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1. Introduction 

Nonlinear system control has been widely concern of the research. At present, the nonlinear 
system decoupling control and static feedback linearization that based on the theory of 
differential geometry brought the research getting rid of limitation for local linearization 
and small scale motion. However, differential geometry control must depend on precise 
mathematical model. As a matter of fact, the control system usually is with parameters 
uncertainties and output disturbance. Considering sliding mode variable structure control 
with good robust, which was not sensitive for parameters perturbation and external 
disturbance, the combination idea of nonlinear system and sliding mode controls was 
obtained by reference to the large number of documents. Thus, it not only can improve 
system robustness but solve the difficulties problem of nonlinear sliding mode surface 
structure. As known to all, traditional sliding mode had a defect that is chattering 
phenomenon. A plenty of research papers focus on elimination/avoidance chattering by 
using different methods. By comparing, the chapter is concerned with novel design method 
for high order sliding mode control, which can eliminate chattering fundamentally. 
Especially, the approach and realization of nonlinear system high order sliding mode 
control is presented. 
High order sliding mode technique is the latest study. This chapter from the theory analysis 
to the simulation and experiment deeply study high order sliding mode control principle 
and its applications. The arbitrary order sliding mode controller is employed, whose relative 
degree can equal any values instead of one.  
In addition, the control systems design is very often to differentiate the variables. Through 
the derivation of sliding mode, the expression of sliding mode differential value is obtained. 
At the same time, the differentiator for arbitrary sliding mode is given to avoiding complex 
numerical calculation. It not only remains the precision of variables differential value, but 
also obtains the robustness. 
Due to its inherent advantages, the permanent magnet synchronous motor (PMSM) 
deserves attention and is the most used drive in machine tool servos and modern speed 
control applications. For improving performance, this chapter will apply nonlinear high 
order sliding mode research achievement to MIMO permanent magnet synchronous motor. 
It changes the coupling nonlinear PMSM to single input single output (SISO) linear 
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subsystem control problem instead of near equilibrium point linearization. Thereby, the 
problem of nonlinear and coupling for PMSM has been solved. In addition, Uncertainty 
nonlinear robust control system has been well-received study of attention. Because the 
robust control theory is essentially at the expense of certain performance. This kind of 
robust control strategy often limits bandwidth of closed loop, so that system tracking 
performance and robustness will be decreased. So, sliding mode control is an effective 
approach for improving system robust. This chapter first proposed a robust high order 
sliding mode controller for PMSM. The system has good position servo tracking precision in 
spite of parameters uncertainties and external torque disturbance.  
On this basis, according to the principle of high order sliding mode, as well as differentiator, 

the state variables of PMSM are identified online firstly and successfully. The results of 

simulation indicate observe value has high precision when sliding mode variable and its 

differentials are convergent into zero. The same theory is used in external unknown torque 

disturbance estimation online for PMSM. As if, load torque will no longer be unknown 

disturbance. System performance can be improved greatly. It establishes theoretical 

foundation for the future applications. 

At the end of chapter, using advanced half-physical platform controller dSPACE to drive a 

PMSM, hardware experiment implement is structured completely. The experiment results 

illustrate that PMSM adopting precious feedback linearization decoupling and high order 

sliding mode controller can realize system servo tracking control with good dynamic and 

steady character. 

2. Robust high order sliding mode control 

As known to all, the sliding mode control with the strong robustness for the internal 
parameters and external disturbances. In addition, the appropriate sliding surface can be 
selected to reduce order for control system. However, due to the chattering phenomena of 
sliding mode control, the high frequency oscillation of control system brings challenge for 
the application of sliding mode control. On the other hand, the choice of sliding surface 
strictly requires system relative degree to equal to 1, which limits the choice of sliding 
surface.  
In order to solve the above problems, this chapter focuses on a new type of sliding mode 
control, that is, higher order sliding mode control. The technology not only retains advantage 
of strong robustness in the traditional sliding mode control, but also enables discontinuous 
items transmit into the first order or higher order sliding mode derivative to eliminate the 
chattering. Besides, the design of the controller no longer must require relative degree to be 1. 
Therefore, it is greatly simplified to design parameters of sliding mode surface. 

Emelyanov and others first time propose the concept of high order differentiation of sliding 

mode variable, but also provide a second order sliding mode twisting algorithm, and prove 

its convergence (Emelyanov et al., 1996). Another algorithm is super twisting, which can 

completely eliminate chattering (Emelyanov et al., 1990), although the relative degree of 

sliding mode variable is required to equal to 1. In the second order sliding mode control, 

Levant proved sliding mode accuracy is proportional to )( 2o  the square of the switching 

delay time. It has also become one of the merits of high order sliding mode control (Levant, 

1993). Since then, the high order sliding mode controller has been developed and applied 

rapidly. For example, Bartolini and others propose a second order sliding mode control 
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applied the sub-optimal algorithm (Bartolini et al., 1997, 1999). After the concept of high 

order sliding mode control was applied to bound operator in (Bartolini et al., 2000). Levant 

used high order sliding mode control in aircraft pitch control (Levant, 2000) as well as the 

exact robust differentiator (Levant, 1998). About the summary of high order sliding mode 

control is also described in the literature (Fridman & Levant, 2002). 

2.1 Review of high order sliding mode control 

In recent years, because arbitrary order sliding mode control technique not only retains the 
traditional sliding mode control simple structure with strong robustness, but also eliminates 
the chattering phenomenon in the traditional sliding mode, at the same time, gets rid of the 
constraints of system relative degree. Therefore theoretical research and engineering 
applications has caused widespread concern and has been constant development.  
Without losing generality, considering a state equation of single input nonlinear system as 

 
( ) ( )

( , )

x f x g x u

y s x t

 



 (1) 

Where, nx R  is system state variable, t  is time, y  is output, u  is control input. Here, ( )f x , 

( )g x  and ( )s x  are smooth functions. The control objective is making output function 0s  . 
Differentiate the output variables continuously, we can get every order derivative of s . 

According to the conception of system relative degree, there are two conditions. 

i. Relative degree 1r  , if and only if 0s u     

ii. Relative degree 2r  , if ( ) 0  ( 1,2, 1)is u i r     , and ( ) 0rs u    

In arbitrary order sliding mode control, its core idea is the discrete function acts on a higher 

order sliding mode surface, making 

 ( 1)( , ) ( , ) ( , ) ( , ) 0rs x t s x t s x t s x t       (2) 

Suppose the relative degree of system (1) equals to r , generally speaking, when the control 

input u  first time appears in r -order derivative of s , that is ( ) 0rds du  , then we take r -

order derivative of s  for the output of system (1), ( 1), , , rs s s s     can be obtained. They are 

continuous function for all the x  and t . However, corresponding discrete control law u  

acts on ( )rs . Selecting a new local coordinate, then 

 ( 1)
1 2( , , ) ( , , )r

ry y y y s s s      (3) 

So, the following expression can be obtained 

 ( ) ( , ) ( , ) ,     ( , ) 0rs a y t b y t u b y t    (4) 

Therefore, high order sliding mode control is transformed to stability of  r  order dynamic 
system (2), (4). Through the Lie derivative calculation, it is very easy to verify that 

 

( )1 rr
g f

r
f

b L L s ds du

a L s

 


 (5) 
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Suppose 1 2( , , )r r ny y y    , then 

 ( 1) ( 1)( , , , , , ) ( , , , , , )r rt s s s t s s s u          (6) 

Now, equation (3), (4) and (6) are transformed to Isidori-Brunowsky canonical form. The 

sliding mode equivalent control is ( , ) ( , )equ a y t b y t   (Utkin,1992). At present, the aim of 

control is to design a discrete feedback control ( , )u U x t , so that new system converge into 

origin on the r  order sliding mode surface within limited time. Therefore, in equation (4), 

both ( , )a y t  and ( , )b y t  are bounded function. There are positive constants mK , MK  and C  

so that  

 
0 ( , )

| ( , )|
m MK b y t K

a y t C

  


 (7) 

Theorem 1: (Levant, 1998, 2003) Suppose the relative degree of nonlinear system (1) to 

output function ( , )s x t  is r , and satisfying the condition (7), the arbitrary order sliding 

mode controller has following expression 

 ( 1)
1,sgn( ( , , , ))r

r ru s s s  
     (8) 

Where, 
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(| | | | | | )       1, , 1

(| | | | | |
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i r
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s

s N s

s N i r

N s

N s s s i r

N s s s


 

   



   

 




 

      



         

    





 /2 1/) p

 (9) 

Properly choose positive parameters 1 2 1, , r    , the system converge into origin on the 

r  order sliding mode surface within limited time. Finally, when 0s  , it achieves control 

object. The choice of positive parameters 1 2 1, , r     is not unique. Here, 4r   order 

sliding mode controller is given, which is also tested. 

 

1/2

3 2 1/6 2/3

6 4 3 1/12 4

3 1/6 3/4

1.   sgn( )

2.   sgn( | | sgn( ))

3.   sgn( 2(| | | | ) sgn( | | sgn( )))

4.   sgn{ 3[( ) ( ) | | ] sgn[ (( )

      | | ) sgn( 0.5| | sgn( ))]}

u s

u s s s

u s s s s s s

u s s s s s s

s s s s









 

  

    

     

 



  

    




 (10) 

From the above equation (10) we can also see that, when 1r  , the controller is traditional 

relay sliding mode control; when 2r  , in fact, the controller is super twisting algorithm of 

second order sliding mode. 
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To get the differentiation of a given signal is always essential in automatic control systems. 
We often need derivative a variable or function. So there are a lot of numerical algorithms 
for this issue. The same situation also appears in the design of high order sliding mode 
controller (10) that needs to calculate the derivative values of sliding mode variable. In order 
to be able to accurately calculate, at the same time simplifying the algorithm, this chapter 
directly uses own advantages of high order sliding mode control due to high accuracy and 
robustness. We can design a high order sliding mode differentiator used to calculate the 
numerical derivative of the variables. 
Presentation above in the previous has been explained in detail the principles of high order 
sliding mode control and sliding mode controller design method. This part focuses on how 
to take use of high order sliding mode technique to solve the differentiation of a given signal 
or variable function. And their simulation results are verified 

Suppose given signal is ( )f t , now set a dynamic system as 

 x u  (11) 

The control object is to make the variable x  follow given signal ( )f t , that is 

 ( )x f t  (12) 

Therefore, sliding mode surface is selected as 

 ( )s x f t   (13) 

At this moment, according to the principle of sliding mode control, a proper controller is 

designed. When the system enter into sliding mode, ( ) 0s x f t   . Derivative of sliding 

mode surface (13), 

 ( ) ( )s x f t u f t       (14) 

Because control input u  first time appears in the derivative of sliding mode surface s , the 

relative degree of system is 1r  . It satisfies the requirement about relative degree of second 

order sliding mode. So the super twisting algorithm (Fridman & Levant, 2002) is adopted. 
Thus, 

 
1/2

1

1

| ( )| sgn( ( ))

 sgn( ( ))

u x f t x f t u

u x f t




    
  

 (15) 

Where, 0  , 0   are positive constant. Definite a function as ( , , ) | ( )|C t    , C  is 

Lipschitz constant about derivative of ( )f x . ( ( ), ( ))t t   is the solution of equation of (16), 

the initial value are (0) 0  , (0) 1   

 

1/2

1/2
2

1/2
2

| |

1
( ),     | | 0

1
( ),     | | 0

C

C







    

       
     





 (16) 
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Theorem 2: (Levant, 1998) Let 0C   , 0  , function ( , , ) 1C   . Then, provided 

( )f t  has a derivative with Lipschitz’s constant C , the equality ( )u f t   is fulfilled 

identically after finite time transient process. And the smaller value of  , faster 

convergence; If ( , , ) 1C   , control input u  will not converge into ( )f t . Observer 

parameters should meet the following sufficient condition for convergence of the second-

order sliding mode control, 

 2 4

C

C
C

C











 (17) 

According to the principle of second order sliding mode, after a finite time, the system will 
converge into the origin, that is, 

 ( , ) ( , ) 0s x t s x t   (18) 

Then,  

 ( )u f t   (19) 

Now, observer input u  is the estimation of derivative of given signal ( )f t . Using a sliding 

mode controller achieve differentiation of variable function. 

Let input signal be presented in the form 0( ) ( ) ( )f t f t n t  , where 0( )f t  is a differentiable 

base signal, 0( )f t  has a derivative with Lipschitz’s constant 0C  , and ( )n t  is a noise, 

| ( )|n t  . Then, there exists such a constant 0b   depend on 2( ) /C   and 2( ) /C   

that after a finite time, the inequality 1/2
0| ( ) ( )|u t f t b    holds. (Levant, 1998) 

Through the first order sliding mode differentiator description of the working principle, it 
will naturally think, whether can design a sliding mode differentiator to obtain the arbitrary 
order derivative of given signal. Well, the design of high order sliding mode controller (10) 
needs to know all sliding mode variables and their corresponding differentiation.  
Theorem 3: Design an arbitrary order sliding mode differentiator, which can be used to 
estimate the derivative value of sliding mode variables, so as to achieve a simplified 
numerical differential purposes as following. 

 

0 0

/( 1)
0 0 0 0 1

1 1

( 1)/
1 1 1 0 1 0 2

1 1

1/2
1 1 1 2 1 2

1

| ( )| sgn( ( )) ,

| | sgn( ) ,

| | sgn( ) ,

sgn( )

n n

n n

n n

n n n n n n n

n n n n

z v

v z f t z f t z

z v

v z v z v z

z v

v z v z v z

z z v












 

     





    


    



    
  










 (20) 

The same with first order sliding mode differentiator, suppose given signal is ( )f t , 

[0, )t  . It has been known that the n  order derivative of ( )f t  has Lipschitz constant, 
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recorded as 0L  . Now, the object of sliding mode differentiator is estimating the value of 
( )( ), ( ), , ( )nf t f t f t    in real time. 

Arbitrary order sliding mode differentiator has the following recursive form as equation 
(20).  

It can be verified, When 1n  , it is first order differentiator. Suppose 0( )f t  is basic value of 

given signal ( )f t , ( )t  is uncertain part, but bounded, satisfying | ( )|t  , then 

0( ) ( ) ( )f t f t t  . 

Theorem 4: (Levant, 2003) If properly choose parameter (0 )i i n   , the following 

equalities are true in the absence of input noise after a finite time of a transient process. 

 
0 0

( )
0

( )

( ),     1, ,i
i i

z f t

z v f t i n



   
 (21) 

The theorem 4 illustrates that arbitrary order sliding mode differentiator can use 

differentiation (0 )iz i n   to estimate any order derivative of input function ( )f t  online 

within limited time. 

Theorem 5: (Levant, 2003) Let the input noise satisfy the inequality 0( ) | ( ) ( )|t f t f t    . 

Then the following inequality are established in finite time for some positive constants i , 

i  depending exclusively on the parameters of the differentiator. 

 
( ) ( 1)/( 1)
0

( 1) ( )/( 1)
0

| ( )|     0, ,

| ( )|      0, , 1

i n i n
i i

i n i n
i i

z f t i n

v f t i n

 

 

  

  

  

   




 (22) 

By Theorem 5, we can see that the arbitrary order sliding mode differentiator has 
robustness. 
The arbitrary order sliding mode differentiator can accurately estimate any order derivative 
of a given input. If this differentiator can be used in high order sliding mode controller (10), 
any order derivative of sliding mode variable s  can be accurately estimated avoiding the 

complicated calculation, which greatly simplifies the controller design. Adopting the 

differentiator, consider ( )s t  in high order sliding mode controller as given input for 

differentiator. Then the output of differentiator (0 )iz i n   can substitute any order 

derivative of ( )s t , that is 

 
0

( )     1,i
i

z s

z s i n



  
 (23) 

The sliding mode controller (8) can be rewritten by 

 1, 0 1 ( 1)sgn( ( , , , ))r r ru z z z       (24) 

The expression from this controller can also be clearly seen, with high order sliding mode 
differentiator, the differentiation of arbitrary order sliding mode variable will not be 
difficult to solve, which makes the high order sliding mode controller design has been 
simplified greatly. 
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2.2 Applications for permanent magnet synchronous motor 

Permanent magnet synchronous motors (PMSM) are receiving increased attention for 
electric drive applications due to their high power density, large torque to inertia ratio and 
high efficiency over other kinds of motors (Glumineau et al, 1993; Ziribi et al, 2001; Caravani 
et al, 1998).  
But the dynamic model of a PMSM is highly nonlinear because of the coupling between the 
motor speed and the electrical quantities, such as the d, q axis currents. In last years, many 
different control algorithms have been used to improve the performance of the magnet 
motor. For example, as the dynamic model of the machine is nonlinear, a natural approach 
is the exact feedback linearization control method, by which the original nonlinear model 
can be transformed into a linear model through proper coordinate transformation. 
However, in general, the dynamics of the synchronous motors may not be fully known, 
since some of parameters appearing in the equations will vary. For instance, the resistance 
and inductance will be changed when the temperature alters. As a consequence, 
nonlinearities can only be partially cancelled by the feedback linearization technique, and 
parameters uncertainties act on the equations of the motion. Then an important aim of the 
control design is to develop a robust controller which ensures good dynamic performances 
in spite of parameters uncertainties and perturbation.  
The sliding mode control is known to be a robust approach to solve the control problems of 
nonlinear systems. Robustness properties against various kinds of uncertainties such as 
parameter perturbations and external disturbances can be guaranteed. However, this control 
strategy has a main drawback: the well known chattering phenomenon. In order to reduce 
the chattering, the sign function can be replaced by a smooth approximation. However, this 
technique induces deterioration in accuracy and robustness. In last decade, another 
approach called higher order sliding mode (HOSM) has been proposed and developed. It is 
the generalization of classical sliding mode control and can be applied to control systems 
with arbitrary relative degree r respecting to the considered output. In HOSM control, the 
main objective is to obtain a finite time convergence in the non empty manifold 

( 1){ | 0}rS x X s s s s             by acting discontinuously on r order derivatives of the 

sliding variable s. Advantageous properties of HOSM are: the chattering effect is eliminated, 
higher order precision is provided whereas all the qualities of standard sliding mode are 
kept, and control law is not limited by relative degree of the output. 
The common analysis of permanent magnet synchronous motor is d-q axis mathematical 
model. It can be used to analyze not only the permanent magnet synchronous motor steady 
state operating characteristics, but also can be used to analyze the transient performance 
motor. In order to establish sinusoidal PMSM d-q axis mathematical model, firstly assume: 
i. Motor core saturation neglected; 
ii. Excluding the eddy current and magnetic hysteresis loss of motor; 
iii. The motor current is symmetrical three phase sine wave current. 
Thereby, the following voltage, flux linkage, electromagnetic torque and mechanical motion 
equations can be obtained, where all the values in equations are transient. 
The voltage equation: 

 

d
d q d

q
q d q

d
u Ri

dt
d

u Ri
dt







  

  

  (25) 
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The flux linkage equation: 

 
d d d f

q q q

L i

L i

 



 


  (26) 

The electromagnetic torque equation: 

 ( ) [( ) ]em d q q d d q d q f qT P i i P L L i i i        (27) 

The motor motion equation: 

 
em l

d
J T T B

dt


      (28) 

Where: du , qu  are d-q axis stator voltage; di , qi  are d-q axis stator current; dL , qL  are d-q 

axis stator inductance, as d qL L , motor is non-salient pole; as d qL L , motor is salient pole; 

d , q  are d-q axis stator flux linkage; f  is magnetic potential generated by permanent 

magnet rotor;   is motor’s electrical angular velocity; R  is stator phase resistance; P  is 

number of motor pole pairs; emT  is electromagnetic torque; lT  is load torque;   is motor’s 

mechanical angular velocity, with P  ; J  is total inertia of rotor and load; B  is viscous 

friction coefficient. 
Set of equations (25), (26), (27) and (28), we can get the state equation expression of PMSM 
as following. 

 

[( ) ]

1

1

l
d q d f q

qd
d q d

d d d

q f d
d q q

q q q q
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  (29) 

Suppose e  is the electrical angle between rotor axis and stator A  phase axis,   is 

mechanical angular position of motor, with eP  , and following equality is set up. 

 0dt      (30) 

Where, 0  is rotor initial angular position. Considering position control, equation (29) can 

be rewritten by 
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 (31) 
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From the equation (31) we can see that PMSM is a multi-variable, coupling, nonlinear time 

varying systems. In addition, the variables in d-q axis can be changed to three phase abc  

axis by coordinate transformation. 

2.2.1 Robust control for PMSM 

This section will use the high order sliding mode control algorithm with differentiator, in 
spite of system parameter uncertainties, external disturbances and other factors, to design a 
robust controller for nonlinear multi-input multi-output permanent magnet synchronous 
motor. The advantage of this controller is the elimination of the chattering in standard 
sliding mode. At the same time, it is still with precision and robustness of the standard 
sliding mode control. And its control law no longer subjects to relative degree constraints. 

Firstly, let x  denotes the motor state variable 1 2 3 4[ , , , ] [ , , , ]T T
d qx x x x x i i   , and control 

input 1 2[ , ] [ , ]T T
d qu u u u u  . The parameters R , dL , qL  and B  are considered as uncertain 

parameters, such as R  will change with the temperature rise of the synchronous motor. 

Therefore, use 0R , 0dL , 0qL  and 0B  to express their nominal value part of R , dL , qL  and 

B  respectively.  
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  (32) 

In order to facilitate the calculation, the coefficient (1 10)ik i   is used to plan these 

variable expressions, Where, 0 (1 10)ik i   is the nominal value of the concerned parameter, 

ik  is the uncertainty on the concerned parameter such that 0 0| | | |i i ik k k   , with 0ik  a 

known positive bound. The state variable 4x R , such that | | (2 4)i iMAXx x i   , 2MAXx  is 

the maximum values of the angular velocity, 3MAXx  and 4MAXx  are the maximum values of 

the current di  and qi  respectively. And control input 2u R  such that 

| | ,(1 2)i iMAXu u i   . Where, 1MAXu  and 2MAXu  are the maximum values of the voltage 

input dv  and qv  respectively. 
Then the state space model of the synchronous motor can be changed as following nonlinear 
system. 
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  (33) 
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The aim is to design an appropriate control which guarantees robust performance in 

presence of parameters and load variations. The control objective is double aspect. First, the 

rotor angular position 1x   must track a reference trajectory angular position 1refx . 

Second, the nonlinear electromagnetic torque must be linearized to avoid reluctance effects 

and torque ripple. This objective is equivalent to constrain 3 dx i  to track a constant direct 

current reference 3 0refx  . 

As we known that PMSM is a multi-input multi-output nonlinear dynamic system. It is 

assumed that the position and current are available for measurement. A first sliding variable 

s  for the tracking of direct current 3x  towards its equilibrium point 3refx  f is defined from 

the direct current error. So, the first sliding mode variable is 

 1 1 3 3( ) refs h x x x    (34) 

Derivative of 1s , we can see that the relative degree of sliding mode variable 1s  equals 1, 

that is 

 
1 3 3

4 3 5 2 4 6 1 3

ref

ref

s x x

k x k x x k u x

 

   

  

  (35) 

To track the angular position 1x  , another sliding manifold is proposed so that the error 

dynamics follows a desired third order dynamic. Denoting 1refx  the desired trajectory, 

following form can be obtained. 

 2 2 1 1( ) refs h x x x    (36) 

Considering load torque as external disturbance, derivative of 2s  continuously until control 

input appears. 
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   




 (37) 

The control input u  appears in the 3 order derivative of 2s , so the relative degree of 2s  

equals 3. Considering sliding mode variable 1 2[ , ]Ts s s    as a new dynamci system, the space 

state express can be writtern by 

 1 1 11 1

2 2 21 22 2

0s A B u

s A B B u

       
        

       


  (38) 

Where, 

 1 4 3 5 2 4 10 1:A k x k x x A A      

2 1 3 2 7 2 8 2 3 9 4 3 1 3 2 4 3 2 1 4 3 3 5 2 4 1 20 2( )( ) [( ) ] ( ) :refA k x k k x k x x k x k k x k x k x k x k x k x x x A A              
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 11 6 110 11:B k B B     

         21 1 6 4 210 21:B k k x B B     

                     22 1 3 2 10 220 22( ) :B k x k k B B      

10A , 20A , 110B , 210B  and 220B  are the known nominal expressions whereas the expressions 

of 1A , 2A , 11B , 21B  and 22B  contain all the uncertainties due to parameters and load 

torque variations. 

Next, controller should be designed so that sliding mode variable 1s  achieves to zero in 

finite time. Another sliding mode variable 2s  and its first and second derivative likewise 

achieve to zero in finite time. When the sliding mode happens, then 

 1 1

2 2 2 2

{ | ( , ) 0}

{ | ( , ) ( , ) ( , ) 0}

S x X s x t

S x X s x t s x t s x t

  
       (39) 

The control problem is equivalent to the finite time stabilization of the following MIMO 
system. 
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s u
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s u

   
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Where,  
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 (42) 

From the equation (37), the outputs of this MIMO system are coupled since 2s  is affected by 

1u  and 2u . So an input-output feedback linearization technique can be used, here w  is new 

control input. 

 1
0 0[ ]u B A w     (43) 

Now, if considering influence of external disturbance and parameter uncertainties, equation 
(40) can be rewritten by 
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Evolution and ordinate, then 
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Where, 
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In the new dynamic system with 1 2[ , ]Tw w w , it leads to 1s  equals integrator of 1w  and 2s  

equals three time integrators of 2w , if the part of uncertainties 0A   and 0B  . Then 

1w  and 2w  are designed to stabilize in this new system.  

In fact, the term 1
0 0B A  of (43) is the so-called equivalent control in the sliding mode 

context. In this new system, due to state variable (2 4)ix x  , there exist three positive 

constants 1C , 2C , 11mK , 22mK , 11MK , 22MK  and 21K , so that 

 
1 1 11 11 11

2 2 22 22 22

21 21
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m M

m M
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B K

   

   



 (46) 

Then, owing to the relative degree of 1s  equals 1, the first order sliding mode algorithm 

previously presented with control law 

 1 1 1sgn( )w s   (47) 

Where 1  is positive constant. In the actual system, due to all the state variables have the 

bound, selecting parameter 1  properly to satisfy convergence. For the motor angular 

position control, a 3 order sliding mode control law is used. In this case, only a single scalar 

parameter 2  is to be adjusted. Actually, the control input 2w  can be chosen as following. 

 3 2 1/6 2/3
2 2 2 2 2 2 2 2sgn( 2(| | | | ) sgn( | | sgn( )))w s s s s s s        (48) 

According to the principle of sliding mode differentiator, the arbitrary order derivative of 

2s  can be estimated by the output of differentiator 0z , 1z  and 2z . 
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Then, substituting 0z , 1z  and 2z  for 2s , 2s  and 2s  respectively in equation (48), that is 

 3 2 1/6 2/3
2 2 2 1 0 1 0 0sgn( 2(| | | | ) sgn( | | sgn( )))w z z z z z z      (50) 

The figure 1 is the block graph of control system. The first sliding mode variable 1s  is given 

by the error between direct axis current reference and feedback. And the second variable 2s  

is identified by the error between the motor reference position and actual feedback. 

According to the Theorem 4 after finite time, 0z , 1z  and 2z  can be used to estimate 2s , 2s  

and 2s . In system, the state variable speed of motor 2w  is obtained by differentiator of 

angle position signal  . Finally, the nonlinear dynamic system must be linearized by input-

output feedback linearization, then the control input 1u  and 2u  are used to drive the 

synchronous motor. 
 

drefi

ref
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2u
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1z
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qi

di

][ 0

1

0 wABu  
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  1



 

Fig. 1. The block graph of dynamic system structure. 

In the simulation, The PMSM is a DutymAx 95DSC060300 (Leroy Somer Co.) drive. Two 

sensors give measurements of phase currents, a optical encoder is used to measure the 

position of the motor. The parameters of synchronous motor are 3P  , 3 3.R   , 

0 027.dL H , 0 0034.qL H , 0 0034.B N m s   , 0 341.f Wb  , 20 00037.J kg m  . A phase 

current of the maximum accepted value is 6 0. A , the load torque maximum value is 6N m , 

and angular velocity is rpm3000 .To achieve the efficiency of controller, the parameter in (47) 

and (50) are chosen by 51  ,  33002  . In the differentiator, the coefficient of (49) are 

selected by 1500  , 1601  , 4002   in order to allow the convergence of the 

differentiator. The system sampling frequency is Hz8000 . To show the system robustness of 

the controller, consider permanent magnet synchronous motor parameters uncertainties 

(with RR %50 , with dd LL %250   and 
qq
LL %25

0
  and with B%20 ).  

The trajectory of motor angular position reference and feedback are shown in figure 2 above 
in spit of PMSM parameters uncertainty. From this figure, we can see that the servo system 
track trajectory has good performance. The precision can achieve 10-3. In addition, using 
high order sliding mode control, the chattering is eliminated in lower sliding mode surface 
so that the track trajectory becomes smoother. 
Figure 2 below shows position tracking error, which does not exceed 0.09 rad. It means that 
the controller has high robust capability versus the parameters variations. 

The figure 3 shows the curve of input du  and 
q
u  for PMSM using the high order sliding 

mode observer.  
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Fig. 2. Reference angle positon and actual angle position. 
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Fig. 3. The curve of input du  and qu . 
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Fig. 4. Four quadrant run and quadrature/direct axis currents. 
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Fig. 5. Sliding mode variables 2s , 2s  and 2s . 
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The figure 4 is the speed and d-q axis current of synchronous motor. The motor in the four-

quadrant operation, with acceleration, deceleration, has good dynamic performance. In this 

figure, direct axis current di  is very near reference 0drefi  . 

The figure 5 shows that sliding mode variable 2s  converge into origin in three dimensional 

surface within limited time. 
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Fig. 6. Tracking error of motor with the load torque disturbance. 

The Figure 6 shows the controller is strong robustness versus the load torque variations. The 
error of angular position does not exceed 0.1 rad even though the load perturbation. 
To sum up, this section takes the multiple-input multiple-output nonlinear permanent 

magnet synchronous motor as control object, and designs a robust high order sliding mode 

controller with differentiator, through the state feedback linearization to decouple the 

system. The simulation results show that, despite the existence of parameter uncertainties 

and external disturbances, the system still has a better dynamic performance and 

robustness, which is due to higher order sliding mode control converge within limited time. 

Comparing with the traditional sliding mode control, high order sliding mode control 

eliminates the chattering phenomenon. And the better test results prove the feasibility of the 

theory. 

2.2.2 States estimation 

The parameters and state estimation of permanent magnet synchronous motor has been 
more concerned in motor control. As the motor itself is a typical nonlinear, multivariable 
system with strong coupling, there are a lot algorithms to improve the motor control 
performance in recent years. Earlier off-line estimation of the static dynamic system can not 
satisfy the control requirements; the use of extended Kalman filter (EKF) usually have a 
group of high order nonlinear equations, which is not conducive to the calculation (Yan, 
2006), and its stability is also a local stable; In least squares procedure, the matrix forgotten 
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factor (Poznyak et al, 1999; Poznyak, 1999) is used to solve non-static parameter 
identification; as a result of sliding mode control with strong robustness and global 
convergence, In recent years, sliding mode observer (Floret-Pontet, 2001; Koshkouei, 2002) 
has been used for dynamic system state and parameter estimation, but the observer 
feedback gain is usually not easy to choose. 
With the development of nonlinear theory, in order to enhance the performance of 
permanent magnet synchronous motor, many advanced control strategies have been 
proposed and used in motor control, which requires the state of motor can be measured, 
such as mechanical angular position, rotational speed, the electrical current and so on. 
Hence mechanical, electromagnetic or photoelectric sensor are needed, as  well known to all, 
the sensors have many other shortcomings such as drift, friction, high costs, as well as 
electromagnetic interference caused by additional conductors. Therefore, the control system 
should be as possible as release the use of sensors to ensure the reliability and stability, 
which requires the system observer to precisely estimate the value of the state. 
The high order sliding mode control is widely used in last decade, which take high order 

derivetives of sliding mode variables to substitute original discrete control, so that the 

chattering disappears in the high order differentiation. This section uses a high order sliding 

mode observer with differentiator algorithm to estimates the value of state variables. In this 

case, it removes the speed and current sensors of motor, and a better control precision and 

accurate state estimation are obtained. 

In this section, the mathematical model of PMSM is the same with above section (33). In 
order to make control effectiveness more smooth, the relative order is raised artificially. 

Considering control input u  as a new input, original sliding mode variable (35) and (37) are 

transformed into 

 
1 1 11 1

(4)
2 21 1 22 22

' '

' ' '

s A B u

s A B u B u

 

  

 

 
 (51) 

Then, the coefficient matrix of original system 1A , 2A , 11B , 21B  and 22B  become new 

matrixes 1 'A , 2 'A , 11 'B , 21 'B  and 22 'B . Where,  
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       ( ) ref
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         

    

2 2 2
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5 2 4 6 1 1 5 2 4 1 6 1 1 9 3 2 9 1 3 3 1 4 3
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        ) 2 (
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      
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(4)
2 3 7 2 8 2 3 9 4 10 2 3   )( ) refk k k x k x x k x k u x    

  

 11 6'B k ；  

 21 1 6 4'B k k x ；  

 22 1 3 2 10' ( )B k x k k  ；  
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Next, it still is high order sliding mode controller design that make the sliding mode 
variables converge into origin within limited time in the sliding mode surface. In another 
word, it should satisfy following conditions. 

 1 1 1

2 2 2 2 2

{ | ( , ) ( , ) 0}

{ | ( , ) ( , ) ( , ) ( , ) 0}

S x X s x t s x t

S x X s x t s x t s x t s x t

   
     


    (52) 

Let (4)
1 2[ , ]Ts s s  , 1 2[ , ]u u u   , this control object is equivalent to stable of following multi-

input multi-output system in limited time. 

 ' 's A B u   (53) 

Due to (4)
2s  effected by 1u  and 2u , the output of this system are coupled. Here, input-

output feedback linearization technology is used to decouple system. 

 1
1

1
( ( )) ' [ ' ]

( )

r
fr

g f

u w L h x B A w
L L h x


       (54) 

After decoupling, the relative degree of 1s  equals 2, so 2 order sliding mode control law is 

adopted 

 1/2
1 1 1 1 1sgn( | | sgn( ))w s s s    (55) 

Where, 1  is a positive constant. Now, we use the output of sliding mode differentiator 01z  

and 11z  to estimate the value of 1s  and 1s . 

 
1/2

01 01 01 01 01 1 01 1 11

11 11 11 01

,     | | sgn( )

sgn( )

z v v z s z s z

z z v




     
  




 (56) 

For the motor’s angular position control, 4 order sliding mode control law is used. In this 

case, we only adjust a single parameter 2  to make the system converge within limited 

time. 

 

6 4 3 1/12 4
2 2 2 2 2 2 2 2

3 1/6 3/4
2 2 2 2

sgn{ 3[( ) ( ) | | ] sgn[ (| |

        | | ) sgn( 0.5| | sgn( ))]}

w s s s s s s

s s s s

     

 

    

  (57) 

Similarly, the output 02 12 22, ,z z z  of 3 order differentiator is used to estimated sliding mode 

variables 2 2 2, ,s s s  . 
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 (58) 
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Generally speaking, in the actual system not all the state variables is measurable. 

Sometimes, due to the limitation of condition, some state variables can not be measured. 

Therefore, it requires the controller can estimate state variables of system as possible as 

accurate. 

PMSM only uses the position sensors, taking the use of high order sliding mode control 

techniques, so that its speed and the current state variable are estimated online. In this way, 

it avoids the use of other sensors, at the same time ensures the motor position tracking 

progress. 

In the design of controller, we have obtained that 

 1 4 3 5 2 4 6 2 3refs k x k x x k u x      

 2 2 1refs x x     

 2 1 1 1 3 2 4 3 2 1( )ref refs x x k x k x k x x          (59) 

From the above equations, we can calculate the speed estimation of synchronous motor 

2 2 1refx s x    , so the current estimation expressed by 
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2 3 2 1 1
4

1 3 2
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



    

   




 (60) 

For calculating 3x  and 4x , considering sliding mode variables 1s , 2s , 2s  and 2u  as known 

value, adopt recursive algorithm to get 
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 



    

   
 



 (61) 

Where, j  is the j -th sample point of system, 1j   is the next sample point. Through the 

above recursive equation, current estimation 3x  and 4x  are obtained. Take these estimation 

into the control system so that save the sensors. Thereby, system become more simple and 

reliability. 

In the simulation, we use the DutyMAX95-BSC060300 permanent magnetic synchronous 

motor. The parameters of motor are 3P  ， 3.3R   ， 0.027dL H ， 0.0034qL H ，

0.341f Wb  ， 0.0034B N m s   , 20.0037J kg m  . A phase current of the maximum 

accepted value is 6.0A , the load torque maximum value is 6N m , and angular velocity is 

3000rpm . 

The parameter of controller are 1 5   and 2 50  ; the parameter of sliding mode 

differentiator are 01 2  , 11 1.5  , 02 25  , 12 25  , 22 33   and 32 500  . 
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Fig. 7. Position tracking and error curve of PMSM. 

From the figure 7 above, it can be seen that the permanent magnet synchronous motor 
control system has good performance. This figure shows the permanent magnet 
synchronous motor can precisely track the given position. And the error between reference 
and the actual position feedback is shown in Figure 7 below. The maximal error does not 
exceed to 0.08 rad. 
 

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

s
p
e
e
d
 (

ra
d
/s

)

(a)

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.05

0

0.05

0.1

e
rr

o
r 

(r
a
d
/s

)

time (second)

(b)

 

Fig. 8. Speed estimation and error curve of PMSM. 

The figure 8 above shows the motor angular speed by derivative of the motor’s angular 

position. The figure 8 below shows the error between the estimation of the electrical angular 

speed. 
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Fig. 9. The direct/quadrature axis currents and their estimations. 

For permanent magnet synchronous motor, its angular position, speed and current are 
system state values. The figure 9(a), (b), (c), (d) shows that the estimated value and actual 
current value of direct axis and quadrature axis respectively. The figure 9(e), (f) are the error 
between actual current value and the estimated value. In this figure, the error of direct axis 

current is between )(100.1 4 A , and the error of quadrature axis is between )(100.1 3 A . 
 

0 5 10
-0.08

-0.06

-0.04

-0.02

0

0.02

s

0 5 10
-0.3

-0.2

-0.1

0

0.1

s
'

0 5 10
-4

-3

-2

-1

0

1

time (second)

s
''

0 5 10
-30

-20

-10

0

10

20

30

time (second)

s
(3

)

s s

s s

 

Fig. 10. System sliding mode variables curve. 

The figure 10 is the convergence curve of sliding mode variable and its high order 
derivatives. From the figure we can clearly see that the discrete control law acts on the high 
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order sliding mode surface, which makes the lower sliding mode surface smooth. That is the 
reason why high order sliding mode control can eliminate the chattering. 
This subsection focuses on a state estimation of PMSM online. In the practical systems, not 
all the state variables are measurable, or because of objective reasons they are often not 
easy to measure. In this section, we just use the motor position sensor, through the high 
order sliding mode control with differentiator, to achieve the state variables of motor 
estimation online. The simulation results show that the PMSM control system has good 
dynamic performance, while the electrical angular speed and d-q axis current are 
estimated precisely. 

2.2.3 Torque disturbance identification 

In high precious servo control, the disturbance load will impact servo control. Therefore, the 
estimation of the disturbance load is very necessary to reduce its influence. Usually in the 
actual system, the disturbance load torque is often random and uncertain. So, this requires 
the controller can estimate the value of state variables as accurately as possible. This section 
will use the arbitrary order sliding mode differentiator, to calculate the high order 
derivative of sliding mode variables online, so as to avoid the complexity of differential 
calculation. Then, through the expression of the unknown disturbance load torque, it is 
estimated. Take the estimation as system input, thereby enhancing the system performance. 
In the simulation, the position and current sensors of PMSM are used. Adopt high order 
sliding mode control, its disturbance torque is estimated online. Then, the unknown 
uncertain external disturbance torque can be entered as a known value so that improve the 
motor position tracking accuracy. 

In order to facilitate the description, the mathematical model of motor still use system state 

equation (31) in d-q axis coordinate. The meaning of the parameters remains unchanged. 

Then, from the mathematical model of PMSM, the following solution can easily get 

 3 4 2 2[( ) ]l d q fT p L L x x Bx Jx        (62) 

In equation (62), lT  is the estimation of external torque. 2x  and 2x  are the estimation of 

angular speed and angular acceleration respectively. 
From the controller of previous section, the following expression can be obtained 

 
2 2 1

2 1 1 2 1

ref

ref ref

s x x

s x x x x

 

   

 

      (63) 

Therefore, the above equation (63) can solve the estimation of angular speed and angular 
acceleration. 

 
2 2 1

2 2 1

ref

ref

x s x

x s x

 

 

  
    (64) 

Until now, if we can get the 1 and 2 order derivative of sliding mode variable 2s , the 

estimation of state variable 2x  and its differentiation 2x  can be solved. According to the 

principle of high order sliding mode differentiator, 2s  and 2s  in equation (64) can be 

estimated by the output of differentiator 12z  and 22z . 
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Fig. 11. External disturbance load torque and its estimation of motor. Available into the 
equation (62). 

 3 4 12 1 22 1[( ) ] ( ) ( )l d q f ref refT p L L x x B z x J z x          (66) 

Through calculation online, the estimation of disturbance load is obtained. Take the 
estimated value into the control system so that the uncertain disturbance load become the 
determine input. In this case, the system performance is improved effectively. 
From the figure 11 we can see that, taking use of high order sliding mode with 
differentiator, disturbance load torque get a better estimation. Disturbance torque is 
estimated online successfully so that it is no longer unknown uncertainties factor. It also 

improves the performance of the system. The maximum torque value is mN 2  in the figure. 

The sliding mode variable converges into origin at the 0.25s. 
The figure 12 shows that the actual angular position track reference of PMSM with the 
disturbance load. From the figure we can see that the maximum error of the angular 
position is not more than 0.12 rad. The system gets a better control performance. 
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Fig. 12. Position tracking curve with load torque disturbance. 

2.4 Experimental results and analysis 

The dSPACE is a equipment of control exploitation and test system based on 

MATLAB/Simulink that is from Germany. It implements seamless link with the 

MATLAB/Simulink completely. It can complete the control algorithm design, test and 

implementation, overcoming the shortage of the traditional control system, for example, the 

difficult to achieve the complex algorithm and the long development cycle. It has 

advantages of high speed, ease to use and user-friendly. 

Taking DS1005PPC control board as the core, with DS2001AD acquisition board, 

DS2002/2003 multi-channel AD acquisition board, CP4002 Multi-I/O board, DS2102DA 

output board, DS3002 incremental encoder interface board, we constitute a standard 

component hardware parts of dSPACE DS1005 system, which is used in this experiment.  

After the completion of the experimental platform, the development steps of control system 

for PMSM based on the dSPACE include the following points: 
1. MATLAB/Simulink modeling and off-line simulation. Take use of MATLAB/Simulink 

to establish a mathematical model for the simulation object, and design control 
programs. At the same time, complete the system off-line simulation. 

2. Input/output interface (I/O) experimental model. In the MATLAB/Simulink 
environment, we need to retain module that is downloaded to the dSPACE. Select the 
real-time control required for I/O modules from the RTI library. Replace the original 
connection relationship with the hardware interface, and configure I/O parameters. In 
some special cases, we also need to set up hardware and software interrupt priority 
levels.  
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3. The dSPACE/RTW provides tools to automatically generate code and download. Since 
MATLAB and dSPACE with seamless connectivity features, a simple operation can 
complete real-time C code generation, compile, link and download for the target system. 
In other word, model is downloaded into target board DS1005PPC as running program. 

4. The dSPACE integrated experiment and debugging. The dSPACE provides real-time 
ControlDesk software as well, which changes the parameters and real-time control. 

The figure 13 is a control system in MATLAB/Simulink environment with the dSPACE/RTI 
module.  
 

 

Fig. 13. MATLAB/Simulink environment based on dSPACE/RTI control system. 

i. Content and intention: 
1. Validate feasibility of high order sliding mode control in PMSM; 
2. Test system using high sliding mode control whether it can release chattering 

phenomenon; 
3. Test system using high sliding mode control whether it has robustness. 
ii. Equipments: 
 

Name Type Unit Amount 

dSPACE controller DS1005 Dais  1 

DC regulated power WYK-303B2 Dais  1 

Slide-wire rheostat BX8D-3/7 Dais  3 

Switch regulated 
power 

S-100-24 Dais  1 

Universal meter LINI-T/UT58A Dais  1 

Ondoscope 
Tektronix/TDS202
4 

Dais  1 

Industrial computer ADLINK Dais  1 

Table 1. The list of experimental equipments. 
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iii. Experimental procession: 

Step 1: Off-line simulation. According to the principle of high order sliding mode control 

and differentiator, combining with chapter 5 of the application for permanent magnet 

synchronous motor, the theoretical simulation is researched in the MATLAB/Simulink 

firstly. In detail, set the sampling frequency and differential equation solution, and save the 

.mdl model file; 

Step 2: After the control algorithm verification, remove the inverter model and motor model 

replaced by the physical prototypes of actual system. And then complete all of the system 

interface, including the A /D, D/A, I/O, PWM and other interfaces of the dSPACE. 

Afterwards, compile on-line to generate. cof configuration file; 
Step 3: Check all connections are correct. After that, start the dSPACE. Compile and 

download files real-time (RTI) in the environment of MATLAB/Simulink. At this moment, 

algorithm program code is downloaded to the DSP core program area of dSPACE controller; 

Step 4: Start the dSPACE/ControlDesk. Create an experimental file .prj in the interface, and 

design the required .lay layer file. Observe compiler-generated variable file .sdf in order to 

facilitate observe the real-time dynamic performance of the system; 
Step 5: After the completion of the above, check the status of external devices is good or not. 
Finally, start bus power, while start system operation in dSPACE/ControlDesk interface. 
iv. Controlled device: 
The controlled object in experiments uses non-salient pole permanent magnet synchronous 
motor of Delta's ASMT series, whose main parameters are as follows table 2: 
 

Name Value Unit 

Resistance 3.052R   

Inductance 8.4dL   mH  

Rating Power 1.0P   kW  

Torque 3.3T   N m  

Pole-pairs 4pN   --- 

Voltage 300U   V  

Speed 3000Nn   /minr  

Rotary inertia 0.00026J   2kg m  

Table 2. Parameters of PMSM in experiment d. 

Host-computer control surface adopts visual man-machine surface the 
dSPACE/ControDesk to realize data acquisition and display. Figure 14 is pictorial diagram 
based on the dSPACE control system. The system consists of inverter, isolation circuit, 
detection circuit, power circuit and etc. 
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Fig. 14. Control system hardware circuit with dSPACE interface. 

v. Waveform: 
Because the research of nonlinear system high order sliding mode control theory still is in 
primary stage, it is face with much challenge. For example, it strictly requires all of the 
system functions are smooth, and norm-bounded. Otherwise, there is the higher derivative 
of reference value in control law. In our experiment, 60V DC regulated power is supplied. 
Experiment is tested under the conditions above. The main test results are following. 
 

     

Fig. 15. Speed reference curve of PMSM.  

 

 

Fig. 16 Dynamic speed feedback curve. 
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High order sliding mode control law has high derivative of reference signal, so the reference 
signal must be smooth and continues enough function. For testing speed dynamic response 
of PMSM in the experiment, the reference signal is set as Fig. 15. Actual measurement of 
speed dynamic response is shown in Fig. 16. 
By comparing Fig. 15 and Fig 16, nonlinear PMSM holds good dynamic tracking character 
with high order sliding mode control. 
 

        

Fig. 17. Steady speed of clockwise/ Anti-clockwize displayed in dSPACE/ControlDesk. 
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Fig. 18. Speed curve of PMSM in MATLAB/Simulink using traditional sliding mode control. 

Fig. 17 is steady speed clockwise/anti-clockwise curve of PMSM. It is can be seen that the 
PMSM also takes on good steady performance. 
The Fig. 18 is outline simulation speed waveform of PMSM using traditional sliding mode 
control. It displays anti-clockwise speed waveform of PMSM. And the Fig. 19 is outline 
simulation speed curve of PMSM using high order sliding mode. After partial amplification, 
comparing with Fig. 18, high order sliding mode control is provided with the ability of 
avoidance chattering. But, its algorithm is more complicated than tradition. The adjusting 
time is longer, too.  
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Fig. 19. Speed curve of PMSM in MATLAB/Simulink using high order sliding mode control. 

To validate experiment intention 2 and 3, show high order sliding mode control with free 

chattering and robustness, the experiment designs traditional sliding mode controller, too. 

Simulation and actual measurement are recorded in order to compare with high order 

sliding mode. 

 

          

Fig. 20. Speed curve in dSPACE/ControlDesk using traditional/high order sliding mode 
control. 

Due to the traditional sliding mode control uses discontinues control law acting on sliding 

mode manifold surface, chattering problem is caused. The great of the coefficient in sliding 

mode control law, the faster of convergence, when the system enter into sliding mode, 

chattering phenomenon is more obvious. The left figure of Fig. 20 is actual measurement 

speed curve of PMSM, which adopts conventional sliding mode control. The control law is 

sgniu K s  , in current loop 1 5K  , in speed loop 2 8.2K  . From the comparison of Fig. 

20, we can obtain a conclusion that chattering is released in high order sliding mode. 

Hereto, both of simulation and experiment results prove that high order sliding mode 

control can reduce the chattering phenomenon which exists in conventional. Following 

experiment will test the robustness of high order sliding mode control. 
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Fig. 21. Speed curve of 0.5 mN   disturbance load in dSPACE/ControlDesk. 

The PMSM is a typical complex system because of elevated temperature, saturation, time 

delay and a good many elements. These reasons lead to the synchronous motor is nonlinear, 

variation parameter, close coupled system. For the sake of testing high order sliding control, 

which is insensitive to the parameter uncertainness and disturbance, experiment is injected 

about 0.5 mN   external load disturbance at the 0.01 second. The speed actual measurement 

waveform is shown in Fig. 21. From this figure, speed curve is smooth without flutter. The 
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experiment result illuminates high order sliding mode control reserves robustness of 

conventional sliding mode.  

Experimentally verified, high order sliding mode control provides an effective method to 
improve accuracy and robustness further for nonlinear systems 

3. Conclusion 

This chapter applies the research of nonlinear control and high order sliding mode control 

theory in PMSM control, and achieves robust control for a PMSM in spit of the internal 

parameter uncertainties and unknown external disturbance load torque. The simulation 

results show good performance; in addition, the estimation online of system state variables 

is also one of the hot issues in the control field. In this chapter, a new design based on high 

order sliding mode with differentiator for PMSM, access to the state variable estimation; 

Besides, unknown uncertain load impacts the performance of motor control. In order to 

improve system performance, this chapter also achieves external disturbance load 

estimation online. It makes sure the load can be accurately estimated. 

This chapter described dSPACE physics experiment control platform the build and 

development process in detail. Through the dSPACE real-time control platform, the 

nonlinear high order sliding mode control theory research is applied to the control of 

permanent magnet synchronous motor. The experimental results and simulation results are 

consistently indicate that synchronous motor has better dynamic performance and steady 

accuracy, proves the feasibility of this technology in practical application systems; It is also 

verified by high order sliding mode control technique that preserves the robustness of 

traditional sliding mode control. The high order sliding mode essentially eliminates the 

chattering caused by discrete control law. From another point of view, the simulation and 

physical experiment provide a certain reference value for the nonlinear systems high order 

sliding mode control further application. 
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