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1. Introduction 

Radiation is a type of the energy transport. It produces ionization, scintillation, and 
luminescence when radiation interacts with matter. By detecting these phenomena from the 
response of the dosimeter after exposure, one can acquire an understanding on the types 
and the intensity of the radiation.  
Solid state dosimeters can be divided into two categories, active dosimeters and passive 

dosimeters. When radiation interacts with medium inside the dosimeter, the active dosimeter 

transfers radiation intensity into the pulse of electric signals. Based on those signals, users can 

determine the types and the intensity of the radiation. As for passive dosimeters, radiation 

interaction is detected through certain physical processes after radiation interacts with 

medium in the dosimeter. From the physical processes, users can also determine the types and 

the intensity of the radiation. Active dosimeters are used for dose measurements in areas with 

unknown radiation level to gather the radiation information immediately. Therefore, the 

proper radiation protection actions can be initialized. The common active dosimeters in the 

market are gas-filled counters, scintillation counters, and semi-conductor detectors…etc. On 

the other hands, passive dosimeters are often used as periodic radiation monitor for people 

work in the radiation environment to monitor the cumulated dose and the types of radiation. 

They can be used as personal dose measurement, long-term environmental radiation dose 

monitor…etc. The film badge, Thermoluminescence Dosimeter (TLD), Optically Stimulated 

Luminescence Dosimeter (OSLD), and Radio-photoluminescence Glass Dosimeter (RPLGD) 

are commonly used passive dosimeters. In clinics, many different kinds of dosimeters are 

applied in the procedures to verify dose delivery accuracy, to obtain dose to critical areas or 

organs, and to verify machine output for QA purposes. 
For TLD, OSLD, and RPLGD, when radiation interacts with the medium in the dosimeters, part 
of the absorbed energy are first stored in a metastable energy state of the medium. Then some of 
this energy can be recovered later as visible light after proper physical process, such as heating.  

2. Radio-Photoluminescence Glass Dosimeter (RPLGD) 

OSLD is made of the same luminescent material as one used in TLD. The only differences 
are different excitation source and different readout technique used. However, RPLGD uses 
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glass compound as the luminescent material and applies different excitation method along 
with different readout technique. In 1949, Wely, Schulman, Ginther, and Evans 
manufactured the first RPLGD system (Yokota). Schulman applied this system in radiation 
dose measurement in 1951 (Yasuda, Troncalli). The luminescent material used by Schulman 
was a compound glass of 25% of KPO3, 25% of Ba (PO3)2 and 50% of Al (PO3)2, with proper 
amount of AgPO3 to form silver activated phosphate glass. It is very difficult to measure dose 
under 1 mGy with Schulman’s RPLGD system, because it has a high pre-dose (residual dose). 
Pre-dose is the phosphorescence light emitted from RPLGD without any irradiation and 
excitation process. It is the minimum radiation can be measured with RPLGD. Besides, 
because of the pre-mature luminescence measurement technique and the poor quality of 
excitation source for color centers, the measurement accuracy with Schulman’s RPLGD is very 
poor. Therefore, RPLGD is not a popular dosimeter in day to day applications in those days. 
However, there are many researchers continue to devote in the developments of RPLGD 
and its readout system; including people at Asahi Techno Glass Corporation (ATGC) in 
Japan, at Toshiba Corporation in Japan, and at Karlsruhe Nuclear Research Center (KNRC) 
in Germany. The developments of new generation RPLGD and readout system were 
completed in 1990 (Piesch). Table 1 shows the types and compositions of the glass 
luminescent material developed by ATGC and Toshiba. The excitation source was changed 
from ultra-violet into pulse ultraviolet laser. The improvements in the glass material and in 

readout system make the RPLGD capable for lower dose (10 Gy) measurement with 
excellent accuracy (A. T. G., Corporation Chiyoda Technol). 
TLD is still the major dosimeter used for personal dose monitor and for dose verification in 
diagnostic radiology and in radiotherapy in nowadays. The major problem with TLD is its 
non-repeatable readout for the measurements. Based on the preliminary report by Hsu et al 
on the study of the characteristics of RPLGD in radiation measurement, it proves that the 
radiation detection characteristics of RPLGD are superior to that of TLD (Hsu). Therefore, in 
the near future, RPGLD will become one of the important dosimeters for dose measurement 
and radiation detection in the field. 
The work on the radiation measurement with self-manufactured RPLGD by Schulman in 
1951 opened the history of RPLGD applications in dose measurement (Yasuda, Troncalli).  

After exposed to radiation, stable color centers are formed in the glass and more color 
centers are formed with increasing radiation intensity. After irradiated by ultraviolet light, 
color centers are excited and emit 600 nm to 700 nm visible orange light (Burgkhardt).  It is 
called radio-photoluminescence phenomenon. The amount of orange light emitted from 
RPLGD is linearly proportional to the radiation received; therefore, it is suitable for long 
term personal dose monitor or environmental radiation monitor. RPLGD is used in Japan 
for over 80% of radiation workers as an external dosimeter (Corporation Chiyoda Technol). 

3. Principle of RPLGD and its readout methods  

The basic principle of RPLGD is that the color centers are formed when the luminescent 
material inside the glass compound exposed to radiation and fluorescence are emitted from 
the color centers after irradiated with ultra-violet light.  The excited electrons generated 
from the color centers return to the original color centers after emitting the fluorescence. 
This process is called radio-photoluminescence phenomena. Because the electrons in the 
color centers return to the electron traps after emitting the fluorescence, it can be re-readout 
for a single irradiation. 
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glass 
series 

composition ratios (mol％)  

Li Na P O Al Ag Mg Ba 

FD-1 3.7 - 33.4 53.7 4.6 3.7 - 0.9 

FD-3 3.6 - 34.5 53.5 5.1 3.3 - - 

FD-4 3.5 - 34.0 52.7 5.0 4.8 - - 

FD-5 - 9.0 33.1 51.3 6.1 0.5 - - 

FD-6 - 6.6 33.2 51.4 5.5 1.4 1.9 - 

FD-7 - 11.0 31.5 51.2 6.1 0.2 - - 

Table 1. The types and compositions of silver activated phosphate glass 

Figure 1 shows the old RPLGD readout technique (Piesch). The pre-dose M0 (M0 (t0) = I2 x 

t) was obtained with photomultiplier tube (PMT) first. After RPLGD irradiated by the 

radiation, the total light intensity is M1 (M1 = I1 x t). The “actual” light intensity from the 

irradiation, M, is M1 - M0 = (I1 x t) – (I2 x t). The radiation dose can then be estimated from 

M. The traditional way to calculate the light intensity is to subtract the pre-dose reading 

(M0) from the total reading (M). With the traditional readout technique, if the glass surface is 

covered with dust or other material the pre-dose reading (M0) and the total dose reading 

(M) are both affected and results in a large error for dose estimation. Therefore the old 

RPLGD readout technique will not measure the dose accurately.  

In 1990, a new RPLGD readout system was developed by the cooperation of ATGC (Japan) 

and KNRC (Germany). The major modification in this new system is to use pulse ultra-

violet laser as excitation source, instead of ultra-violet light. The intensity, the excitation 

time and position of the pulse ultra-violet laser can be accurately controlled. Traditionally, it 

takes seconds for the unit to count the excitation time; however, it has changed to micro 

second (s) for the new system. The readout time is decreased rapidly with the new system. 

Furthermore, with a collimated laser beam, the laser can be delivered to the exact position in 

the glass. The radiation energy can also be estimated accurately with the energy 

compensator filter. 

With the pulse ultra-violet laser excitation system, decay curve of fluorescence can be 

divided into three portions according to the fluorescence decay time of RPLGD. They are (1) 

pre-dose or the light signal emitted from the impurity covering the glass surface, (2) the 

light signal from color centers formed by radiation, and (3) the light signal emitted from pre-

dose after long time decay.  

Any signal detected within the fluorescence decay time between 0 to 1 s, the readout 

system mark it as the light signal from pre-dose or from the impurity on the glass surface. 
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The readout system takes light signal emitted in the fluorescence decay time between 1 to 40 

s as the signal from radiation exposure. For light signal emitted in the fluorescence decay 

time up to 1 ms, the readout system takes it as the signal produced by pre-dose with long 

decay time characteristics. The characteristics of the fluorescence decay curve are illustrated 

in figure 2. 
 

 

Fig. 1. Old readout technique for RPLGD (Piesch) 

In figure 3, the area of F1 is the integral of fluorescence decay curve between t1 (1 s) and t2 

(40 s) and it is the luminescence signal produced by radiation. However, there are pre-dose 

signals included in the lower half part of F1, therefore, one should subtract this portion from 

F1 to obtain the “actual” luminescence signal emitted by exposure. The way to subtract the 

pre-dose signal is to find F2 from the longer fluorescence decay curve of pre- dose. The area 

of F2 is the integral between t3 and t4 where time between t3 and t4 and t1 and t2 is the same, 

39 s. From the proportional relationship of trapezium area, it shows the area of pre-dose in 

F1 is F2 x fps (fps is the conversion factor for trapezium area). Therefore, the actual 

luminescence signal from the color centers is F1 - F2 x fps. The exposure received by RPLGD 

can be obtained from the luminescence signal emitted. 
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Fig. 2. The luminescence decay curve of RPLGD (A. T. G.) 

 

 

Fig. 3. The readout technique with pulse ultra-violet laser (A. T. G.). 
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4. Chemical characteristics of the silver ions 

The color centers were structured at the silver activated phosphate glass. The numbers of 

ionic silver relate to energy levels in color centers and the numbers of electron trap(s). The 

numbers of electron trap(s) increase with increasing numbers of ionic silvers. However, 

excessive numbers of ionic silver decrease the penetration efficiency of the pulse ultra-violet 

laser and increases energy dependence. Therefore, a proper ratio of ionic silver is required 

for the best luminescence and excitation efficiency (Yokota). 

At present, the most common type of glass in RPLGD for radiation dose measurement is 

FD-7. The AgPO4 in silver activated phosphate glass of FD-7 can be viewed as Ag+ and PO4-. 

When the tetrahedron of PO4- is exposed to the radiation, it loses one electron and forms a 

“positron hole”. The electron released from the PO4- will combine with Ag+ to form an Ag0. 

Similarly, hPO4 (“hole” formed after PO4- loses one electron) will combine with Ag+, and 

then gains a “positron hole” to become an Ag2+. Both Ag0 and Ag2+ can form color centers as 

shown in Figure 4. 

 

 

 
 
 

Ag+ ＋e-           Agoうelectron trapえ 

Ag+ ＋ hPO4              PO4 ＋Ag2+うhole trapえ 

Fig. 4. The color centers formation mechanism of FD-7 (A. T. G.) 

After exposure, the Ag+ at valence band of silver activated phosphate glass combines with 

electron released from both PO4- and hPO4 (formed by PO4-) to become color centers (Ag0 

and Ag2+). When these color centers excited by 337.1 nm pulse ultra-violet laser, the 

electrons in Ag0 and Ag2+ excited to higher energy levels and emit 600 – 700 nm visible 

orange light, then return to the original color centers. Energy gained by electrons from the 

pulse ultra-violet laser is not high enough to let electron escape from color centers. 

Therefore these electrons will not return to the valence band of the glass material directly. 

For electrons to gain enough energy to return to the valence band, we need to anneal 

RPLGD at 4000C for one hour. The color centers won’t disappear after readout; hence, 

RPLGD can be read repeatedly. Figure 5 shows the energy levels of RPLGD. 
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Fig. 5. The energy levels of RPLGD. (1) After RPLGD being exposed, Ag+ at the valence 
band combines with electron released from PO4- and hPO4 formed by PO4- to become a color 
center. (2) After electron at color center excited by 337.1 nm pulse ultra-violet laser, it will be 
excited and emits 600 – 700 nm visible orange light, then return to the original color centers 
(3)After annealing at 4000C for one hour, the electron at color centers returns to the valence 
band of luminescence material (Hsu). 

5. The radio-photoluminescence model 

The luminescence materials used in either TLD or OSLD have an ordered crystal structure 

with lattice defects. From the glow curve, which is generated after annealing, one has the 

information on the electron distribution functions at different energy trap(s). The 

luminescence models for TLD and OSLD are developed based on this information. 

However, RPLGD is a mixture of inorganic amorphous solid and does not have lattice 

structure and lattice luminescence centers. Therefore we cannot get the information on 

electron trip(s) distribution function to establish the luminescence model for RPLGD. We 

can only establish the radio-photoluminescence model based on the energy of the excitation 

source and the energy of the released visible light. 

After excited with 337.1 nm pulse ultra-violet laser, RPLGD emits 600 – 700 nm visible 

lights. From the emitted lights we know the energy gap between the excited energy levels 

which electrons jump to and the energy levels at color centers is between 1.78 and 2.07 eV. 

Becker assumed there are many continuous energy levels at the color centers of the RPLGD 

(Becker), as shown in Figure 6. It shows the electrons in the valence band are excited to the 

conduction band after irradiation. When electrons return to the valence band, portions of 

electrons are captured by the electron trap(s) located at P shell and Q shell, and then form 

color centers. After excitation, the electrons in color centers jump to higher energy level, 

emit fluoresce, then return to the original color centers. RPLGD is manufactured via the 

process of melting various compounds under high temperature, different from the 

manufacture process of TLD or OSLD which is via process of long-crystal formation. Hence, 

the color centers of PRLGD are not built at the lattice. There are no formal reports on the 
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luminescence model for RPLGD. We believe that the color centers of RPLGD may be 

structured among the orbital electrons in the compound. The various continuous energy 

levels are formed with different bonding structures among elements. Those energy levels 

can store free electron energy which is produced by the excitation process. Therefore, its 

excitation energy gap has a continuous value (from 1.78 to 2.07 eV) which releases 600 nm – 

700 nm visible lights. 

 

 

Fig. 6. There are many continuous energy levels in RPLGD color centers. 

6. Physical characteristics of radio-photoluminescence glass dosimeter  

The pulse ultra-violet laser excitation system improves the readout accuracy of RPLGD and 

also shortens the readout time. The improvement in the luminescent material lowers the 

detectable dose limit. These improvements make the applications of RPLGD in radiation 

measurements growing rapidly. There are three major types of RPLGD in the market; the 

SC-1 for environmental radiation dose monitor; the GD-450 for personal external radiation 

dose monitor; and the Dose Ace for research purposes. All those three types use FD-7 glass, 

manufactured by Asahi, Japan, as shown in Figure 7. 
The SC-1 is a plate-type RPLGD with outside capsule volume of 30 x 40 x 9 mm3.The 
dimension of FD-7 glass inside the capsule is 16 x 16 x 1.5 mm3. There are two layers of tin 
filters, one on the top and another at the bottom, over of the capsule with a dimension of 
0.75 mm and 3 mm respectively. These tin filters are used as energy compensator to estimate 
the radiation energy and to lower the energy dependence effect. The FD-7 in GD-450 has a 
dimension of 33 x 7 x 1 mm3. There are five different types with different thickness of filters 
in the capsule of GD-450; namely, 0.2 mm acrylic plate; 0.5 mm acrylic plate; 0.7 mm 
aluminum filter; 0.2 mm copper filter; and 1.2 mm tin filter. The functions of these filters in 
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GD-450 are the same as that of SC-1; to estimate radiation energy and to lower the energy 
dependence effect. The GD-450 dosimeters are the major personal dosimeters used in Japan. 

 

 

Fig. 7. Three types of RPLGD; above: SC-1 system for environmental radiation monitor; 
below left: GD-450 system for personal dose monitor; and below right: small volume Dose 
Ace system for research 

The Dose Ace type RPLGD is mainly for research purposes. It is a cylindrical shape with 

three different models; GD-302M, GD-352M, and GD-301. The GD-302M and GD-352M have 

a length of 12 mm and a diameter of 1.5 mm, while GD-301 has a length of 8.5 mm and a 

diameter of 1.5 mm. GD-301 and GD-302M, without filters in capsule, are used to measure 

the dose of high energy photons as in radiotherapy. However, there is a Tin filter in the 

capsule for GD-352M to lower the energy dependence effect. The GD-352M can be used for 

measuring the dose from low energy photons as in diagnostic radiology. In the process of 

dose readout, based on the dose values,  the dose ranges are divided into two categories, 

low dose range (10 Gy – 10 Gy) and high dose range (1 Gy - 500 Gy).The readout system 

can automatically distinguish the dose range according to different readout magazine used 

by the users. On the top of that, there are different readout areas in RPLGD for different 

dose ranges too. The readout area for high dose range is located at between 0.4 mm and 1 

mm, a total length of 6 mm and a total volume of 0.47 mm3, from the non-series end in the 
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readout area (as shown in Figure 8); while the low dose range is located from 1 mm to 6 mm 

with a volume of 0.47 mm3. The high dose readout area can be used for the measurement of 

dose with high gradient too. The Table 2 shows the characteristics of various RPLGDs. 

 

 

 

Fig. 8. The high dose readout area for GD-320M; the series end is located on the left side, the 
readout area is located at 0.4 mm to 1.0 mm from the non-series end, the diameter of 
incident pulse ultra-violet laser is 1 mm (Hsu). 

 
 

Type SC-1 GD-450 Dose Ace 

Effective atomic 
number 

12.04 12.04 12.04 

The dose linearity 
range 

10 μGy - 10 Gy 10 μGy - 10 Gy 10 μGy - 10 Gy 
1 Gy - 500 Gy 

Energy dependency 
う20 keV / 137Cs え 

1.2うwith energy 

compensator 
filterえ 

1.2うwith energy 

compensator 
filterえ 

3.4うw/o energy 

compensator 
filterえ0.8うwith energy 

compensator filterえ 

Fading effect ＜ 5 % / yr ＜ 5 % / yr ＜ 5 % / yr 

Repeatable readout yes yes yes 

Angular dependency ± 8%  
(0 ~ 80 degree) 

± 3%  
(0 ~ 80 degree) 

0  
(0 ~ 80 degree) 

 
 
 

Table 2. The characteristics of RPLGD 
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In Figure 9, it shows the readout reproducibility for GD-352M and TLD-100H respectively 

with a C.V. (coefficient of variation) of 0.46 – 3.11 for GD-325M and C.V. of 0.71 – 3.87 for 

TLD-100H. The figure shows that the C.V. is smaller for RPLGD as compared to that of TLD 

because of different manufacture methods. Each RPLGD is made after glass material melted 

at high temperature and results in a smaller variation among each RPLGD. On the other 

hand, the TLD is made with growing crystal, therefore the variation is greater. 
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Fig. 9. The readout reproducibility of GD-352M and TLD-100H 

Figure 10 shows the dose linearity for GD-352M and TLD-100H respectively in a range of 
0.105 mGy and 50.4 mGy. The measured dose points are at 0.105 mGy, 0.168 mGy, 0.672 
mGy, 1.05 mGy, 2.1 mGy, 6.3 mGy, 25.2 mGy, and 50.4 mGy with five RPLGDs for each 
measured point. The correlation coefficient is close to unity for both GD-325M and TLD-
100H. It shows that the dose irradiated is proportional to the dose estimated from 
readout. 
Figure 11 shows the energy dependence for GD-302M, GD-352M, and TLD0-100H 
respectively. The values shown in figure 11 are normalized to the readout from Cs-137 
irradiation. When un-filtered GD-302M irradiated with low energy photons, the interactions 
between photons and RPLGD are increased because of the photoelectric effect. Therefore the 
luminescence signal is increased too. For filtered GD-352M, the Tin filter can stop the low 
energy photons; hence, the energy dependence effect is less. 
Table 3 shows the characteristics comparisons of different passive dosimeters. It 

demonstrates that the physical characteristics of OSLD are better than that of TLD. And the 

physical characteristics of RPLGD are better than that of OSLD because of different readout 

system and different luminescence material. Therefore, RPLGD could become one of the 

important dose measurement tools in the future. 
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 TLD OSLD RPLGD 

Principe of 
measurement 

luminescence 
signal 

optically stimulated 
luminescence signal 

radiophotoluminescence 
signal 

Luminescence material crystal crystal glass 

Excitation source heat visible light ultra-violet laser 

Sensitivity 
material-
dependent 

material-dependent good 

Repeatable readout no 
yes, but intensity 
reduced 

yes, with the same 
intensity 

Range of measurement 

material-
dependent 
う10μGy - 10 Gyえ 

material-dependent 
う10μGy - 10 Gyえ 

10μGy - 10 Gy 
1 Gy - 500 Gy 

Geometrical shape chip and powder powder various shapes 

Fading effect 

material-
dependent 
う5 - 20 % / 

quarterえ 

material-dependent 
う0 - 10 %/yearえ 

less than 5%/year 
 

Energy dependence 
material-
dependent 

material-dependent 
± 20%うhaving energy 

compensation filterえ 

Capability to 
distinguish the types of 
radiation 

yes yes yes 

Re-useable yes no yes 

 
 

 
Table 3. The characteristics comparisons of TLD, OSLD, and RPLGD 
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Fig. 10. The dose linearity curves for GD-352M and TLD-100H, both C.V.s are less than 3. 
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Fig. 11. The energy dependence curves for GD-302M, GD-352M, and TLD-100H 
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7. Characteristics of RPLGD for clinical applications 

The clinical applications of RPLGD characteristics are summarized in the followings: 
1. Repeatable readout 
The luminescence signal does not disappear after readout; therefore, repeated readout for a 
single exposure is possible for RPLGD. 
2. Small difference in individual sensitivity 
The readout variation between different PRLGDs with the same exposure is small. RPLGD 
is manufactured with melted glass; therefore, its individual sensitivity is small as compared 
to that of either TLD or OSLD. 
3. No correction factor needed 
The luminescence single can be converted to the exposure dose directly without the need of 
correction factors. The exposure dose can be determined with the help of readout from 
reference PRLGD built-in to the readout system. 
4. Small energy dependence 
The energy dependence existed in FD-7 glass, if there is no energy compensator filter with it. 
However, energy dependence can be reduced with energy compensator filter. 
5. Small fading effect 
The stability of color centers in RPLGD is high. Hence the effects of environment conditions 
such as humidity and temperature have very little impact to color centers, hence low fading 
effects for RPLGD. 
6. Better reproducibility 
By using pulse ultra-violet laser as excited source, the accuracy of repeated readout can be 
maintained. Therefore, RPLGD has a very good reproducibility. 
7. Wide measurable dose range 
The dose linearity range for RPLGD is 0 – 500 Gy. This range covers the dose range used in 

the medical field. RPLGD can therefore be applied for dose verification in radiotherapy as 

well as in diagnostic radiology. RPLGD is also desirable for high dose gradient area, such as 

IMRT (Intensity Modulated Radiotherapy) procedures or HDR (High Dose Rate Remote 

Afterloader) procedures because of its small effective readout area. 

8. Feasibility of personal dose monitor tools 
The characteristics, physical and chemical, of RPLGD are equal to or better than that of TLD 
and OSLD because of its luminescence material and readout technique. Hence, RPLGD can 
be used as dose monitor for radiation field worker. 

8. Applications of RPLGD 

Araki applied the RPLGD system in Stereotactic Radiosurgery (SRS) procedure for dose 

measurements, including Gamma Knife, Cyberknife etc (Araki, Arakia).  The results of 

output factors are comparable with the results from Hi-p Si Stereotactic field detector and 

Mote Carlo calculation. It shows RPLGD can be used for small field radiation 

measurements effectively. Nose designed a tube to hold RPLGDs for dose measurements 

for head and neck patients to verify the delivery dose against the calculated dose from 

treatment planning system (Nose). Although the maximum dose variation can be as high 

as 15%; however, those differences are mostly from the positioning errors. Based on the 

RPLGD physical characteristics study, the error from the RPLGD system stability is less 

than 3% (out of 15%). Yasuda and Iyogi applied RPLGD in space and environment 
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radiation monitor (Yasuda, Iyogi). Hsu et al. also applied RPLGD in prostate HDR (High 

Dose Rate Remote Afterloader) procedure to study the dose distributions (Hsu). Many 

institutes in US and Europe devote into the developments and the researches in the new 

luminescence material and readout techniques for RPLGD (Yasuda, Araki, Arakia, Nose, 

Iyogi, Norimichi ,Hsu). 

With its small volume, RPLGD can be used in in-vivo dose measurements; e.g. dose 
evaluation in animal irradiation study. RPLGD can also be placed in the anthropomorphic 
phantom to evaluate dose received during the clinical procedures for diagnostic radiology 
and radiotherapy. With its characteristics of repeatable readout and small effective readout 
area, RPLGD can also be used in brachytherapy procedures to evaluate the dose delivery 
accuracy for each procedure as well as for entire course. On the top of that, with the help of 
dedicated tube to hold RPLGD, one can apply RPLGD in the area of adjacent critical organs 
to monitor the organ dose to avoid the dose exceeding the tolerance during the radiotherapy 
procedure. It can improve the patient life quality after radiotherapy. 
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