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1. Introduction

Introduction. A critical challenge faced by sustainability science is to develop robust
strategies to cope with highly uncertain social and ecological dynamics. The increasing
intensity with which human societies utilize (limited) natural resources is fueling the global
debate and urging the development of resource management methodologies/policies to
effectively deal with very demanding socio-bio-economical issues. Unfortunately, despite
concerted efforts by governments, many natural resources continue to be poorly managed.
The collapse of many fisheries worldwide is the most notable example (Clark, 2006;
Clark et al., 2006; Holland, Gudmundsson; Myers, Worm 2003; Sethi et al., 2005) but other
examples include forests (Moran, Ostrom), groundwater basins (Shah, 2000), and soils (ISRIC,
1990). The suggested causes are varied but (Clark, 2006) highlights two: (1) lack of
consideration of economic incentives actually faced by economic agents and (2) uncertainty

associated with the dynamics of biological populations. In the case of fisheries, Clark notes
that “complexity and uncertainty will always limit the extent to which the effects of fishing
can be understood or predicted” (Clark, 2006, p. 98). This suggests that we need policies
capable of effectively managing natural resource systems despite the fact that we understand
them poorly at best.
Real-World Management Issues. Real-world resource management must address three
components: goal setting, practical (robust) implementation, and learning. Clark and
others (Clark, 2007; 2006; Clark et al., 2006) have recently noted that practical implementation
issues are frequently at the root of fishery management failures. For most fisheries,
the necessary institutional contexts exist (Wilen, Homans) and we know what to do, yet
management efforts fail. This suggests a need to focus on the actual process of resource
management. For example, how can managers make decisions with incomplete information
concerning how the resource and the resource users will respond to management actions?
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2 Will-be-set-by-IN-TECH

When managers can’t learn fast enough, yet still must make decisions, how should they
proceed?
Stochastic Optimization. A common approach to such policy1 problems is stochastic
optimization. Examples include studies of the performance of management instruments in the
face of a single source of specific uncertainty such as in the size of the resource stock (Clark,
Kirkwood; Koenig, 1984), the number of new recruits (Ludwig, Walters; Weitzman, 2002),
or price (Andersen, 1982). Unfortunately, because they require assigning probabilities to
possible outcomes, the insights from stochastic optimization techniques can be somewhat
restricted. As Weitzman puts it, “The most we can hope to accomplish with such an approach
is to develop a better intuition about the direction of the pure effect of the single extra
feature being added...when the rest of the model is isolated away from all other forms of
fisheries uncertainty” (Weitzman, 2002, p. 330). Such models generate interesting insights
regarding how uncertain resources should be managed, but they contribute little to improving
actual resource management practice. In our presentation, we attempt to provide some
guidance through the development and application of a set of tools for practical (robust)

policy implementation decisions in situations with multiple sources of uncertainty. While
our approach is fundamentally deterministic, we show how probabilistic information can be
accommodated within our framework.
Literature Survey. Several different threads concerning practical policy implementation
challenges have emerged in the literature. Adaptive management (Walters, 1986) and
resilience-based management (Holling, Gunderson; 1986; 1973; Ludwig et al., 1997) are
examples from ecology. In parallel, robust control ideas from engineering (Zhou, Doyle) have
begun to permeate macroeconomics (Hansen, Sargent; Kendrick, 2005) and there is recent
work on resource management problems in the engineering literature (Belmiloudi, 2006;
2005; Dercole et al., 2003). A concept of robust optimization has also been developed in the
operations research and management science literature (Ben-Tal, Nemirovski; Ben-Tal et al.,
2000; Ben-Tal, Nemirovski) with some specific applications of these ideas to environmental
problems (Babonneu et al., 2010; Lempert et al., 2006; 2000). The overarching theme of robust
optimization is to select the best solution from those “immunized” against data uncertainty,
i.e. solutions that remain feasible for all realizations of the data (Ben-Tal, Nemirovski).
Our Approach: Exploiting Concepts from Robust Control. This chapter presents a

sensitivity-based robustness-vulnerability framework for the study of policy implementation
in highly uncertain natural resource systems in which uncertainty is characterized by
parameter bounds (not probability distributions). This approach is motivated by the fact
that probability distributions are often difficult to obtain. Despite this, it is shown how one
might exploit distributions for uncertain model parameters within the presented framework.
The framework is applied to parametric uncertainty in the classic Gordon-Schaefer fishery
model to illustrate how performance (income) can be sacrificed (traded-off) for reduced
sensitivity, and hence increased robustness, with respect to model parameter uncertainty.
Our robustness-vulnerability approach provides tools to systematically compare policy
uncertainty-performance properties so that policy options can be systematically discussed.
More specifically, within this chapter, we exploit concepts from robust control in order
to analyze the classic Gordon-Schaefer fishery model (Clark, 1990). Classic maximization
of net present revenue is shown to result in an optimal control law that exhibits limit

1 We use the terms “policies” and “control laws” interchangeably in this presentation.
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Design of Robust Policies for Uncertain Natural Resource Systems: Application to the Classic Gordon-Schaefer Fishery Model 3

cycle behavior (nonlinear oscillations) when parametric uncertainty is present. As such,
it cannot be implemented in practice (because of prohibitively expensive switching costs).
This motivates the need for robust policies that (1) do not exhibit limit cycle behavior
and (2) offer performance (returns) as close to the optimal perfect information policy as
model parameter (and derived fishery biomass target) uncertainty permits. Given the
state of most world fisheries, our presentation focuses on a fishery that is nominally
(i.e. believed to be) biologically over exploited (BOE); i.e. the optimal equilibrium biomass
lies below the maximum sustainable yield biomass (Clark, 2006; Clark et al., 2006; Clark,
1990; Holland, Gudmundsson; Myers, Worm 2003; Sethi et al., 2005). By so doing, we directly
address a globally critical renewable resource management problem. As in our prior work
(Anderies et al., 2007), (Rodriguez et al., 2010), we do not seek “a best policy.” Instead,
we seek families of policies that are robust with respect to uncertainties that are likely
to occur. Such families can, in principle, be used by a fishery manager to navigate the
many tradeoffs (biological, ecological, social, economic, political) that must be confronted.
More specifically, our effort to seek robust performance focuses on reducing the worst case

downside performance; i.e. maximizing returns when we have the worst case combination
of parameters. Such worst case (conservative) planning is critical to avoid/minimize the
possibility of major regional/societal economical shortfalls; case in point, the recent “Great
Recession.” It is important to note that the simplicity of our model (vis-a-vis our performance
objective of maximizing the net present value of returns) permits us to readily determine the
worst case combination of model parameters (i.e. growth rate, carrying capacity, catchability,
discount rate, price, cost of harvesting). Given this, we seek control laws that do not exhibit
limit cycle behavior and whose returns are close (modulo limitations imposed by uncertainty)
to that of the worst case perfect information optimal control policy - the best we could do
in terms of return if we knew the parameters perfectly. Other design strategies are also
examined; e.g. designing for the best case set of parameters. “Blended strategies” that
attempt to do well for the worst case downside perturbation (i.e. minimize the economic
downside) as well as the best case upside perturbation (i.e. maximize the economic upside)
are also discussed. Such strategies seek to flatten the return-uncertainty characteristics over
a broad range of likely parameters. The above optimal control (derived) policies are used
as performance benchmarks/targets for the development of robust control policies. While

our focus is on bounded deterministic parametric uncertainty, we also show how probability
distributions for uncertain model parameters can be exploited to help in the selection of
benchmark (optimal) policies. After targeting a suitable optimal (benchmark) policy, we
show how robust policies can be used to approximate the benchmark (as closely as the
uncertainty will permit) in order to achieve desired performance-robustness-vulnerability
tradeoffs; e.g. have a return that is robust to worst case parameter perturbations.
While the presentation is intended to provide an introduction into how concepts from optimal
and robust control may be used to address critical issues associated with renewable resource
management, the presentation also attempts to shed light on challenges for the controls
community. Although the presentation builds on the prior work presented in (Anderies et al.,
2007), (Rodriguez et al., 2010), the focus here is more on defining the problem, describing
the many issues, and sufficiently narrowing the scope to permit the presentation of a design
methodology (framework) for robust control policies.
Finally, it must be noted that the robust policies that we present are not intended to be
viewed as final policies to be implemented. Rather, they should be viewed as policy targets -
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4 Will-be-set-by-IN-TECH

providing guidance to resource managers for the development of final implementable policies
(based on taxes, quotas, etc. (Clark, 1990, Chapter 8)) that will (in some sense) approximate
our robust policies. While our focus has been on parametric uncertainty, it must be noted
that robustness to unmodeled dynamics (e.g. lags, time delays) is also important. While some
discussion on this is provided, this will be examined in future work.
Contributions of Work. The main contributions of this chapter are as follows:

• Benefits of Robust Control in Renewable Resource Management. The chapter shows how robust
control laws can be used to eliminate the limit cycle behavior of the optimal control
law while increasing robustness to parametric uncertainty and achieving a return that
is close (modulo limitations imposed by uncertainty) to the perfect information optimal
control law. Special attention is paid to minimizing worst case economic downside. As
such, the policies presented shed light on fundamental performance limitations in the
presence of (parametric) uncertainty. The policies presented are intended to serve as
targets/guidelines that fishery managers may try to approximate using available tools
(e.g. taxes, quotas, etc. (Clark, 1990, Chapter 8).

• Tutorial/Introductory Value. The chapter serves as an introduction for the controls
community to a very important resource management problem in the area of global
sustainability. As such, the chapter offers a myriad of challenging problems for the controls
community to address in future work.

Organization of Chapter. The remainder of the chapter is organized as follows.

• Section 2 describes the classic Gordon-Schaefer nonlinear fishery model (Clark, 1990) to be

used.

• Section 3 describes the optimal control law and its properties. The latter motivates the
need for robust control laws for fishery management - laws that try to achieve robust near
optimal performance in some sense.

• Section 4 describes a class of robust control laws to be examined.

• Section 5 contains the main results of the work - comparing the properties of the optimal
policy to those of the robust policies being considered.

• Finally, Section 6 summarizes the chapter and presents directions for future research.

2. Nonlinear bioeconomic model

In this section, we describe the nonlinear bioeconomic model to be used for control design.
The model is then analyzed.

2.1 Description of bioeconomic model

The nonlinear Gordon-Schaefer bioeconomic model (Clark, 1990; Gordon, 1954; Schaefer,
1957) is now described.
Nonlinear Gordon-Schaefer Bioeconomic Model.

The nonlinear model to be used is as follows:

ẋ = F(x)− qxup x(0) = xo , (1)

418 Challenges and Paradigms in Applied Robust Control
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Design of Robust Policies for Uncertain Natural Resource Systems: Application to the Classic Gordon-Schaefer Fishery Model 5

where

F(x) = rx
(

1 − x

k

)

(2)

represents the natural regeneration rate of the resource and x, xo, and up represent resource
biomass, initial resource biomass, and harvesting effort, respectively. The parameters r,
k, and q, retain their traditional definitions of intrinsic growth rate, carrying capacity, and

catchability, respectively. Table 1 in Section 2.5 summarizes model parameter definitions,
units, nominal values, and ranges. Model uncertainty will be addressed in Section 2.6.
Saturating Nonlinearity. Typically, effort is bounded above by some maximum and below
by zero, i.e. up ∈ [0, umax]. Typically, this physical constraint is implicitly taken into account
when the optimal control problem is solved. However, a more general family of controls
may generate control signals outside the allowable range, and it is important to be explicit
about how these signals are “clipped” by physical constraints. We thus define the saturation
function

sat(x; xmin, xmax)
def
=

{

xmin −∞ < x < xmin
x xmin ≤ x ≤ xmax
xmax xmax < x < ∞.

(3)

The feasibility condition can then be written in terms of (3), i.e.

up ∈ [0, umax] ⇔ up = sat(u; 0, umax) (4)

where u is the control signal. When there is no risk of confusion, we will write up = sat(u).
Performance Measure. The fishery performance measure to be used, denoted J, is the net
present value of future returns:

J(up)
def
=

∫ T
0 e−δτ(pqx − c)up dτ (5)

where price p, cost per unit effort c, discount rate δ, and planning horizon T are assumed
constant. (We will use T = ∞ to develop the optimal control law.)

2.2 Equilibrium analysis of bioeconomic model

One of the desired control objectives will be for the fishery to operate at specific equilibrium
(set) points. Given this, the set of equilibria for the nonlinear model are as follows:

xe = o ue = 0 (6)

when ue ∈ (0, 1] xe = k
(

1 − q

r
ue

)

. (7)

Observe that as the equilibrium effort increases, the equilibrium biomass decreases (as
expected).

2.3 LTI small signal model

To further understand the local characteristics of the above nonlinear model, we can linearize
it about equilibria. Doing so yields the following small signal linear time invariant (LTI)
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model:

δẋ = a δx + b δu (8)

f (x) = rx
(

1 − x

k

)

− qxu (9)

a =

[

∂ f

∂x

]

(xe,ue)
= r − 2rxe

k
− que = −

( r

k

)

xe b =

[

∂ f

∂u

]

(xe,ue)
= −qxe (10)

δx(t) = x(t)− xe δx(0) = x(0)− xe = xo − xe δu(t) = u(t)− ue (11)

The associated transfer function from δu to δx is given by:

P(s) =
b

s − a
(12)

Since a = −
(

r
k

)

xe < 0, it follows that the equilibrium point (xe, ue) is asymptotically stable
with the rate of convergence (pole) being proportional to the equilibrium biomass xe, the
fishery growth rate r, and inversely proportional to the fishery’s carrying capacity k. The

dc gain associated with P is P(0) = − kq
r ; the minus sign implying that fishing reduces the

equilibrium biomass.
Utility of LTI Small Signal Model. The above LTI model can be used to approximate the response
x of the nonlinear model. If the response of the LTI model is denoted

x̂ = xe + δx (13)

then x̂ ≈ x when u ≈ ue (i.e. δu(t) ≈ 0) and xo ≈ xe (i.e. δx(0) = xo − xe ≈ 0).

2.4 Control objectives

The control objectives for the fishery may be summarized (roughly) as follows:

1. Maximize the net present value of future returns

maximize J
def
=

∫

∞

0
e−δt(pqx − c)up dt (14)

Note: We would be willing to give up some return for increased robustness.

2. Closed loop stability

(a) Limit cycle behavior is not acceptable because it can have an prohibitively expensive

implementation cost. While this is not captured in J, it could be addressed by
introducing an additional u̇p term within J.

(b) Closed loop responses should be “relatively smooth” (continuous) when we have
nearly continuous sampling of the biomass x. It is understood that sampling is
inevitable in practice; i.e. continuous sampling is prohibitively expensive and hence
impossible. As such, closed loop responses should be robust with respect to some

discrete sampling.

3. Follow (achievable) step biomass commands issued by the fishery manager in the steady
state

4. Reject additive step input and output disturbances in the steady state

420 Challenges and Paradigms in Applied Robust Control
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Design of Robust Policies for Uncertain Natural Resource Systems: Application to the Classic Gordon-Schaefer Fishery Model 7

5. Attenuate high frequency sensor noise so that it does not significantly impact control action

6. Ensure that the fishery biomass overshoot to step reference biomass commands is suitably
bounded

7. Robustness with respect to model parametric uncertainty

2.5 Nominal model parameters

Nominal parameter values to be used are given below in Table 1.

Symbol Description Unit Nominal Range
θ θo

Biological Parameters

xo Initial resource biomass Kilotons, KT varies [0.5xo , 1.5xo]

umin Minimum harvesting effort f leet · power · year/year 0 -
umax Maximum harvesting effort f leet · power · year/year 1 -

r Intrinsic growth rate 1/year 0.3 [0.15,0.45]

q Catchability 1/ f leet · power · year 0.3 [0.15,0.45]
k Carrying capacity KT 100 [50,150]

Economic Parameters
p Resource market price M$ per kiloton 10 [5,15]

c Cost of harvesting per effort M$ per year 13.24 [6.62, 19.86]
δ Annual discount rate 1/year 0.1 [0.05,0.15]
T Planning horizon years 50 N/A

Table 1. Nominal Parameter Values Used

A planning horizon of T = 50 years was selected because the nominal discount rate is δ = 0.1
and in roughly T = 5

δ = 50 years, the integrand within J is negligible.
Focus of Work: Biologically Exploited (BOE) Fishery. The focus of our presentation will
be on a fishery that biologically overly expoilted (BOE) as opposed to biologically under
exploited (BUE). This is because most of the world’s critical fisheries are overly exploited
(Clark, 1990).

• BOE with the ‘low cost’ c = 13.24. BOE occurs when the cost is sufficiently small. For the
parameters indicated, it can be shown that:

x∗e = 0.75 · xMSY = 37.5 < xMSY = k
2 = 50

i.e. the optimal equilibrium biomass is below the maximum sustainable yield biomass.

2.6 Model uncertainty and scope of presentation

Within this presentation, we focus on uncertainty associated with the nominal model
parameters: r, k, q, p, c, δ. The following uncertainty will not be addressed in this presentation
but it is duly noted:

1. The structure of F may be different than considered above. For example, if F has the form
F(x)geq0 for x ∈ [kc, k] and F(x) < 0 for x ∈ (0, kc) where F(0) = 0 and F(k) = 0, then
we say that the fishery exhibits critical depensation (Clark, 1990, p. 17). In short, this implies
that if x ever drops below the critical depensation parameter kc > 0, then x will decrease
toward zero regardless of u; i.e. the fishery will be lost.

421Design of Robust Policies for Uncertain Natural Resource Systems: 
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2. All plant parameters are uncertain. They may even change with time. Moreover, the plant
contains additional dynamics; e.g. it takes time for the fishery workers to mobilize. This
can contribute additional lags, time delays, and rate limiters within the plant. One can
use a decentralized or distributed model in order to capture the decision making made by
individual fisher people (Clark, 1990, Ch. 8 & 9).

3. Input and output disturbances are uncertain.

4. Measurement noise is uncertain.

5. The biomass is not known; it must be estimated

6. The output (biomass) is sampled at some rate; if this rate is not sufficiently high, it could
cause aliasing (Ogata, 1995); the sampling rate should be (as a rule-of-thumb)greater than
ten times the control system bandwidth.

In contrast to many control applications where the “controller” is implemented with great
fidelity, fishery controllers are implemented by an organization. As such, there can be
considerable implementation issues/uncertainty. This will be discussed further below.

3. Optimal control law and properties

Within this section, we present the optimal control problem, the associated solution (optimal
control law), and the properties of the optimal control law.

3.1 Optimal control law

We begin with a brief derivation of the classical optimal control policy stated in a way that
will facilitate comparison to the class of LTI policies described later in this section.

The solution of the traditional optimal control problem:

maximize J
def
=

∫

∞

0
e−δt(pqx(t)− c)up(t) dt (15)

s.t. ẋ(t) = F(x(t))− qx(t)up(t) x(0) = xo (16)

umin = 0 ≤ up(t) ≤ umax (17)

is obtained by forming the Hamiltonian:

H(x, u, λ)
def
= e−δt(pqx − c)u + λ [F(x)− qxu] = G(x, t)u − λF(x) (18)

where G(x, t)
def
= e−δt(pqx − c) − λqx and λ is the co-state variable. Pontryagin’s Maximum

Principle then implies that an optimal control policy will satisfy:

u(t) =

{

−∞ when G(x, t) < 0
∞ when G(x, t) > 0.

(19)

Because the objective functional is linear, the Maximum Principle says nothing about the
case when G(x, t) = 0. However, using the co-state variable relationship λ̇ = − ∂H

∂x , the
well-known implicit formula for the singular control path can be determined (Clark, 1990):

F′(x) +
cF(x)

x(pqx − c)
= δ (20)
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Optimal Steady State Equilibrium Biomass. When F(x) = rx(1 − x/k), the above equation
can be used to determine the optimal (steady state) equilibrium biomass x∗e :

x∗e =

[

x∞

2 − xMSY

(

δ
r

)

+ xMSY

]

+

√

[

x∞

2 − xMSY

(

δ
r

)

+ xMSY

]2
+ 4xMSYx∞

(

δ
r

)

2
. (21)

where

xMSY =
k

2
(22)

is the maximum sustainable yield biomass and

x∞ =
c

pq
(23)

is the optimal equilibrium when δ = ∞; i.e. open-access equilibrium (Clark, 1990). The above
shows that the optimal biomass x∗e depends on the three independent parameters x∞, xMSY,
and δ

r . It can be shown that

x∞ ≤ x∗e ≤ xMSY +
x∞

2
(24)

for all δ ∈ [0, ∞] where the quantity xMSY + x∞

2 is the optimal x∗e for δ = 0. The associated
optimal (steady state) equilibrium control is given by:

u∗
e

def
=

r

q

(

1 − x∗e
k

)

. (25)

Optimal Control Policy. Define the tracking error as the difference between the desired
(reference) state and the actual state, i.e.

e
def
= xre f − x. (26)

Setting xre f = x∗e and combining (19) with (25) yields following expression for the control law:

u(t) =

{−∞ when e > 0
u∗

e when e = 0
∞ when e < 0.

(27)

The saturation function is then applied to this control signal to capture the physical constraints
on the system, i.e. up(t) = sat(u(t)). This control law implies the following:

• If e > 0, set up(t) = umin = 0, allow x(t) to increase until x(t) = x∗e , then set up(t) =
sat(u∗

e ).

• If e < 0, set up(t) = umax until x(t) decreases to x∗e , then set up(t) = sat(u∗
e ).

• If e = 0, set up(t) = sat(u∗
e ).

Below, we show that this policy (in general) exhibits limit cycle behavior in the presence of
parameter uncertainty (see Figure 6).

423Design of Robust Policies for Uncertain Natural Resource Systems: 
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3.2 Nominal optimal control policy numerics

The numerics for the nominal optimal perfect information control law are summarized in
Table 2.

Case x∗e u∗
e x∞ u∞ Optimal Control Law Optimal Return, J∗o

small IC large IC

BOE 37.5 0.625 4.41 0.987 u(t) =

⎧

⎪

⎨

⎪

⎩

0 x(t) < 37.5

u∗
e

def
= F(x∗e )

qx∗e
= 0.625 x(t) = 37.5

umax = 1 x(t) > 37.5

451 782

Table 2. Summary of Optimal Control Policy Numerics. BOE corresponds to c = 13.24 which
yields x∗e = 0.75 · xMSY. Small IC corresponds to xo = 0.5 · x∗e < x∗e . Large IC corresponds to
xo = 1.5 · x∗e > x∗e . x∞ = c

pq and u∞ = r
q (1 − x∞

k ) correspond to infinite discounting

(open-access); i.e. δ = ∞.

3.3 Properties of the optimal control law

In this section, we describe the properties of the optimal control law assuming perfect
information (i.e. model parameters are known with no error) and imperfect information
(i.e. model parameters are not perfectly known). Understanding the properties of the optimal
policy is very important for several reasons. We wish to understand (1) the fundamental
robustness properties (e.g. economic inefficiency) of an optimal policy (e.g. one based on
nominal, worst case, or best case parameters); (2) implementation issues associated with the
optimal control policy; (3) how the robustness properties for our robust policies compare to

those of a particular optimal control policy; (4) how x∗e depends on parameter perturbations.
The latter is important because we will using x∗e as the reference command xre f for our robust
control law policies. This is an issue because the optimal x∗e (in general) is uncertain; i.e. x∗e is
only known for specific value selections (e.g. nominal, worst case, best case). As such, we will
have to address this uncertainty to clearly understand what our robust control policies (with
built-in command following) will be driving the state of the fishery to.
In short, we show below that: (1) Since x∗e is, in general, uncertain, if x∗e is the desired
(reference) state, then we have a major issue in that we will be driving the fishery to the
incorrect state. This can have severe economic as well as biological implications (e.g. driving
x below the critical depensation parameter kc, will destroy the fishery). (2) The optimal policy
exhibits limit cycle behavior when x∗e is uncertain. Moreover, it is very sensitive to any discrete
sampling. As such, the (imperfect information) optimal policy is prohibitively expensive to
implement (see Figure 6).
Optimal Perfect Information Control Law Sensitivity: Single Parameter Results (xo = x∗e ).

The following shows how the the performance of the optimal perfect information control law
changes with parameter perturbations. Results for our BOE fishery when xo = x∗e are as

follows:

1. (J∗e , x∗e , u∗
e ) increase with increasing k or increasing r.

2. J∗e increases while (x∗e , u∗
e ) decrease with increasing q.

3. J∗e decreases while x∗e increases and u∗
e decreases with increasing δ.

4. J∗e increases while x∗e decreases and u∗
e increases with increasing p.
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5. (J∗e , x∗e ) decrease while u∗
e increases with increasing c.

Robustness with Respect to Parametric Uncertainty: Imperfect Versus Perfect Information.

Figure 1 shows how the optimal control law performs in the presence of parametric
uncertainty. xo = x∗e for the perfect information policy. xo is at the unperturbed/nominal
x∗e for the imperfect information policy. The plots compare the performance of the optimal
control law with imperfect parameter knowledge to that with perfect parameter knowledge.
The perfect information optimal control law (by definition) results in the maximum achievable
return. While it represents a suitable benchmark to compare with, it must be emphasized that
x∗e is always uncertain. This is particularly crucial when x∗e is being used as the target biomass
(reference command) for a robust control law (see Sections 4, 5) because an incorrect reference
command xre f will fundamentally limit the achievable performance. Moreover, no (inner
loop) robust policy can address this. To properly address this, one needs some combination of
parameter estimation, system identification, and learning coupled with some adaptive outer
loop policy that adjusts the target based on collected information. While this is challenging
and exciting to pursue, it is beyond the scope of our presentation.
Figure 1 specifically shows the maximum theoretical (perfect information) return on the left
in blue. The return associated with the imperfect information optimal policy (designed for
nominal parameter values) is shown on the left in red. On the right in blue, we see how

much the imperfect information optimal control law under performs the perfect information
optimal control law. When k is perturbed by −30%, the imperfect law under performs the
perfect information law by nearly 10%. Figure 1 shows that for a similar perturbation in r,
the imperfect policy under performs by nearly 2%. It can be shown (figures not provided)
that for a similar perturbation in δ, the imperfect policy under performs by less than 1%. It
can be shown (figures not provided) that for similar perturbations in p, c, or q the imperfect
policy under performs by a very small percentage. Why is it that the biological parameters
k and r matter more in closing the perfect-imperfect information performance gap than δ,
p, c, or q? This is because x∗e is more sensitive to uncertainty in k and r for the BOE case
under consideration. In short, the plots show that we should be concerned primarily with
uncertainty in k. More generally, we seek (robust) policies that perform closer to the perfect
information optimal policy for likely parametric modeling errors. Imperfect information
obviously limits how close we can get. This and associated issues will be addressed below.
Impact of Extremal Parameter Uncertainty on Perfect Information (J∗e , x∗e , u∗

e ) - At Optimal

Equilibrium. In what follows, x∗e will be used as a reference command xre f to a robust
control law with good command following properties. Since x∗e is uncertain, it is important

to understand how commanding an incorrect target will limit achievable performance. Given
this, suppose that xo = x∗e .
We now ask, what is the worst case combination of perturbations for the model parameters (r,
k, q, p, c, δ)? While an analytical proof is difficult, it can be shown (numerically) that

J∗e , in general, decreases when (k, r, p, q) are decreased and/or (c, δ) are increased.

This result is independent of the initial condition xo for the BOE case under consideration.
Given uncertainty bounds for each of the model parameters, this observation permits us to
readily determine the worst case set of parameter perturbation - something that, in general, is
very difficult to do.

425Design of Robust Policies for Uncertain Natural Resource Systems: 
Application to the Classic Gordon-Schaefer Fishery Model

www.intechopen.com



12 Will-be-set-by-IN-TECH

−30 −20 −10 0 10 20 30
300

400

500

600

700

800

900

∆ k (%)

J
(u

p
)

Net Present Value

 

 

Expected Return

Maximum Theoretical Return

Actual Return

−30 −20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

%

∆ k (%)

Inefficiency of Optimal Control Law

−30 −20 −10 0 10 20 30
300

400

500

600

700

800

900

∆ r (%)

J
(u

p
)

Net Present Value

 

 

Expected Return

Maximum Theoretical Return

Actual Return

−30 −20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

%

∆ r (%)

Inefficiency of Optimal Control Law

Fig. 1. Economic Inefficiency for Imperfect Information (Nominal) Optimal Control Law:
Capacity & Growth Rate Uncertainty

Consider figures 2-3 for (J∗e , x∗e , u∗
e ), respectively. Within these figures, xo = x∗e and perfect

information is assumed. The figures show the dependence of the perfect information optimal
control law on worst case and best case (extremal) parameter perturbations as defined below.

• Worst Case Extremal Parameter Perturbations. Within figures 2-3, negative (worst case
extremal) parameter perturbations correspond to

∆r

ro
=

∆k

ko
=

∆q

qo
=

∆p

po
< 0 and

∆c

co
=

∆δ

δo
> 0 (28)

i.e. equal parametric perturbations that result in a smaller return. Here, ∆θ
def
= θ − θo

represents a perturbation in the parameter θ with respect to the nominal parameter θo.

• Best Case Extremal Parameter Perturbations. Within figures 2-3, positive (best case extremal)
parameter perturbations correspond to

∆r

ro
=

∆k

ko
=

∆q

qo
=

∆p

po
> 0 and

∆c

co
=

∆δ

δo
< 0 (29)

i.e. equal parametric perturbations that result in a larger return.
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The green curves within figures 2-3 represent actual optimal perfect information values. The
blue curves give the percent deviation with respect to the nominal value.
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Fig. 2. Perfect Information Optimal Control Law Returns: Extremal Percent Parameter
Perturbations, xo = x∗e

Assuming ±20% uncertainty for each nominal parameter value, figure 2 shows that the
worst case perfect information optimal return is $215.6 M (65.25% below the nominal of
J∗e = 620.4M). In contrast, the best case perfect information optimal return is $1482M (138.95%

above the nominal of J∗e = 620.4M) - a 687% improvement with respect to the worst case
perfect information optimal return. Also note from figure 3 that the worst case parameter
combination results in a 20% reduction in x∗e with respect to the nominal. From figure 3, we
see that u∗

e is increased by less than 1%.
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Dealing with Uncertain x∗e and J∗e . Let xre f denote the reference biomass at which the fishery

manager wishes to operate the fishery 2. How does a manager choose the target fishery
biomass xre f ? A biologically conservative manager may wish to keep the fishery at the

maximum sustainable yield xre f = xMSY = k
2 . A financially aggressive manager may chose

to operate the fishery at the infinite discount (δ = ∞) ) optimal value xre f = x∞ = c
pq . More

generally, a manager could use the optimal value xre f = x∗e as the point at which to operate.

Given that x∗e is known to within a percentage
∆x∗

e
x∗

e
, it follows that a fishery manager might

try to operate at (1) x∗e − ∆x∗e if economic aggression is desired, or at (2) x∗e + ∆x∗e if biological
conservatism is desired. The x∗e concept gives the fishery manager a way to systematically
think about fishery biomass targets.
Uncertainty In (xo, x∗e , xre f ): 6 Cases. In general, xo and x∗e are uncertain. How does one

choose the target xre f . We’d ideally like xre f = x∗e , but x∗e is uncertain. What can a manager
do? The table below contains the six possible relations that can exist amongst the three scalars
(xo , x∗e , xre f ) - from smallest to biggest. In general, we would (ideally) like the state to move
from xo toward xre f = x∗e . Since x∗e is uncertain, it follows that xre f (in general) will differ from
x∗e . As such, it follows that we may issue reference commands xre f that move the state x in an
incorrect direction. Since the state moves from xo toward xre f , it follows from the table below
that in two cases the state moves in the incorrect direction. In the four other cases, the state
moves in the correct direction.

Smallest → Biggest Direction
xre f xo x∗e Incorrect Way too much fishing (Way Too Aggressive)

xre f x∗e xo Correct Too much fishing (Very Aggressive)

xo xre f x∗e Correct Too much fishing (Moderately Aggressive)

xo x∗e xre f Correct Too little fishing (Moderately Conservative)

x∗e xre f xo Correct Too little fishing (Very Conservative)

x∗e xo xre f Incorrect Way too little fishing (Way Too Conservative)

Table 3. Six Possible Inequality Relations for (xo , x∗e , xre f )

To select xre f , we offer the following approaches.

1. Best-Worst Case Approach. Assume that we have good bounds on parametric uncertainty
(not necessarily tight, but encompassing) for the 6 model parameters under consideration:
k, r, q, p, c, δ. Suppose that we design for the best worst case scenario; i.e. try to approach
the return of the perfect information optimal policy when the worst case parameter

perturbations occur; i.e. ∆k
ko

= ∆r
ro

=
∆q
qo

=
∆p
po

< 0 and ∆c
co

= ∆δ
δo

> 0. We assume worst

case maximal parameter perturbations. (For simplicity, we assume that all parameters are
perturbed by their maximum worst case percentage and that this percentage is the same
for all of the parameters.)

One could, for example, pick a worst case percentage which bounds all of the parameters.
Doing so can be conservative. Parameter estimation can be used to narrow tighten this
worst case percentage. If we have fixed percentage bounds for each of the parameters,
our approach remains the same. (Recall: Determining the worst case perturbation in our
problem is easy. This is not true in most practical scenarios.)

2 It is understood that xre f can change with time. For now, we assume xre f is fixed.
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Now choose xre f equal to the associated worst case x∗e ; i.e. the x∗e that results from choosing
the worst case parameters. By so doing, the actual x∗e will be greater than xre f . As such,
only cases 1-3 can occur; i.e. cases 4-6 cannot occur. The only way, cases 4-6 can occur is if
our uncertainty bounds were not truly encompassing.

2. Best-Best Case Approach. Assume that we have good bounds on parametric uncertainty
(not necessarily tight, but encompassing)for the 6 model parameters under consideration:
k, r, q, p, c, δ. Suppose that we design for the best best case scenario; i.e. try to
approach the return of the perfect information optimal policy when the best case parameter

perturbations occur; i.e. ∆k
ko

= ∆r
ro

=
∆q
qo

=
∆p
po

> 0 and ∆c
co

= ∆δ
δo

< 0. We assume best

case maximal parameter perturbations. (For simplicity, we assume that all parameters are
perturbed by their maximum best case percentage and that this percentage is the same for
all of the parameters.)

Now choose xre f equal to the associated best case x∗e ; i.e. the x∗e that results from choosing
the best case parameters. By so doing, the actual x∗e will be smaller than xre f . As such, only
cases 4-6 can occur; i.e. cases 1-3 cannot occur. The only way, cases 1-3 can occur is if our
uncertainty bounds were not truly encompassing.

3. Blended Best-Worst-Best-Best Approach. One can also try to offer a blended approach
that attempts to offer decent returns when either worse case or best case parameter

perturbations occur. We shall illustrate this below.

4. Probabilistic Approach. If a probability density function for the parameter percentage θ

is available, it can be used to determine where to operate. Let fθ denote a density function
for θ. This can be used to derive the density function f J for J. Given this, the expected
value for J is given by E[J] =

∫

J J f J(J) dJ =
∫

θ J(θ) f J(J(θ)) J′(θ) dθ. The density
function for θ can be used to reflect what parameter perturbations are most likely to occur.
The above expectation can then be used to choose xre f to maximize the expectation.

To illustrate the above ideas, consider figures 4-5 for small and large initial conditions,
respectively under extremal parameter perturbations. The figures show results for the perfect
information designs (black), best worst case design (blue), best best case design (red), and the
nominal design (green).
To summarize, the following specific optimal control laws were implemented:

1. Perfect Information Optimal Designs: xre f = x∗e , ure f = u∗
e

2. A Best-Worst Case Design: xre f = 29.7, ure f = 0.629

3. A Nominal Design Based on the Nominal Parameters: xre f = 37.5, ure f = 0.625

4. A Best-Best Case Design: xre f = 48.6, ure f = 0.595

The performance of the perfect information designs are always best (by definition). The
performance of the best-worst case design (blue) duplicates that of the perfect information
design for 20% worst case perturbations since it is based on the worst case parameter model
and x∗e . The performance of the best-best case design (blue) duplicates that of the perfect
information design for 20% best case perturbations since it is based on the best case parameter
model and x∗e . The following key observations are in order within figure 4 (small IC case):

1. The best-worst case design does better than the best-best case design when its parameter
assumptions are maximally incorrect; falling by less than 20% (with respect to perfect
information optimal return) while the best best falls by more than 40% (with respect
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to perfect information optimal return) when its parameter assumptions are maximally
incorrect.

2. The nominal design can be viewed as a nice compromise or blend between the two prior
policies. It is based on the nominal parameter model and x∗e . Its returns deteriorates
by a little more than 10% for worst case parameter uncertainty and by a little more
than 5% for best case parameter uncertainty. In short, the returns associated with this
nominal (blended) policy offers flatter returns over a wider range of extremal parameter
perturbations.

Each of the above three approaches offer a specific design model (to base the control design
upon) and a specific x∗e to use as a target. Control laws are always evaluated with the true
(nonlinear) plant. In what follows, we will use the above as benchmarks whose performance
we shall target via robust control laws. Similar patterns are observed for the large IC case in
figure 5.
Sensitivity Analysis: Extremal Perturbations, Small Initial Condition. The expected value
for each of the design cases considered are as follows:
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Fig. 4. Economic Inefficiencies for Various Optimal Control Laws: Extremal Perturbations
(Small IC)

• E[J] = 867.8 for the Perfect Information Optimal Designs

• E[J] = 772.0 for the Best-Worst Case Design

• E[J] = 838.0 for the Nominal Design

• E[J] = 800.4 for the Best-Best Case Design

A uniform distribution has been assumed for the parameter uncertainty. The optimal perfect
information control law is included for comparison purposes. Its performance can only be
approximated over a range of parameter perturbations. This is because the (1) design plant

parameters differ from those of the true plant and the desired target xre f differs from the
perfect information target x∗e .
The following additional points are in order:
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• Although the best-best case design appears worse in terms of percentages at off design
conditions, it has a higher expected return across all cases versus the best-worst case
design.

• A manager could readily design a policy that limited the worst case downside return to
a certain percentage of the maximum possible. For example, if the manager wanted a
worst case downside return no worse than 5% of the maximum possible, a policy should
be designed around roughly a −2 % parameter perturbation.

• A manager may also be interested in implementing the following policy: maxθ E[J(θ)].

Sensitivity Analysis: Extremal Perturbation, Large Initial Condition. The expected value
for each of the design cases considered are as follows:
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Fig. 5. Economic Inefficiencies for Various Optimal Control Laws: Extremal Perturbations
(Large IC)

• E[J] = 1368.2 for the Perfect Information Optimal Designs

• E[J] = 1284.5 for the Best-Worst Case Design

• E[J] = 1336.8 for the Nominal Design

• E[J] = 1259.3 for the Best-Best Case Design

Finally, it should be noted that in contrast to the low initial condition study conducted,
the Best-Best Case Design performs worse both in terms of the percentage possible and the
expected return when compared to the Best-Worst Case Design.
Limit Cycles In the Presence of Uncertainty. Finally, consider figure 6. The optimal control
law is based on the nominal BOE parameters. The initial condition is above the uncertain x∗e .
The simulation is conducted with a truth plant possessing a 10% reduction in k - hence the
limit cycle behavior. The figure shows that: (1) The optimal control policy (in general) will

exhibit limit cycle behavior when we have imperfect information; i.e. model parameters are
not known exactly. (2) The optimal control policy (in general) will be very sensitive to finer
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sampling (∆T smaller) under imperfect information; i.e. more oscillations (switching) will be
exhibited as our x time samples are spaced closer together. The figure also shows that low pass
filtering the optimal with a lag can be used to smooth oscillations a bit. To significantly reduce
the oscillations, however, there is no easy fix. We either need a penalized u̇p term within J
to penalize switching or we need policies that are inherently more robust (like the ones we
will describe subsequently). As such, this implies that, in practice, the optimal control policy
is prohibitively expensive to implement in the presence of parametric uncertainty because of
the inherent limit cycle behavior and the associated switching costs.
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Fig. 6. Optimal Control Law Robustness: Limit Cycles In Presence of (-10% Capacity)
Uncertainty

Motivation for Robust Control Laws. The above motivates the need for more robust control
laws; i.e. control laws that (1) exhibit an acceptable return (i.e. return robustness) in the
presence of anticipated (likely) parametric uncertainty; (2) do not exhibit limit cycle behavior
in the presence of anticipated (likely) parametric uncertainty. As such, the above motivates
the robust control laws to be considered in our presentation.
Control Law Implementation Issues. Unlike many control applications where controllers are
implemented with great fidelity (within state-of-the-art digital computing units), controllers
within a resource management system are implemented by an organization by setting
rules for the fishery worker community (e.g. quotas, taxes (Clark, 1990, Chapter 8).
As such, many types of uncertainties can be introduced by the organization. These
could include any of the following: (1) parameter uncertainty, (2) additional uncertain
actuation/sensing dynamics (e.g. lags, time delays, rate limiters, etc.), (3) nonlinearities
(e.g. rate limiters, saturations, quantization, dead zones), (4) actuation/incentive errors
(e.g. quota/tax miscalculations), (5) sensing, measurement, and estimation errors (e.g. sensor
dynamics, biomass sampling/aliasing/quntization errors, noise, disturbances).

4. Robust control laws

The model under consideration is very simple. Many tools from the controls literature may
be applied (e.g. classical control (Rodriguez, 2003), H-infinity (Rodriguez, 2004), feedback
linearization, SDRE’s, etc.). Given the introductory/tutorial nature of the paper, the
simplicity of the model being used, as well as the fact that this text covers advanced control
methodologies, we shall focus on simple control strategies from classical control theory. We

will show that such control laws can be used to avoid limit cycles, increase robustness with
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respect to parametric uncertainty, and achieve returns that are close to those of the perfect
information optimal control law.
Control System Structure. The structure of the control system may be visualized as shown in
Figure 7.
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Fig. 7. Renewable Resource Management Problem Represented as a Standard Negative
Feedback System with a Pre-Filter and Anti-Windup Logic

1. Plant. Here, P represents the plant under control. We shall use an LTI small signal model
to approximate our nonlinear plant.

2. Reference State or Command. xre f is the desired reference biomass state. Ideally, we would

like to use xre f = x∗e . Parameter uncertainty prevents us from commanding the desired
state. As such, we are forced to choose xre f more judiciously. Given this, we will give
special attention to maximizing our return under the worst case parameter uncertainty.

3. PI Controller. K is a proportional-plus-integral (PI) controller possessing the structure:

K(s) =
g(s + z)

s

[

pro

s + pro

]

(30)

where g > 0, z > 0, and pro > 0. The integrator within the controller will ensure that step
biomass commands are followed in the steady state while step input/output disturbances
are rejected in the steady state. The (s + z) term will ensure that the LTI plant-integrator

pair will be stabilized. The term
[

pro

s+pro

]

provides high frequency roll-off to ensure that

high frequency sensor noise n is suitably attenuated.

4. Command Pre-Filter. W is a reference command pre-filter possessing the structure:

W(s) =

[

z

s + z

]

(31)

This pre-filter can be used to ensure that the overshoot to step reference commands is
suitably bounded.

5. Observer-Based Integrator Anti-Windup Logic. Anti-windup logic is included so that the
integrator in the PI controller does not windup. That is, the integrator is turned off
so that it does not integrate constant errors which occur when the input to the plant
is saturated (Aström, Hägglund). The structure of the anti-windup logic is as follows
ẋk = Akxk + Bke + L(sat(u)− u) where L is an observer gain matrix. The PI controller

with the anti-windup logic may be described by the following equations:
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ẋ1 = e + GAW(sat(u)− u) ẋ2 = gzx1 − prox2 + ge u = prox2 (32)

where GAW is the anti-windup gain.

Nominal Design Methodology. The nominal design methodology can be described as follows
(Rodriguez, 2003):

1. Plant Approximant. The following small signal LTI model P ≈ Pd
def
= b

s−a will be used
to approximate our nonlinear plant. Here, Pd is referred to as the design plant; i.e. the
plant upon which we will base our control law design. While any design we obtain can
be evaluated using plant approximants such as Pd, control designs must be evaluated with
the actual nonlinear plant model.

2. Controller Approximant. Use the controller approximant K ≈ g(s+z)
s where g > 0 and z > 0.

3. Nominal Open Loop Approximant. Form the open loop transfer function approximant

L = PdK ≈ bg(s + z)

s(s − a)
=

n(s)

d(s)
. (33)

4. Nominal Closed Loop Characteristic Equation. Form the nominal closed loop characteristic
equation

Φcl(s) = d(s) + n(s) = s2 + (bg − a)s + bgz = 0 (34)

This polynomial has the “standard second order form”

Φcl(s) = s2 + 2ζωns + ω2
n (35)

where ζ =
bg−a

2
√

bgz
is the damping factor and ωn =

√
gz is the undamped natural frequency.

For stable nominal complex closed loop poles, we require 0 < ζ < 1.

5. Closed Loop Poles. Determine the nominal closed loop poles (assumed complex for rapid
transient response):

s = −ζωn ± jωn

√

1 − ζ2 (36)

Given this, we will have nominal (local) closed loop exponential stability with an
associated time constant τ = 1

ζωn
. The associated (approximate 1%) settling time is ts = 5τ.

6. Standard Second Order Closed Loop Transfer Function and Percent Overshoot. With the
command pre-filter W, the associated closed loop transfer function takes the standard
second order form:

Txre f x =
WPK

1 + PK
≈ ω2

n

s2 + 2ζωns + ω2
n

(37)

As such, the associated percent overshoot to a step reference command is given by

Mp = e−ζωntp = e
−
(

ζπ

1−ζ2

)

(38)

where tp = π

ωn

√
1−ζ2

is the time at which the peak overshoot occurs.
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7. Damping Factor from Percent Overshoot Specification. Determine ζ from the overshoot
specification:

ζ =
|lnMp|

√

π2 + |lnMp|2
(39)

8. Undamped Natural Frequency from Settling Time Specification. Determine ωn from the settling
time specification:

ωn =
5

ζts
(40)

9. PI Controller Parameters. Determine the PI controller gain g and zero z from:

g =
2ζωn + a

b
z =

ω2
n

bg
(41)

10. Controller Roll-Of Parameter. Choose the roll-off parameter pro as follows:

pro = 10ωn (42)

so that the added high frequency roll-off does not significantly degrade the nominal phase
margin within the loop. It could also be selected in order to satisfy a specific sinusoidal

steady state noise attenuation specification.

11. Anti-Windup Gain. Choose the anti-windup gain GAW > 0 to be sufficiently large so that
the integrator suitably shuts down in order to “maximally recapture” the dominant second
order response characteristics described above. A family of gains is examined below.

5. Control law comparisons

In this section, we compare the properties of the nominal optimal control law with those for
the robust policies based upon the nominal LTI plant model Pd = b

s−a .

5.1 Sample control law time responses

Within this section, sample time responses are provided for families of robust control laws
(based upon the nominal LTI plant model) - families that approximate the performance of the
nominal optimal control law. (Note: There will be an approximation gap when uncertainty is
considered.)
Reference Biomass Tracking: Anti-Windup Gain Study. Figure 8 shows closed loop biomass
tracking time responses for a family of robust control law designs where ζ = 1, ts = 1. The
anti-windup gain GAW is varied to control how well the responses approximate that of the
optimal with no limit cycle behavior. As the anti-windup gain GAW is increased, the responses
come closer to the (nominal) optimal control law (with no limit cycle behavior). The limit cycle
behavior of the (nominal) optimal has been cleaned up in order to improve the readability of
the figure (see Figure 6).
A Note On Robustness with Respect to High Frequency Unmodeled Dynamics. It should be

noted that as the speed of a policy is increased, the significance of unmodeled high frequency
dynamics within the fishery or within the policy implementing organization/evironment
(e.g. lags, time delays, rate limiters) becomes an issue to consider in final policy evaluation.
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Fig. 8. Reference Biomass Tracking: Anti-Windup Gain Study (ζ = 1, ts = 1)

It is well known from fundamental robustness theory (Rodriguez, 2004; 2003) that fast
control laws can result in closed loop oscillatory responses or instability when high frequency
unmodeled dynamics are “significantly excited.” This issue will be examined in future work.
Reference Biomass Tracking: Damping Factor Study. Figure 9 shows shows closed loop

biomass tracking time responses for a family of robust control law designs where ts = 1,
GAW = 3. The damping factor ζ is varied in order to control the speed of the response as
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Fig. 9. Reference Biomass Tracking: Damping Factor Study (GAW = 3, ts = 1)
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well as the undershoot. As the damping factor ζ is reduced, the response speeds up (getting
closer to that of the (nominal) optimal with no limit cycle behavior), although the observed
undershoot increases. The limit cycle behavior of the (nominal) optimal has been cleaned up
in order to improve the readability of the figure (see Figure 6).
Reference Biomass Tracking: Settling Time Study. Figure 10 shows closed loop biomass
tracking time responses for a family of robust control law designs where ζ = 1 (critically
damped, Mp = 0) and GAW = 3. As the settling time ts of the closed loop system is
reduced, the responses come closer to the (nominal) optimal (with no limit cycle behavior).
The limit cycle behavior of the (nominal) optimal has been cleaned up in order to improve the
readability of the figure.
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Fig. 10. Reference Biomass Tracking: Settling Time Study (GAW = 3, ζ = 1)

5.2 Utility of linear design methodology

In this section, we try to shed light on the utility of our linear time invariant (LTI) based
robust control system design methodology and how linear simulation can be used to
approximate/predict the behavior of the nonlinear simulations. All designs are based upon
nominal parameter values.
Linear vs Nonlinear Biomass Tracking: xo Near xre f . Figure 11 compares linear and nonlinear
closed loop biomass tracking simulations where the the initial condition (IC) is near the
desired set point (target biomass). Four responses are shown for x and up: (1) purely linear;
i.e. linear plant model, linear controller, and no saturation, (2) linear with plant saturation;
i.e. linear plant model, linear controller, and plant saturation, (3) linear with anti-windup logic;
i.e. linear plant model, linear controller, plant saturation, and anti-windup logic, (4) nonlinear;
i.e. nonlinear plant model, linear controller, plant saturation, and anti-windup logic. Here, the

reference command is very small (xre f = 0.375), the control does not saturate, and all of the
responses match one another. This shows that the “pure linear theory” suffices under small
signal conditions (as expected).
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Linear vs Nonlinear Biomass Tracking: xo Far From xre f . Figure 12 compares linear and
nonlinear closed loop biomass tracking simulations where the the initial condition (IC) is
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far from the desired set point (target biomass). Here, the reference command is large
(xre f = 18.75), the controls saturate, windup is exhibited in the linear w/Sat case, and
we observe relatively good agreement between the linear (particularly linear w/AW) and
nonlinear responses.
Biomass Tracking Robustness In Presence Of Capacity Uncertainty: Anti-Windup Gain

Study. Figure 13 shows how our robust control laws can be adjusted to achieve the “flatter”
economic inefficiency of the nominal optimal control law (see Figures 4-5). We observe the
following:
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Fig. 13. PI Biomass Tracking Robustness (Capacity Uncertainty): Anti-Windup Gain Study
(ζ = 1, ts = 1)

• With an anti-windup implementation, a PI control law can come arbitrarily close to
matching the performance of the nominal optimal control law with imperfect information.

• Improving upon the nominal optimal control law with imperfect information requires
some outer loop control logic as well as system identification to more appropriately select
the reference/target biomass.

The observed performance gap (or inefficiency) is fundamentally because the target xre f

differs from the perfect information x∗e ; not because the nominal design plant differs from the
truth plant. Closing the observed performance gap further requires an outer loop controller
and/or parameter estimation techniques in order to get a more accurate target xre f that is
closer to the perfect information target x∗e .

6. Summary and future directions

Summary. This chapter has shown how ideas from robust control may be applied to a
fishery. It has been specifically shown how some small amount of income may be sacrificed
for increased robustness with respect to uncertain fishery parameters.
Directions for Future Research. Future work will examine more complex models
(e.g. decentralized, distributed), pros/cons associated with parameter estimation schemes,
more complex robust control laws (e.g. use of receding horizon control for long-term
management), robustness with respect to plant and controller uncertainty (parametric and
dynamic).
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