changes, and thus enhance our understanding of 
how organisms adapt to changing environments. 

2. The molecular basis of endocrine systems 

Endocrinology is the branch of biology that focuses on regulatory systems involving a group 
of specialized chemical substances called hormones that travel though blood. New 
developments in endocrinology have been dominated by progress in molecular genetics. 
Although these investigations often relate to rare single gene disorders, they have resulted 
in major advances in our understanding of the cellular mechanisms of hormone action 
(Cegla, Tan and Bloom 2010; Hodson et al. 2010; Peter and Vallo 1998). Most endocrinology 
studies are medically orientated, and thus anthropocentric, with little or no comparative or 
evolutionary perspective, and therefore provide few insights into our comprehension of the 
enigmatic origin and diversification of these systems (Markov et al. 2008).  
Much of our understanding of the molecular basis of endocrinology has come from highly 
productive studies that have focused on specific molecules and their immediate interacting 
partners, in fact, hormonal systems are a central part. Indeed the specificity of each hormone 
ligand and receptor pair is maintained in divergent species (Moyle et al. 1994), while 
biochemical entities are developmentally and evolutionarily fluid, with a much wider range 
of capabilities for alteration in both composition and behavior (Avise and Ayala 2007; 
Wilkins 2007). Thus intriguing questions concerning how the diversity and specificity occur 
within these systems remain to be answered.  
Genomes are documents of life history, and their structures continually change throughout 
evolution. Humans represent only a leaf on the tree of life. The anthropocentrism view of 
evolution, where humans are the pinnacle of gradually developed complexity, is a one-
sided and incorrect view (Markov et al. 2008). In the light of evolution, an approach that 
considers each taxa equally, adopts a comparative strategy, integrates information from 
diverse organisms and various scientific approaches, helps enhance our understanding of 
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the assemblage of the complex endocrine systems and the main events that have prompted 
their diversification, and yields better insight into their biological functions and potential 
cross-talk between them through evolutionary related interacting proteins.  

3. Evolutionary mechanisms for the diversification of endocrine systems 

Genomes are the entirety of organisms’ hereditary information, and encode all the 
information necessary to give rise to biomolecular products. The structure and content of 
genomes do not remain static, and continually change through evolutionary time. Major 
evolutionary mechanisms that have been instrumental in shaping the genome include gene 
duplication, gene loss and evolutionary shift.  

3.1 Gene duplication 

As genome size increases, gene content tends to increase, although at a disproportionately 

lower rate in eukaryotes compared to non-eukaryotes (Gregory 2005; Hou and Lin 2009; 

Konstantinidis and Tiedje 2004; Lynch and Conery 2003). The gene number increases with 

genome size, and morphological complexity is mostly generated by expanding the sizes of 

gene families rather than due to a growth of the number of unique gene types, hence 

multicellular organisms employ large sets of similar gene products while exhibiting 

extraordinary biodiversity. The elements of endocrine systems often group into families 

(e.g., hormones and their specific receptors), whose members have diverged to various 

extents in regulation and function (Danks et al. 2011; Hoffmann and Opazo 2011; Irwin 2010; 

Kim et al. 2011; Sundström, Dreborg and Larhammar 2010). 

Gene duplication is the most important mechanism for generating new genes and new 

biochemical processes and has facilitated the evolution of biodiversity and complexity (Li 

2006; Ohno 1970). The most obvious contribution is supplying the raw genetic material for 

the various evolutionary forces (e.g., mutation, genetic drift and natural selection) to act 

upon, which lead to specialized or new gene functions (Zhang 2003). Without gene 

duplication, the capability and plasticity of organisms in adapting to changing 

environments would be severely limited. Gene duplication can also contribute to species 

divergence (Ting et al. 2004) along with the origin of species-specific features (Zhang et al. 

2002). Duplication may involve part of gene, a single gene, part of a chromosome, an entire 

chromosome, or the whole genome. The first four scenarios are also known as regional 

duplications, because they do not result in a doubling of the entire genome. Hereinafter, the 

role of whole genome duplication and regional duplication will be discussed respectively. 

3.1.1 Whole genome duplication 

Genome duplication is often considered to be more important than regional duplication in 
evolution, as it allows for the duplication of the entire regulatory systems. Regional 
duplications, on the other hand, generally allow for part of a regulatory system to be 
duplicated, which may lead to imbalances that may disrupt normal function. The 
significance of whole genome duplication has been highlighted by the studies of 
invertebrate chordates and the base of vertebrate evolution (Garcia-Fernández and Holland 
1994), as well as fish diversification (Dehal and Boore 2005; Jaillon et al. 2004). Genome 
duplication facilitated the appearance and diversification of complex features, such as the 
endocrine system (Holland et al. 2008). The amphioxus genome exhibits considerable 
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synteny with the human genome, but lacks the whole-genome duplications characteristic of 
vertebrates (Dehal and Boore 2005). Holland et al. (2008) examined the existence of 
endocrine components based on the amphioxus genome, and reasoned that ancestral 
chordate only possess a basic set of endocrine functions. Hereby a fully functional endocrine 
system must have arisen after the divergence of cephalochordate, which was driven in all 
probability by subsequent genome duplications.  

3.1.2 Regional duplication 

While whole genome duplication events are not uncommon, nevertheless they only 

infrequently contribute to the evolution of well-developed bisexual organisms, as they likely 

disrupt the mechanism of sex determination and would be quickly eliminated (Li 1997). 

Regional duplications make up the gap, providing new genetic material for local elaboration 

and optimization, and fuel the evolution of lineage-specific variability (Li 1997; Ohno 1970). 

Whole genome duplications and small-scale duplications have very different consequences. 

Selective retention of different duplicates, and enrichment of signaling proteins and 

transcription factors, have been observed in yeast, plants, early vertebrate and fish following 

whole genome duplications (Conant 2010; Gout, Duret and Kahn 2009; Huminiecki and 

Heldin 2010; Kassahn et al. 2009; Manning and Scheeff 2010). This indicates that the 

individual duplication of signaling proteins and transcriptional regulators may be 

deleterious, since interactions between them are relatively transient and subtle, requiring a 

dosage balance from the whole genome duplication to survive. It is reasonably to expect 

that, simultaneous duplications of ligands and downstream signaling genes are required to 

allow the expansion of the complex endocrine systems. As it is, only part of the regulatory 

system has been duplicated in regional duplication, then, what are the evolutionary 

consequences of such an imbalanced outcome? 

3.2 Gene loss 

Studies on genome evolution have focused on the creation of new genes, including changes 
in regulatory mechanisms, and often neglect the role of selective gene loss in shaping these 
genomes. Gene loss or pseudogenization is a widespread phenomenon in genome evolution 
(Wang, Grus and Zhang 2006). The differential fixation of mutational gene loss after genome 
duplication illustrates the power of these types of events (Semyonov et al. 2008; van Hoek 
and Hogeweg 2009). Within gene families gene turnover, caused by differential gene gain 
and loss, leads to diverse patterns of gene distributions on different lineages, and 
contributes significantly to the evolution of biodiversity and may be the basis for 
reproductive isolation and speciation in geographically isolated populations (Gagneux and 
Varki 2001; Gout, Duret and Kahn 2009; Hahn, Demuth and Han 2007; Kettler et al. 2007; 
Powell et al. 2008). Sometimes, the ubiquitous, and near-stochastic, gene loss process can 
lead to the loss of single copy genes. By taking advantages of the availability of large 
amounts of vertebrate genomic information, it has been shown that many important human 
endocrine genes have been found to be missing or inactivated in other vertebrates, and vice 
versa (He et al. 2010; Irwin 2010; Pitel et al. 2010). In the same way, evolutionary 
comparisons among different taxa can help identify novel elements of endocrine systems 
that are not possessed by model animals. Endocrine entities are not isolated particles, but 
are elements of highly integrated interaction networks, and play their role through specific 
interactions (Carroll, Bridgham and Thornton 2008). As a random process, the simultaneous 
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loss of multiple interacting partners is unlikely, despite the intimate association between 
them. Gene loss, a dramatic genetic event, leads to the immediate loss of specific 
interactions, and probably affects interaction turnover as greatly as gene duplication. If a 
signaling protein is lost, then what are the evolutionary consequences for the retained 
partners?  

3.3 Evolutionary shift 

Genes are not only duplicated and lost, there are many genes which have been conserved and 
are unambiguous orthologues in a wide variety of taxonomic species, but evolutionary shifts 
occur frequently and orthologues genes can have distinct functions in different taxa 
(Macqueen et al. 2010; Zhou et al. 2008). Species adapt to diverse ecosystems and 
environments, and have differing genetic backgrounds. As selective constraints vary, it 
impacts the pattern of gene evolution, and changes in selection can yield changes in function 
(Irwin 2001). In some cases, positive selection appears to underlie the evolutionary shift (Wallis 
2001; Liu et al. 2001); while in others, inefficient purifying selection and increased genetic drift, 
associated with a reduction in effective population size, are the cause (Macqueen et al. 2010).  
The genetic network of the endocrine systems are developmentally and evolutionarily 
fictile, the elemental composition is prone to be altered via gene gain and loss, and its 
physiological properties frequently change through mutations in endocrine gene coding 
sequences and/or regulatory systems, and turnover of interacting biomolecules. Using a 
comparative strategy, integrating information on species phylogenetic relationships, gene 
evolutionary history, gene sequences and functional properties such as expression, 
interaction and physiological data, should enhance our understanding of how they evolved 
and yield better insight into their biological functions. The large amounts of accumulating 
genetic information is a powerful resource for addressing these questions. 

4. Case studies for evolutionary endocrinology: Lessons from the 
motilin/ghrelin hormone family and their receptors 

4.1 Gene duplication plays a major role in gene co-option 
4.1.1 Ghrelin and motilin  

Ghrelin and motilin represent a novel gastrointestinal hormone family in mammals (Inui 
2001). Not only are ghrelin and motilin structurally related, but, the sequence and overall 
structure of their precursor genes show considerable similarity (Fig. 1).  
Ghrelin is derived by posttranslational cleavage from its precursor preproghrelin (GHRL), 
and is a circulating peptide hormone that is secreted mainly by the stomach and acts upon 
the hypothalamus and hindbrain (Nakazato et al. 2001; Kojima and Kangawa 2005). Growth 
hormone secretagogue receptor (GHSR) is the specific receptor for ghrelin and a G protein-
coupled receptor, and upon stimulation releases growth hormone (GH) from the pituitary 
(Howard et al. 1996; Kojima et al. 1999; Sun, Ahmed and Smith 2003). Evidence from 
mammals suggests that ghrelin also acts to stimulate gastric motility, increase appetite and 
food intake, and induce a positive energy balance leading to body weight gain (Murray et al. 
2003; Peeters 2005). Prepromotilin (MLN) is posttranslationaly processed to yield a secreted 
peptide that is then cleaved at a paired basic amino acid site and gives rise to motilin 
(Poitras 1993). Motilin primarily acts to increase gastrointestinal motility by activating 
neural pathways or via the direct stimulation of smooth muscles. In human and dog it has 
been suggested that motilin has a physiological role in the regulation of a motor pattern 
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typical for the fasted state (Poitras 1993). It is of interest to note that motilin also has a weak 
GH-releasing effect (Samson et al. 1984). GPR38, an orphan G protein coupled receptor, was 
identified as the motilin receptor, MLNR, through a remarkable process of reverse 
pharmacology (Feighner et al 1999). GHSR and MLNR, whose sequences are very similar, 
are members of the β-group of rhodopsin-like receptor family (Holst et al. 2004). 
Despite the very close resemblance of the hormones and receptors, to date there is no 
evidence for any cross-reactivity between the ligands, which corresponds to the fact that the 
pharmacophore of the peptides are quite different (Peeters 2005). Octanoylation of serine3 is 
a unique and crucially important feature of ghrelin and studies have demonstrated that 
without the octanoyl group the potency of GHRL is dramatically decreased (Peeters 2005; 
Kaiya et al. 2001).  

4.1.2 Evolution of the motilin/ghrelin hormone gene family 
Genes for ghrelin have been cloned from a number of vertebrate species. Using bioinformatic 
methods, we have identified additional ghrelin gene sequences from diverse mammalian 
species and a frog Xenopus tropicalis (Table 1). Motilin genes have only been identified and 
characterized in mammals and birds, even after the use of bioinformatic approaches (Table 2). 
Ghrelin and motilin genes are both single copy genes in all of the species studied, and reside in 
conserved gene neighborhoods respectively, strongly supporting their orthology. The amino 
acid sequences of ghrelin are well conserved among species, especially in the N terminal 
region, and the same principle holds for motilin (Table 1-2). Interestingly, when the 
comparative genomic analysis was conducted between human and other vertebrates (chicken, 
X. tropicalis, medaka, tetraodon, and zebrafish) aimed at the GHRL and MLN neighborhood 
regions, it was revealed that homologs of the human GHRL and MLN flanking genes, which 
are located on different chromosomes in amniotes, were found to reside on the same 
chromosome near the GHRL locus in medaka, tetraodon, zebrafish, and X. tropicalis. This 
observation suggests that there was a duplication of the GHRL gene yielding MLN on the 
amniote lineage however there was no overlap in the genomic neighborhoods for GHRL and 
MLN. We could not identify any sequences similar to ghrelin and/or motilin genes in the 
recently released lamprey and deuterostome draft genomes. GHRL sequences from fish and 
amphibians posses only a single putative endoproteinase recognition site C-terminal to the 
signal peptidase cleavage site, thus can produce only a single posttranslational-processed 
peptide, ghrelin. In contrast, GHRL of amniotes (reptiles, birds, and mammals) possess three 
putative endoproteinase recognition sites, potentially giving rise to a second posttranslational-
processed peptide, a 24-residue ghrelin-associated peptide (Fig. 1). The second peptide has 
recently been identified to be obestatin in mammals (Zhang et al. 2005). All MLNs, which are 
only found in reptiles, birds and mammals, possess three putative endoproteinase recognition 
sites, thus potentially give rise to two posttranslational-processed peptides, motilin and a 17-
residue peptide in a position homologous to obestatin (Fig 1). Phylogenetic analysis revealed 
that bullfrog GHRL groups with amniote MLN rather than amnitote GHRL, although the 
bootstrap support for this conclusion is low (Fig. 2).  
Based on the distribution of GHRL and MLN genes in the species studied, comparative 
genomics analysis between human and other vertebrates, and endoproteinase cleavage sites 
distribution in GHRL/MLN genes, we surmise that MLN was generated by a gene 
duplication on the early amniote lineage as illustrated in figure 2 (He et al. 2011). Other 
potential evolutionary scenarios (e.g., duplication prior to the fish-tetrapod divergence) 
require a larger number of gene deletion events along with parallel gain or loss of 
endopeptidease cleavage sites, and thus are less parsimonious. 
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Species Ghrelin sequence Obestatin homolog sequence 

Homo sapiens 
GSSFLSPEHQRVQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Pan troglodytes 
GSSFLSPEHQRVQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Pongo pygmaeus 
GSSFLSPEHQRVQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Hylobates lar 
GSSFLSPEHQRVQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Macaca fuscata 
GSSFLSPEHQRAQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Papio hamadryas 
GSSFLSPEHQRAQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Saimiri sciureus 
GSSFLSPEHQRIQQRKESKKPPA
KLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Macaca mulatta 
GSSFLSPEHQRAQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGVQYQQHS
QALG 

Otolemur garnettii 
GSSFLSPDHQKIQQRKESKKPPA
KLQP 

FNSPLDVGIKLSGAQYQQHS
QALG 

Cebus paella 
GSSFLSPEHQRMQQRKESKKPP
AKLQS 

FNVPFDVGIKLSGVQYQQHS
QALG 

Aotus trivirgatus 
GSSFLSPEHQRIQQRKESKKPPA
KLQP 

FNAPFDVGIKLSGIQYQQHSQ
ALG 

Mesocricetus 
auratus 

GSSFLSPEHQKAQQRKESKKPQ
AKLQP 

FNAPFDVGIKLSGAQYQQHG
RALG 

Mus musculus 
GSSFLSPEHQKAQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGAQYQQHG
RALG 

Rattus norvegicus 
GSSFLSPEHQKAQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGAQYQQHG
RALG 

Meriones 
unguiculatus 

GSSFLSPEHQKTQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGAQYQQHG
RALG 

Oryctolagus 
cuniculus 

GSSFLSPEHQKAQQRKDAKKPP
ARLQP 

 

Felis catus 
GSSFLSPEHQKVQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGAQYHQHG
QALG 

Canis familiaris 
GSSFLSPEHQKLQQRKESKKPP
AKLQP 

FNAPFDVGIKLSGPQYHQHG
QALG 

Equus caballus 
GSSFLSPEHHKVQHRKESKKPP
AKLKP 

FNAPFDVGIKLSGAQYHQHS
QALG 

Rangifer tarandus 
GSSFLSPEHQKLQRKEPKKPSGR
LKP 

FNAPFDIGIKLSGAQSLQHGQ
TLG 

Capra hircus 
GSSFLSPEHQKLQRKEPKKPSGR
LKP 

FNAPFNIGIKLSGAQSLQHGQ
TLG 

Ovis aries 
GSSFLSPEHQKLQRKEPKKPSGR
LKP 

FNAPFNIGIKLSGAQSLQHGQ
TLG 

Bos taurus GSSFLSPEHQKLQRKEAKKPSG FNAPFNIGIKLAGAQSLQHG

www.intechopen.com



  
Contemporary Aspects of Endocrinology 

 

10

Species Ghrelin sequence Obestatin homolog sequence 

RLKP QTLG 

Bubalus bubalis 
GSSFLSPEHQKLQRKEPKKPSGR

LKP 

FNAPFNIGIKLSGAQSLQHGQ

TLG 

Ailuropoda 
melanoleuca 

GSSFLSPEHQKVQRKESKKPPA

KLQP 

FNAPFDVGIKLSGAQYQEHG

QALG 

Sus scrofa 
GSSFLSPEHQKVQQRKESKKPA

AKLKP 

FNAPCDVGIKLSGAQSDQHG

QPLG 

Kogia breviceps 
GSSFLSPEHQKLQRKEAKKPSG

RLKP 
 

Myotis lucifugus 
GSSFLSPEHQKAQQRKESKKPP

AKLQP 

FNAPFDVGIKLSGAQSHWHG

QALG 

Erinaceus 
europaeus 

GSSFLSPEHQKGQQRKEPKKPP

GKVQP 

FSAPFDVGLRLSGAQYEQHG

EALR 

Dasypus 
novemcinctus 

GSSFLSPEHQKTQLRKEFKKPAT

KLQP 

FNAPFDVGIKLSGAQYQQHG

RSLG 

Echinops telfairi 
GSSFLSPGHPKVQPQRKESKTPA

GKLQA 

FNVPFDIGIKVSVAQYGEHGR

ALD 

Loxodonta africana 
GSSFLSPKNQKLQQRKESKKPP

AKLQP 
 

Monodelphis 
domestica 

GSSFLSPEHPKTQRKETKKPSVK

LQP 

FNAPFDIGIKVAEAQYQQYG

HALE 

Gallus gallus 
GSSFLSPTYKNIQQQKDTRKPTA

RLH 

FNVPFEIGVKITEREYQEYGQ

ALE 

Meleagris 
gallopavo 

GSSFLSPAYKNIQQQKDTRKPT

ARLHP 

FNVPFEIGVKITEREYQEYGQ

ALE 

Anas 
platyrhynchos 

GSSFLSPEFKKIQQQNDPTKTTA

KIH 

FHVPFEIGVKITEEEYQEYGQ

TLE 

Anser sp. 
GSSFLSPEFKKIQQQNDPAKAT

AKIH 

FNVPFEIGVKITEEEYQEYGQ

TLE 

Dromaius 
novaehollandiae 

GSSFLSPDYKKIQQRKDPRKPTT

KLH 

FNVPFEIGVKITEEQYQEYGQ

MLE 

Trachemys scripta 
elegans 

GSSFLSPEYQNTQQRKDPKKHT

KLN 

LNVPFEIGVKITEDQYQEYGQ

VLE 

Rana catesbeiana 
GLTFLSPADMQKIAERQSQNKL

RHGNMN 
 

Rana esculenta 
GLTFLSPADMRKIAERQSQNKL

RHGNMN 
 

Danio rerio GTSFLSPTQKPQGRRPPRVG  

Carassius auratus GTSFLSPAQKPQGRRPPRMG  

Ictalurus punctatus 
GSSFLSPTQKPQNRGDRKPPRV

G 
 

Oreochromis 
mossambicus 

GSSFLSPSQKPQNKVKSSRIG  
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Species Ghrelin sequence Obestatin homolog sequence 

Oreochromis 
niloticus 

GSSFLSPSQKPQNKVKSSRIG  

Oncorhynchus 
mykiss 

GSSFLSPSQKPQGKGKPPRVG  

Acanthopagrus 
schlegelii 

GSSFLSPSQKPQNRGKSSRVG  

Anguilla japonica GSSFLSPSQRPQGKDKKPPRVG  

Table 1. Bioactive peptide sequences from diverse vertebrata ghrelin gene. 

 

Species Motilin sequence 

Homo sapiens FVPIFTYGELQRMQEKERNKGQ 

Pan troglodytes FVPIFTYGELQRMQEKERNKGQ 

Macaca mulatta FVPIFTYGELQRMQEKERSKGQ 

Cavia porcellus FVPIFTYSELRRTQEREQNKRL 

Oryctolagus cuniculus FVPIFTYSELQRMQERERNRGH 

Felis catus FVPIFTHSELQRIREKERNKGQ 

Canis familiaris FVPIFTHSELQKIREKERNKGQ 

Ovis aries FVPIFTYGEVQRMQEKERYKGQ 

Bos taurus FVPIFTYGEVRRMQEKERYKGQ 

Sus scrofa FVPSFTYGELQRMQEKERNKGQ 

Equus caballus FVPIFTYSELQRMQEKERNRGQ 

Myotis lucifugus FVPIFTHSELQRMQEKERNKEQ 

Dasypus novemcinctus FVPIFTYSELQRMQEKEWNKGQ 

Loxodonta africana FVPIFTYSEIRRMQERERNNGQ 

Monodelphis domestica FVPIFTYSDVQRMQEKERNKGQ 

Ornithorhynchus anatinus FIPIFTHSDVQRMQERERNKGQ 

Gallus gallus FVPFFTQSDIQKMQEKERNKGQ 

Table 2. Bioactive peptide sequences from diverse vertebrata motlin gene. 
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Fig. 1. Schematic representation of ghrelin and motilin preproproteins. The preproproteins 
of ghrelin and motilin are represented by boxes divided into protein domains, proportional 
to their length. The open and filled triangles indicate the locations of cleavage sites used by 
signal peptidase and proprotein convertase, respectively. The sequences of the putative 
endoproteinase cleavage sites of various vertebrate classes are shown bellow. Alternative 
processing sites in birds and bony fish are indicated, “↑” denotes intron position with intron 
phase shown beside the arrow. SP, signal peptide. “/”, lack of putative endoproteinase 
recognition sites. 
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Fig. 2. Schematic representation of the motilin/ghrelin gene family phylogenetic 
relationships. Bootstrap percentages are shown on interior branches. GHRL, preproghrelin. 
MLN, prepromotilin.  
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4.1.3 Evolution of ghrelin and motilin receptors 

Only a small number of Ghrelin and motilin receptor genes are known and most of these are 
from mammals, with ortholog from only two species of fish having previously being 
characterized (Palyha et al. 2000; Chan and Cheng 2004). Our bioinformatic searches of 
diverse vertebrate genomes resulted in the identification of a great number of potential 
receptors. The orthology of the different receptors was established using analysis of synteny 
of the genes. In combination with phylogenetic reconstruction, the monophyly of each 
receptor type was established, and no more than one copy of each type of receptor was 
identified in any of the studied species. GHSR and MLNR are more closely related to each 
other than they are to any other characterized receptor, and the gene duplication that 
generated them happened more than 450 million years ago, before the divergence of ray-
finned fish and tetrapods (He et al. 2011). Through comparative and evolutionary analyses, 
we found a new type of receptor in fish, which does not have an ortholog in any non-fish 
vertebrate. The function of this new receptor is unknown. The sequence of this new receptor 
has some peculiarities, such as possessing long extracellular loops 2 and 3, which are about 
100 residues longer than the analogous loops in GHSR and MLNR (He et al. 2011). Residues 
at both ends of these loops have been shown to be functionally important for hormone 
binding and action in homologous receptors; however, the function of these residues in the 
loops of these novel receptors is not clear (Matsuura, Dong and Miller 2002).  
Studies have shown that the GHSR orthologs in fish can be activated by growth hormone 
secretagogues (GHSs), while MLNR orthologs in fish failed to be activated by GHSs or 
mammalian motilin (Palyha et al. 2000). The identification of the ancient binding state of 
MLNR prior to the emergence of motilin has proven challenging, however it is reasonable to 
speculate that GHSR and MLNR experienced functional diversification shortly after their 
duplication, and the ancient MLNR did not have either ghrelin or motilin binding 
properties. Evolutionary studies suggest MLNR experienced an episode of rapid evolution 
on the branch leading to amniotes, which was driven by positive selection, and accumulated 
amino acid changes in ligand binding cleft. This time period of rapid evolution coincides 
with the date of the GHRL/ MLN gene duplication event, thus it is reasonable to speculate, 
that the burst of rapid evolution in MLNR was a consequence of coevolution with its new 
ligand, and that motilin binding specificity of MLNR only evolved as a result of ligand-
receptor coevolution after the motilin gene diverged from the ghrelin gene on the amniote 
lineage. In contrast, GHSR has evolved under a constant selective constraint throughout 
vertebrates, with the ghrelin/GHSR system being maintained and functionally conserved 
from fish to mammals (He et al. 2011). 

4.1.4 Gene duplication and gene co-option 

The motilin/ghrelin hormone and their receptors were produced by independent 
duplication events that occurred at different points in time. The discordance of the 
evolutionary histories for the hormones and receptors indicate that the intimate interacting 
partners of an endocrine system can be produced by individual duplications, the 
composition and functions of each part of the endocrine network do not remain static, and 
that parts of a system can be co-opted for novelties, and that these processes often involve 
gene duplication and subsequent divergence. Structural and evolutionary relatedness allows 
promiscuous interaction properties, which can serve as the starting point for 
accommodation. Divergence of function in different species is accomplished by 
hormone/receptor coevolution to improve binding affinity and/or specificity. A major role 
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for gene co-option, involving gene duplication and divergence, should be recognized that 
creates potential elements which selection can act upon within a biological network to 
evolve new functions (He et al. 2011; True and Carroll 2002). The growth of gene families 
allows for more flexible gene expression and/or the evolution of new biochemical 
specificities (Rubenstein 1990; Sharman and Holland 1996), thus facilitating the evolution of 
greater biological complexity (Duboule and Wilkins1998). 

4.2 Loss of the motilin and its specific receptor genes in rodents 

The evolution of motilin and its specific receptor in rodents provides an illustration of the 
consequences of gene loss. Motilin is a 22-amino acid peptide synthesized by endocrine cells 
of the duodeno-jejunal mucosa and has a profound stimulatory effect on gastrointestinal 
contractility (Poitras and Peeters 2008), indicating that motilin and its specific receptor serve 
as potent active prokinetic drug target candidates. However, the clinical development of 
potential therapies is limited as both the mouse and rat, the most frequently used laboratory 
animals, are natural knockouts for the motilin and its specific receptor, that is these animal 
lack these genes and functional targets (He et al. 2010). These observations raise a number of 
intriguing questions – how can these animals survive without motilin? How were the genes 
lost? Did any other endocrine system compensate? What does this mean for our 
understanding of the human hormones? While we can’t answer all of these questions, our 
studies revealed that the motilin receptor was pseudogenized specifically on the rodent 
lineage, while the motilin gene exhibited diverse evolutionary consequences in different 
rodent species (He et al. 2010). Once an interacting partner is lost, retained partners may be 
lost, as demonstrated by the independent loss of MLN in mice, rats and in the guinea pig, or 
serve as raw material in evolution, as suggested by the retention of MLN in the kangaroo 
rat. Genomic sequence information suggest, that in the the monophyletic Dipodomyinae 
subfamily, the MLN gene is intact and is under sustained evolutionary constraint, 
suggesting it has been recruited into a novel function, a function distinct from traditional 
motilin signaling (our unpublished observations). Intriguingly, studies have suggested that, 
after the break down of the MLN signaling pathway, the ghrelin signaling pathway was 
recruited to compensate for this loss in the rat (Dass et al. 2003; Depoortere et al. 2003). 
Given the ubiquity and its stochastic nature, the simultaneous loss of a hormone and its 
specific receptor is unlikely. As a dramatic genetic change, a gene loss leads to an immediate 
loss of specific interactions. The functional redundancy among gene family members could 
allow a compromise for the deleterious gene loss. Existing genes can be modified, or 
recruited, into new interactions that yield new functions through mutation and optimization 
(Jacob 1977; Khersonsky, Roodveldt and Tawfik 2006; Tokuriki and Tawfik 2009). Motilin is 
not a unique case. As similar events have occurred to leptin, an important adipose derived 
hormone (Brennan and Mantzoros 2006; Zhang et al. 1994), which does not exist in the 
chicken, and likely other birds, while a functional leptin receptor has conserved in these 
species (Horev et al. 2000; Ohkubo, Tanaka and Nakashima 2000; Pitel et al. 2010). It is 
possible that the lineage specific losses of motilin and leptin during evolution contributed to 
the evolution of novel metabolic regulatory mechanisms in these species.  

4.3 Evolutionary shifts in existing genes 

The proglucagon gene illustrates some of these issues. The vertebrate proglucagon gene 

encodes three glucagonlike sequences (glucagon, glucagon-like peptide-1 [GLP-1], and 

glucagon-like peptide-2 [GLP-2]) that play distinct roles in mammalian metabolic regulation 
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(Drucker 2001; Drucker 2002; Jiang and Zhang 2003; Kieffer and Habener 1999). Glucagon, 

produced by the A cells of the pancreatic islets, counteracts insulin’s effect on blood glucose 

level depression (Jiang and Zhang 2003). GLP-1 functions as an incretin hormone in 

mammals, potentiating insulin release, and thus regulating glucose metabolism (Drucker 

2001, 2002). In contrast, glucagon and GLP-1 have similar physiological functions in fish, 

and resemble that of mammalian glucagon (Duguay and Mommsen 1994; Plisetskaya and 

Mommsen 1996). The receptors for glucagon, GLP-1, and GLP-2 have emerged before the 

divergence of fish and mammals; however, the GLP-1 class of receptors has specifically been 

lost in fish, and accordingly the incretin action of GLP-1. A fish specific duplication 

produced a second glucagon receptor-like gene on the ancestral fish lineage. The new 

glucagon receptor-like gene shifted its binding specificity from glucagon to GLP-1 ensues, 

meanwhile maintained the ancestral downstream signaling. Thus through receptor loss and 

gain, existing hormone was recruited into new roles, and undoubtedly enabled evolutionary 

divergence (Irwin and Wong 2005).  

While ghrelin and its specific receptor (GHSR) genes has been maintained and functionally 
conserved from fish to mammals, there are some significant differences in the function of 
the ghrelin/GHSR system in birds compared to other vertebrates (Richards 2010). Some of 
the actions of ghrelin are conserved in birds (e.g., GH release), while others, such as the 
effect of ghrelin on food intake, are opposite to those found in mammals and other 
vertebrate species (Hiroyuki et al. 2007; Kaiya et al. 2009; Kaiya et al. 2008). Besides ghrelin, 
the ghrelin gene has the potential to encode another peptide hormone——obstatin (Zhang et 
al. 2005). We observed episodic evolution for both the ghrelin and motilin genes during 
primitive placental mammal evolution, the period when a functional obestatin hormone 
might have originated (He, Irwin and Zhang 2010). It is possible that some of the lineage-
specific physiological adaptations are due to the episodic evolution of the motilin and 
ghrelin genes.  
Gene duplication, pseudonization, and the gain and loss of interactions through mutations 
in existing genes are major evolutionary processes shaping the specific interaction among 
biomolecules (Berg, Lässig and Wagner 2004; Wagner 2001; Wagner 2003; He et al. 2010). 
Thus, once a mutation arises, a stepwise process of elaboration and optimization ensues, 
which gradually integrates and orders mutations into a coherent pattern. Given the 
evolutionary dynamics of the genome and the plasticity of biomolecular networks, an 
evolutionary perspective is necessary to understand many aspects of the molecular basis of 
endocrinology.   

5. Conclusion 

Biological evolution is the process of generating biodiversity. Different phenotype 

corresponds to a given genomic control. New genes, new interactions, and new biochemical 

processes are essential for the molecular basis of the evolution of biodiversity and 

complexity. Genetic networks of endocrine systems are developmentally and evolutionarily 

fictile, elemental compositions within them are prone to be altered through gene gain and 

loss, and its physiological properties frequently change with mutations in gene coding 

sequences and/or regulatory systems, and turnover of interacting biomolecules.  

The endocrine system consists of several glands in different parts of the body, which secrete 

hormones directly into the blood. Hormones usually have many different functions and 
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modes of action; one hormone may play roles in different target organs, and conversely, 

target organs are affected by more than one hormone. Although quite irregular, there are 

still some formulas that can be followed. Structural and evolutionary relatedness generate 

promiscuous interaction properties, and provide important clues to interaction capacity 

exploration. Tracing the origin and studying the molecular evolution of endocrine systems 

should help us comprehend the main events that have prompted the diversification of these 

systems. In the light of evolution, through a comparative strategy, integrating information 

from diverse species helps to enhance our understanding of the assemblage of complex 

endocrine systems, identifying novel components of endocrine systems, and potential cross-

talk between them through evolutionarily related interacting proteins. In addition, 

knowledge of how elements that underlie cellular functions are evolutionarily and 

developmentally interact, not only helps in choosing appropriate species to examine 

function, but also provide genetic makers to probe the evolution of specific traits and 

characteristics, disclosing the genetic basis that underlie the morphological and behavior 

changes, and thus helping enhance our understanding of how changing environments led to 

biochemical adjustments. 
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