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1. Introduction 

Because growth factors and their receptors play critical roles in cancer development and 

progression, they are potential target molecules in molecular-targeted cancer therapy. 

Hepatocyte growth factor (HGF) was discovered and cloned as a mitogenic protein for 

hepatocytes (Nakamura et al., 1984; Nakamura et al., 1989; Miyazawa et al., 1989). These 

early studies implicated an important role for HGF in regeneration of the liver. The receptor 

for HGF was identified as the Met transmembrane receptor tyrosine kinase in 1991 (Bottaro 

et al., 1991; Naldini et al., 1991). The Met oncogene was first isolated as a fused transforming 

gene from a human osteosarcoma-derived cell line, wherein sequences from the TPR 

(translocated promoter region) were fused to the Met sequence (Tpr-Met) (Cooper et al., 

1984). In 1991, the scatter factor, originally identified as a fibroblast-derived cell motility 

factor for epithelial cells (Stoker et al., 1987), was shown to be an identical molecule to HGF 

(Weidner et al., 1990). These findings implicated further biological and pathophysiological 

roles for HGF in epithelial wound healing, epithelial-mesenchymal interaction, and cancer 

development and invasion. Based on its close involvement — not only in tumor 

development, invasion, and metastasis but also in resistance to anticancer therapies — the 

HGF-Met pathway has become a hot target in anticancer drug development (Comoglio et 

al., 2008; Sattler & Salgia, 2009; Hanahan & Weinberg, 2011). In most cases in the 

relationship between growth factors and their receptor tyrosine kinases, a single growth 

factor activates multiple receptors that have structural similarities, while a single growth 

factor receptor has multiple ligands with structural and functional similarities. By contrast, 

the sole receptor of HGF is Met, while the sole ligand of Met is HGF; the relationship 

between HGF and Met is a “one-to-one relationship.” This unique biochemical characteristic 

in the HGF-Met pathway promotes drug development by targeting HGF-Met through either 

the activation or the inhibition of the HGF-Met pathway.  

2. Biochemical and biological characteristics 

Biologically active HGF, a protein composed of 697 or 692 amino acids, is a heterodimeric 

molecule composed of an -chain and a -chain (Fig. 1A). The -chain contains 4 kringle 
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domains, while the -chain contains a serine protease-like structure (Nakamura et al., 1989; 
Miyazawa et al., 1989). HGF has a structural similarity to plasminogen, which is a 
heterodimeric serine protease containing 5 kringle domains. HGF is biosynthesized as a 

prepro-form of 728 amino acids, including a signal sequence and both - and -chains. After 
cleavage of a signal peptide of the first 31 amino acids, a single-chain HGF is further cleaved 
between Arg494 and Val495, and this processing is coupled to the conversion of biologically 
inactive pro-HGF to active HGF (Fig. 1A). Several proteases in the serum or cell membranes 
are involved in the activation of single-chain HGF, including HGF activator, urokinase-type 
plasminogen activator, plasma kallikrein, coagulation factors XII and XI, matriptase, and 
hepsin (Kataoka & Kawaguchi, 2010). 
The Met receptor is composed of structural domains that include the extracellular Sema (the 
domain found in semaphorin receptors), PSI (the domain found in plexins, semaphorins and 
integrins) and IPT (the domain found in immunoglobulins, plexins, and transcription 
factors) domains, the transmembrane domain, and the intracellular juxtamembrane and 
tyrosine kinase domains (Fig. 1B) (Park et al., 1987). The Sema domain serves as a key 
element for ligand binding (Gherardi et al., 2006), while an involvement of IPT-3 and IPT-4 
in the binding to HGF was demonstrated by another approach (Basilico et al., 2008). 
 

 

Fig. 1. (A) Processing and structure of single-chain proHGF and mature HGF. (B) Domain 
structures of the Met receptor and representative signaling molecules that associate with 
Met.  

HGF and Met genes are widely expressed, and HGF is expressed in mesenchymal/stromal 
cells, predominantly rather than exclusively. Deletion of either the HGF or Met gene in mice 
lethally disrupts embryogenesis, including impairing development of the placenta and liver, 
and disabling dynamic migration of myogenic precursor cells (Schmidt et al., 1995; Uehara 
et al., 1995; Bladt et al., 1995; Birchmeier et al., 2003). In adulthood, HGF and Met play 
important roles in protection and regeneration of various tissues following injuries and 
pathology (Nakamura et al., 2011). Tissue-specific deletion of the Met gene revealed that the 
HGF-Met pathway plays a critical role in regeneration of the liver, kidney, and skin (Huh et 
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al., 2004; Borowiak et al., 2004; Chmielowiec et al., 2007; Ma et al., 2009). Met-deficient 
epidermal keratinocytes were unable to contribute to re-epithelialization in skin wound 
healing, because of a disability in keratinocyte migration (Chmielowiec et al., 2007). HGF 
induces 3-dimensional (3-D) tubulogenesis in epithelial cells such as renal and mammary 
grand epithelial cells (Fig. 2) (Montesano et al., 1991). These approaches emphasize a 
particular role of the HGF-Met pathway in the migration of cells during development, 
morphogenesis, and regeneration. However, the dynamic actions of HGF in wound healing 
and tissue reconstruction — even in a 3-D spatial scaffold — remind us of the malignant 
behavior of tumors, i.e., invasion and metastasis (Fig. 2). Aberrant activation of the Met 
receptor in tumor cells participates in the malignant progression of tumor cells. 
 

 

Fig. 2. Outline for biological actions of HGF in tumor invasion-metastasis and tissue 
regeneration. 

3. Met receptor activation 

HGF binds to Met through 2 different mechanisms: the -chain binds with high affinity 
while the -chain binds with low affinity. Among the -chain, NK1 (the N-terminal and first 
kringle domains) in the -chain of HGF provides a high-affinity binding site for Met. The 
-chain alone exhibits high-affinity binding to Met, whereas the binding of the -chain does 
not activate Met (Matsumoto et al., 1998). When Met is occupied by the -chain, the 
low-affinity binding of the -chain induces activation of Met and biological responses. 
Hence, the -chain is a high-affinity binding module to Met, while the -chain is an 
activation module for Met. The structure of the complex of HGF -chain and Sema was 
revealed by crystallographic analysis (Fig. 3A) (Stamos et al., 2004). The HGF -chain binds 
to a series of protruding polar side chains from Met, which originate from 3 separate loops: 
residues 124–128, residues 190–192, and residues 218–223. Although the -chain of HGF 
binds to Met with much higher affinity than that of the HGF -chain, the crystalline 
structure for the interaction between the HGF -chain and the extracellular region of Met is 
yet to be determined. 
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The Met tyrosine kinase domain follows a conserved bilobal protein kinase architecture 

mainly with an N-terminal, -sheet-containing domain linked through a hinge segment 

mainly to the -helical C lobe (Fig. 3B) (Schiering et al., 2003; Wang et al., 2006). The 
characteristic feature of Met is the presence of the C-terminal tail that contains tyrosine 
residues (1349YVHVNAT1356YVNV). Binding of HGF to the extracellular region of Met results 
in receptor dimerization and phosphorylation of multiple tyrosine residues within the 
cytoplasmic region. Phosphorylation of Tyr1234 and Tyr1235 within the tyrosine kinase 
domain positively regulates the catalytic activity of tyrosine kinase (Fig. 3B). The 
staurosporine analog K-252a inhibits Met tyrosine kinase through its binding in the ATP 
pocket (Schiering et al., 2003). The phosphorylation of C-terminal tyrosine residues Tyr1349 
and Tyr1356 recruits intracellular signaling molecules, including PI3K (phosphatidylinositol 
3-kinase), Grb2 (growth-factor-receptor-bound protein 2), Gab1 (Grb2-associated binder 1), 

PLC (phospholipase C), and Shp2 (SH2-domain-containing protein tyrosine phosphatase 
2). Direct interaction of Gab1 with tyrosine phosphorylated Met is mediated by the 
Met-binding site in Gab1, and Gab1 is the most crucial substrate for the HGF-Met pathway 
(Ponzetto et al., 1994; Sachs et al., 2000).  
 

 

Fig. 3. Crystal structures for the complex of HGF -chain and the Met Sema domain (A) and 

the Met tyrosine kinase domain (B). The crystal structures for the complex of HGF -chain 
and the Met Sema domain were reported by Stamos et al. (2003) (PDB number: 1SHY). The 
crystal structure for Met tyrosine kinase was reported by Schiering et al. (2003) (PDB 
number 1ROP). In B, the activation loop (A-loop) is shown in yellow, K-252a in green, and 
selected tyrosine residues (Y1234F, Y1235D, Y1349, Y1356) are in blue. 

The cytoplasmic juxtamembrane domain, which is composed of 47 highly conserved amino 

acids, acts as a negative regulator in terms of Met-dependent signal transduction. Cbl, an E3 

ubiquitin ligase, binds phosphorylated Y1003 of Met, and this Cbl binding results in Met 

ubiquitination, endocytosis and transport to the endosomal compartment, then degradation 

(Peschard et al., 2001). Cbl-mediated degradation of the activated Met provides a 

mechanism that attenuates or terminates Met-mediated signaling. Phosphorylation of 

Ser985 in the juxtamembrane domain regulates the activation status of Met upon HGF 

stimulation. Ser985 is phosphorylated by protein kinase-C and is dephosphorylated by 

protein phosphatase-2A (Gandino et al., 1994; Hashigasako et al., 2004). In cells in which 
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Ser985 is phosphorylated, HGF-induced activation of Met is suppressed. Therefore, 

activation of protein kinase-C, which occurs by different types of extracellular stimuli, 

regulates HGF-dependent Met inactivation/activation. 

4. HGF-Met in cancer development and progression 

4.1 Cancer development 
In normal tissues the activation of the Met receptor is tightly regulated, perhaps exclusively 

in a ligand-dependent manner. Aberrant activation of Met is associated with tumor 

development or progression to a tumor with malignant characteristics (Comoglio et al., 

2004; Christensen et al., 2005; Matsumoto & Nakamura, 2006). Overexpression of Met 

through transcriptional upregulation has been noted in several cancers, including thyroid, 

ovarian, pancreatic, prostatic, renal, hepatocellular, breast, and colorectal cancers. 

Overexpression of Met through gene amplification was found in cancers with highly 

invasive and malignant characteristics, including gastric and esophageal carcinomas, 

medulloblastoma, and non-small-cell lung carcinomas (NSCLC) with acquired resistance to 

epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (see below). Autocrine 

and paracrine activation of Met through overexpression of HGF has been noted in breast 

cancer, glioblastoma, rhabdomyosarcoma, osteosarcoma, and in NSCLC with acquired and 

intrinsic resistance to EGFR tyrosine kinase inhibitors. 

The missense mutations in the Met gene are the causative genetic disorders in inherited, and 

in some sporadic, papillary renal carcinomas (Schmidt et al., 1997). Mutations found in 

papillary renal carcinomas are located in the tyrosine kinase domain of the Met receptor, 

and these Met mutations are likely to be gain-of-function mutations (Jeffers et al., 1997; 

Michieli et al., 1999). In addition to papillary renal carcinoma, missense mutations in the Met 

gene have been found in different types of cancers, including lung cancer, hepatocellular 

carcinoma, and gastric cancer in the Sema, IPT, juxtamembrane, and tyrosine kinase 

domains (Christensen et al., 2005; Cipriani et al., 2009). 

4.2 Cancer invasion and metastasis 
The biological programs regulated by the HGF-Met pathway are adopted in cancer tissues, 

particularly for their invasive and metastatic behavior (Birchmeier et al., 2003; Matsumoto & 

Nakamura, 2006): 1) the dissociation of cancer cells at the primary site; 2) invasion, i.e., 

detachment from the primary site and migration through the basement membrane and 

stroma; and, 3) escape from apoptosis in anchorage-independent conditions during 

circulation. In a unique 3-D invasion in collagen gel, HGF was identified as a 

fibroblast-derived factor that definitively induces invasiveness of oral carcinoma cells 

(Matsumoto et al., 1989; Matsumoto et al., 1994). HGF increases extracellular protease 

expression coupled with the dissociation of cancer cells and their motility by which HGF 

promotes invasion in 3-D extracellular matrices and subsequent metastasis. HGF-Met 

signaling participates in the transition of epithelial to mesenchymal cell types (Birchmeier et 

al., 2003). Angiogenic and lymphangiogenic activities of HGF may facilitate cancer 

metastasis (Jiang et al., 2005). Collectively, the HGF-Met pathway has become a hot target in 

research and development of molecular targeted therapy for cancer, particularly to inhibit 

cancer invasion and metastasis (Hanahan & Weinberg, 2011).  
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4.3 Resistance to EGFR tyrosine kinase inhibitors 
Gefitinib and erlotinib, selective inhibitors for EGFR tyrosine kinase, show favorable 
responses in NSCLC, especially those expressing activating mutations in EGFR (Lynch et al., 
2004; Paez et al., 2004). Recent phase III clinical trials demonstrated that patients with EGFR 
mutant NSCLC had superior outcomes with gefitinib treatment, compared with standard 
first-line cytotoxic chemotherapy (Maemondo et al., 2010; Mitsudomi et al., 2010). However, 
almost without exception, the patients developed acquired resistance to EGFR tyrosine 
kinase inhibitors within several years (Morita et al., 2009). Furthermore, 20–25% of the 
patients with EGFR-activating mutations showed intrinsic resistance to EGFR tyrosine 
kinase inhibitors.  
Three mechanisms have been noted to induce acquired resistance to EGFR tyrosine kinase 
inhibitors in NSCLC with activating EGFR mutants. One is the T790M second mutation in 
EGFR (Kobayashi et al., 2005). Second is the amplification of the Met gene (Engelman et al., 
2007) (Fig. 4A, left). The T790M second mutation occurs in about half of all patients with 
acquired resistance to gefitinib or erlotinib. Recent studies showed that Met gene 
amplification was detected in ~20% of patients with acquired resistance to gefitinib or 
erlotinib (Bean et al., 2007; Turke et al., 2010). As the third mechanism, HGF-dependent Met 
activation has been noted (Yano et al., 2008). HGF induces resistance to EGFR tyrosine 
kinase inhibitors in EGFR mutant lung cancer (Yano et al., 2008) (Fig. 4, right). In clinical 
specimens, HGF overexpression was detected in a population of specimens from EGFR 
mutant lung cancer patients who showed intrinsic or acquired resistance to EGFR tyrosine 
kinase inhibitors indicating the clinical relevance of this resistance mechanism in lung 
cancer (Yano et al., 2008; Turke et al., 2010; Onitsuka et al., 2010). HGF can be produced by 
both cancer cells and host stromal cells such as fibroblasts (Matsumoto et al., 1994; Khoury 
et al., 2005; Matsumoto & Nakamura, 2006) (Fig. 4B). Tumor-associated fibroblasts 
expressed HGF at high levels in tumors from a population of NSCLC patients, and 
co-injection of HGF-producing human lung fibroblast cells with gefitinib-sensitive EGFR 
mutant lung cancer cells caused gefitinib resistance, which could be reversed by anti-HGF 
antibody and NK4, an antagonist against HGF (Wang et al., 2009). These results indicated 
that HGF derived from host stromal cells and/or HGF secreted from cancer cells induced 
resistance to EGFR tyrosine kinase inhibitors through paracrine and/or autocrine actions 
(Fig. 4B). 
In some cases, a small fraction of cells with Met gene amplification pre-exists before 
exposure to EGFR tyrosine kinases, and HGF accelerates expansion of cells with Met gene 
amplification in the presence of EGFR tyrosine kinase inhibitors (Turke et al., 2010). HGF 
expression was higher in the drug-resistant specimens than in the pretreatment specimens 
(Turke et al., 2010). The results suggested that minor clones with Met gene amplification 
pre-existed before treatment with EGFR tyrosine kinase inhibitors, and that HGF accelerated 
expansion of a pre-existing minor population of tumor cells with Met gene amplification, 
which showed there is a relationship between HGF level and Met gene amplification. In 
recent studies, the EGFR-T790M second mutation and HGF expression were detected 
simultaneously in acquired resistant tumors in a considerable number of patients treated 
with gefitinib or erlotinib. EGFR-T790M second mutation was found in 7 of 10 NSCLC 
patients who acquired resistance to gefitinib, and 5 of 6 cases with EGFR-T790M second 
mutation showed high levels of HGF expression (Onitsuka et al., 2010). In 27 patients 
resistant to EGFR tyrosine kinase inhibitors, EGFR-T790M second mutation was seen in 15 
of 27 cases, and 11 of these 15 tumors showed high-level HGF expression (Turke et al., 2010). 
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Collectively, expression of HGF in cancer cells and/or host stromal cells closely participated 
in the resistance to EGFR tyrosine kinase inhibitors in NSCLC, even in NSCLC with Met 
gene amplification.  
 

 

Fig. 4. Drug resistance of non-small-cell lung cancer (NSCLC) against EGFR tyrosine kinase 

inhibitors (EGFR-TKIs) through HGF-Met pathway. (A) Drug resistance through Met gene 

amplification (left) and HGF-dependent Met activation (right). Amplified Met associates with 

ErbB3 activates downstream signaling such as the PI3-Akt pathway, leading to the survival of 

cancer cells. HGF-dependent Met phosphorylation activates the PI3K-Akt pathway, 

independent of EGFR and ErbB3. (B) Outline for the resistance of NSCLC against EGFR-TKI 

by an HGF-dependent mechanism. HGF acts through an autocrine and/or paracrine manner. 

4.4 Resistance to antiangiogenic therapy 
Clinical results of antiangiogenic therapy in human patients have not been as promising as 

expected earlier (Schmidt, 2009). Until recently there had been a question as to why tumors 

become resistant to antiangiogenic therapy. Experimental studies have suggested that 

hypoxia generated by angiogenesis inhibitor or the blockage of new blood vessels triggers 

signaling molecules that make tumors more aggressive and metastatic (Schmidt, 2009).  

In a model of pancreatic neuroendocrine cancer, inhibition of vascular endothelial cell growth 

factor receptor (VEGFR) tyrosine kinase shrank the primary tumor, but it also made the 
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surviving cancer more aggressive with more metastatic behavior (Casanovas et al., 2005). 

Pathological and clinical studies indicate that the presence of hypoxic regions within 

neoplastic lesions correlates with poor prognosis and an increased risk of the development of 

distant metastases (Höckel & Vaupel, 2001). Importantly, a hypoxic condition induced the 

transcriptional activation of the Met receptor gene and subsequent amplification of HGF-Met 

signaling, thereby increasing the invasiveness of cancer cells (Penancchietti et al., 2004). A 

connection between hypoxia and the Met receptor seems to explain why hypoxia often 

correlates with invasive and metastatic behavior. Angiogenesis inhibition retards tumor 

growth by oxygen deprivation, at least in part. However, hypoxia caused by the inhibition of 

angiogenesis enhances HGF-Met signaling, thereby promoting tumor invasion and metastasis. 

The involvement of the HGF-Met pathway in the aggressive characteristics in the hypoxic 

regions of cancers, which includes tumors treated with antiangiogenic drugs, is considerable. 

5. Drug discovery and development 

Close involvement of aberrant HGF-Met signaling in tumorigenesis and progression to 

malignant disease has facilitated drug discovery and development. Several distinct lines of 

approach to the inhibition of the HGF-Met pathway have been demonstrated, including 

small synthetic inhibitors of Met tyrosine kinase, ribozymes, small-interfering RNA 

(siRNA), neutralizing monoclonal antibodies (mAbs), soluble forms of Met, antagonists 

composed of selected domains in HGF, and uncleavable single-chain HGF (Fig. 5). Among 

recombinant protein-based inhibitors, conventionally called biologics in drug development, 

mAbs targeting HGF or Met have been in clinical development earlier than the other 

biological inhibitors, predominantly because of their availability due to established 

technologies for manufacturing of recombinant mAbs. 

 

 

Fig. 5. Outline for different approaches to targeting HGF and Met.  
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5.1 Biologicals 
Biological inhibitors against HGF-Met include the following: 1) selected domains in HGF 
(NK4 and engineered NK1); 2) engineered single-chain HGF forms that are resistant to 
proteolytic processing; 3) truncated soluble forms of the Met extracellular region; and, 4) 
humanized monoclonal antibodies (mAbs) against HGF or Met.  

Among the -chain of HGF, NK2 (the N-terminal, 1st kringle, and 2nd kringle domains), an 
alternative splicing variant, was first shown to competitively antagonize the growth 
stimulation by HGF (Chan et al., 1991). However, NK2 was later shown to stimulate cell 
motility and enhance HGF-driven metastasis in a mouse model (Stahl et al., 1997; Yu & 
Merlino, 2002).  
NK4 is the first identified HGF-Met inhibitor devoid of biological activity through its Met 

binding. NK4 is composed of the N terminal and 4 kringle domains (Date et al., 1997; 

Matsumoto et al., 1998; Matsumoto et al., 2008). NK4 inhibits biological responses triggered 

by activation of HGF-Met signaling, including the spreading and invasion of cancer cells 

(Fig. 6). It should be emphasized that NK4 inhibits angiogenesis in addition to its 

antagonistic action against HGF, and this angioinhibitory action of NK4 is independent of 

its antagonist action against HGF. NK4 inhibited proliferation, migration, and tube 

formation of vascular endothelial cells induced by basic fibroblast growth factor and VEGF 

as well as by HGF (Kuba et al., 2001; Sakai et al., 2009). NK4 binds to perlecan and inhibits 

the cell-associated assembly of fibronectin, and the impaired fibronectin assembly 

suppresses integrin-dependent endothelial cell proliferation and migration. Having two 

different biological activities through completely different mechanisms is unique to NK4. 

Combination therapy of NK4 with antiangiogenic drugs is expected. 
 

 

Fig. 6. Inhibition of tumor invasion by NK4. Invasion of human gallbladder cancer cells 
through the Matrigel basement membrane was induced by co-culture with stromal 
fibroblasts, and this aggressive invasion was inhibited by NK4 (A). 3-D invasion of human 
pleural malignant mesothelioma in collagen gel was enhanced by HGF, and was inhibited 
by NK4 (B). 

The therapeutic effect of NK4 has been demonstrated in a variety of cancer models 
(Matsumoto et al., 2008). The inhibition of tumor growth by NK4 treatment was observed in 
a variety of tumors, and this inhibitory effect was associated with a reduction in blood 
vessels in tumor tissues. NK4 treatment inhibited in situ Met tyrosine phosphorylation, and 
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this was associated with an inhibition of the spread and invasive growth of cancer cells 
(Matsumoto et al., 2008). NK4 treatment inhibited metastasis in different types of models, 
including breast, colon, gastric, lung, ovarian, and pancreatic carcinomas, and malignant 
melanoma. These results provided the base for proof-of-concept; inhibition of the HGF-Met 
pathway is a way to inhibit the invasive and metastatic growth of cancer. Moreover, the 
combination therapy of NK4 and gefitinib overcame HGF-induced gefitinib resistance of 
lung cancer in a mouse model (Wang et al., 2009). 
NK1 was identified as a product of an alternative spliced variant of HGF, similar to NK2, that 
consists of the N-terminal and first kringle (K1) domains (Cioce et al., 1996). NK1 binds Met 
and acts as a partial agonist in cell-based assays and transgenic mice (Lokker et al., 1994; 
Schwall et al., 1996). Biochemical and structural analysis indicated the following two points: 1) 
NK1 is responsible for the high affinity binding of HGF to the Met-Sema domain; and, 2) Met 
dimerization may be mediated by the NK1-NK1 dimer interface (Watanabe et al., 2002; 
Gherardi et al., 2006). Based on structural analysis, mutations designed to alter the NK1 dimer 
interface (Y124A, K85A, K85A/D123A, and K85A/N127A) abolish its ability to promote Met 
dimerization, but these mutated NK1s retain Met-binding activity (Rubin et al., 2001; Tolbert et 
al., 2007). These NK1 mutants act as Met antagonists by inhibiting HGF-mediated cell 
scattering, proliferation, and invasion (Gherardi et al., 2006; Rubin et al., 2001; Tolbert et al., 
2007). Although it is yet to be determined if NK1 acts as an angiogenesis inhibitor, NK1 can be 
expected to exert anti-cancer action by inhibiting the HGF-Met pathway. 
Single-chain HGF variants that are resistant to proteolytic activation exploit the requirement 
for processing machinery that converts pro-HGF to mature HGF. Indeed, uncleavable forms of 
HGF have been engineered by substituting single amino acids in the proteolytic site, and these 
engineered uncleavable HGFs suppress Met-driven tumor growth, metastasis, and 
angiogenesis in murine tumor models (Mazzone et al., 2004). Related antagonists consisting of 
two-chain HGF mutants exploit the mechanism by which proteolytic conversion allosterically 
stabilizes HGF–Met binding to promote kinase activation (Kirchhofer et al., 2007). Insertion of 

the newly formed N-terminus of the HGF  chain into the activation pocket stabilizes the 

interaction between the HGF  chain and Met. Full-length 2-chain HGF mutants engineered to 
interrupt these interactions efficiently inhibited HGF-mediated Met activation. Studies on the 
structure-function relationship of Met extracellular domains provided the development of 
Met-based biological HGF-Met inhibitor. A soluble Met-Sema domain is not only necessary for 
Met receptor association but is also essential for HGF binding, whereby the Sema domain 
inhibits HGF-dependent and -independent receptor phosphorylation and functional receptor 
activation (Kong-Beltran et al., 2004). In a mouse model, soluble Met Sema domain suppressed 
tumor growth and metastasis (Michieli et al., 2004). 
Among different types of mAbs against HGF or Met, one anti-Met mAb decreases Met 
activation by inducing ectodomain shedding and degradation (Petrelli et al., 2006), while the 
others inhibit the binding of HGF to Met. Neutralizing mAb against human HGF, such as 
L2G7, AMG102 and SCH900105 (formerly AV299) inhibited HGF-dependent Met activation 
and the growth of tumor xenografts in mice (Petrelli et al., 2006; Kim et al., 2006; Jun et al., 
2007). AMG102 is currently in phase I and II clinical trials (HYPERLINK 
"http://www.clinicaltrials.gov" www.clinicaltrials.gov) (Table 1). AMG 102 was well 
tolerated in humans and adverse events were predominantly low grade (Cecchi et al., 2011). 
SCH900105 was also well tolerated by patients in phase I trials. In its first completed trial, 
SCH900105 treatment was associated with a stabilizing of disease in half of the patients 
(Cecchi et al., 2011).  
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Table 1. HGF-Met inhibitors in clinical development.  

mAbs against Met with different characteristics have been developed (Martens et al., 2006; 
Jin et al., 2008; van der Horst et al., 2009; Pacchiana et al., 2010). Anti-Met mAb, MetMab 
(formerly OA5D5), is a monovalent mAb that blocked binding of HGF to the Met (Martens 
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et al., 2006). Anti-Met mAb R13 and R28 synergistically inhibited HGF binding to MET and 
elicited antibody-dependent cellular cytotoxicity (van der Horst et al., 2009). The 
combination of R13/28 inhibited tumor growth in various colon tumor xenograft models. 
MetMab reduced Met phosphorylation, and this was associated with inhibition of 
orthotopic tumor growth and improvement of survival in a pancreatic xenograft model (Jin 
et al., 2008). MetMab is currently in phase I/II human clinical trials in comparison with 
erlotinib for patients with NSCLC (HYPERLINK "http://www.clinicaltrials.gov" 
www.clinicaltrials.gov).  

5.2 Small synthetic kinase inhibitors 
As small synthetic Met tyrosine kinase inhibitors, SU11274 and PHA665752 provided the 
basic notion that small synthetic Met tyrosine kinase inhibitors selectively inhibit Met 
activation and suppress tumor growth (Christensen ; 2003; Sattler et al., 2003; Berthou et al; 
2004; Ma et al., 2005; Smolen et al., 2006). Subsequent research and development led to the 
discovery of various types of synthetic tyrosine kinase inhibitors with different structures, 
chemical properties, and target specificity. Based on the wealth of accumulated knowledge 
gained from the success of preclinical and clinical development of small synthetic tyrosine 
kinase inhibitors, more than 10 small synthetic Met tyrosine kinase inhibitors have been 
entered into clinical trials (Table 1).  
PF-02341066 targets Met as well as anaplastic lymphoma kinase (ALK) (Sattler & Salgia, 
2009). MP470 inhibits PDGFR, Kit, and Met tyrosine kinases. In combination with erlotinib, 
MP470 inhibited prostate cancer cell proliferation and tumor xenograft growth (Qi et al., 
2009). E7050 targets both Met and VEGFR2 (Nakagawa et al., 2009). JNJ-38877605 shows a 
>1,000-fold selectivity for the Met kinase, compared to a >200-fold selectivity for related 
receptor tyrosine kinases (Eder et al., 2009). AMG 208 selectively inhibits both 
ligand-dependent and ligand-independent Met activation. BMS777607 has completed a 
phase I/II study in metastatic cancer patients (Schroeder et al., 2009). Phase I clinical trials 
were discontinued for SGX523 after renal toxicity was observed in patients receiving 
relatively low doses ( HYPERLINK "http://www.sgxpharma.com" www.sgxpharma.com).  
PF02341066 and XL184 have progressed the furthest of all Met inhibitors in clinical 

development. PF-02341066 has greater Met selectivity compared with PF-04217903 

(Timofeevski et al., 2009). Preclinical studies indicate PF-02341066 is highly effective against 

the product of the EML4-ALK translocation found in a subset of NSCLC patients (Shaw et 

al., 2009). PF-02341066t is currently in phase I, II, and III clinical trials ( HYPERLINK 

"http://www.clinicaltrials.gov" www.clinicaltrials.gov). XL184 targets Met, VEGFR2, and 

Ret. A current phase III trial is investigating the efficacy of XL184 as a first-line treatment, 

compared to a placebo, in patients with medullary thyroid cancer ( HYPERLINK 

"http://www.clinicaltrials.gov" www.clinicaltrials.gov).  

6. Conclusion and perspective 

Breakdown of the extracellular matrix scaffold and the concomitant cellular migration, 
mitogenesis, and morphogenesis that is driven by the HGF-Met system makes way for the 
construction and reconstruction of tissues during development and wound healing. Perhaps 
because of this, tumor cells use the HGF-Met pathway as a machine particularly for their 
spreading, metastasis, and evasion of microenvironmental predicaments. Therefore, 
activation and inhibition of the HGF-Met pathway are likely to be therapeutic approaches 
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for the treatment of non-neoplastic diseases with tissue damage and for malignant diseases, 
respectively. HGF exhibits therapeutic effects for the protection and healing of tissues 
against tissue damage and pathology. Clinical trials using recombinant HGF or HGF gene 
drugs have been approved for the treatment of diseases with unmet needs. 
Based on the basic knowledge of the significance of the HGF-Met pathway in tumor biology 
and pathology, during the last several years the one-to-one relationship between HGF and 
Met has facilitated the discovery and development of drug candidates that selectively 
inhibit HGF-Met in different ways. Preclinical and clinical development of drugs targeting 
HGF-Met will move into practice in the near future as new anticancer drugs. However, 
although drug discoveries in molecular-targeted cancer therapy have been beneficial for 
patients with malignancies, the appearance of persistent characteristics of malignant tumors 
in regard to resistance to anticancer therapies and drugs remains an obstacle to disease-free 
survival. The choice of the better, or best, way to inhibit HGF-Met signaling, i.e., ligand 
inhibition, receptor inhibition, biologics, mAb, or small synthetic, would gradually become 
clearer following clinical experiences.  
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