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1. Introduction 

An automotive performance has improved from the demand of ride comfort and driving 
stability. Many research have proposed various control system design methods for active 
and semi-active suspension systems. These studies evaluated the amount of reduced 
vibration in the vehicle body, i.e., the vertical acceleration in the center-of-gravity (CoG) of 
the vehicle’s body (Ikeda et al., 1999; Kosemura et al., 2008; Itagaki et al., 2008). However, any 
passengers always do not sit in the CoG of the vehicle body. In the seated position that is not 
the CoG of the vehicle body, vertical acceleration is caused by vertical, roll and pitch motion 
of the vehicle. In nearly the resonance frequency of the seated human, the passenger’s 
vibration becomes larger than the seated position’s vibration of the vehicle body due to the 
seated human dynamics. 
The seated human dynamics and human sensibility of vibration are cleared by many 
researchers. So far some human dynamics model has been proposed (Tamaoki et al., 1996, 
1998, 2002; Koizumi et al., 2000). Moreover, some of them are standardized in ISO (ISO-2631-
1, 1997; ISO-5982, 2001). At the research as for automotive comfort with the passenger-
vehicle system, M.Oya et al. proposed the suspension control method considering the 
passenger seated position in the half vehicle model (Oya et al., 2008). G.J. Stein et al. 
evaluated passenger’s head acceleration at some vehicle velocities and some road profiles 
(Guglielmino et al., 2008). There are few active suspension control design methods which are 
positively based on a passenger’s dynamics and the seating position. These methods can be 
expected to improve the control performance. 
In this paper, new active suspension control method is developed to reduce the passenger’s 
vibration. Firstly, a vehicle and passenger model including those dynamics at seated 
position is constructed. Next, a generalized plant that uses the vertical acceleration of the 
passenger’s head as one of the controlled output is constructed to design the linear H∞ 
controller. In this paper, this proposed method defines as “Passenger Control”. “Passenger 
Control” means passenger’s vibration control. Moreover, in an active suspension control, it 
is very important to reduce the vibration at the condition of the limited actuating force. 
Then, we design two methods which are “Vehicle CoG Control”, and “Seat Position 
Control”, and compare the proposed method with two methods. “Vehicle CoG Control” 
means vibration control of vehicle. “Seat Position Control” means vibration control of seat 
position. Finally, several simulations are carried out by using a full vehicle model which has 
active suspension system. From the result, it was confirmed that in nearly the resonance 
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frequency of a passenger’s head in the vertical direction, “Passenger Control” is effective in 
reducing a passenger's vibration better than “Vehicle CoG Control” and “Seat Position 
Control”. The numerical simulation results show that the proposed method has the highest 
control performance which is vibration reduction of the passenger's head per generated 
force by the active suspension. Moreover, the results show that the proposed method has 
robustness for the difference in passenger’s vibration characteristic. 

2. Modeling 

2.1 Modeling of the vehicle 

Figure 1 shows a full vehicle model which is equipped with an active suspension between 

each wheel and the vehicle body. The weight of the vehicle body is supported by the spring. 

We assume that a vehicle model is a generic sedan car as shown in Table 1. The equations of 

motion which are, bounce, roll, pitch and each unsprung motion are as follows: 

 
4

1
b cg si

i

M z f , (1) 

    1 2 3 4
2 2

      f r
r s s s s b r

T T
I f f f f M gH , (2) 

    1 2 3 4      
p f s s r s s b pI L f f L f f M gH , (3) 

  ( 1, ,4)    ti ui di t tiM z F K z i . (4) 

where Hr is the distance from a roll center to the CoG of the vehicle body, and Hp is the 

distance from a pitch center to the CoG of the vehicle body. These parameters are constant. 

The spring coefficients of each wheel are different from each other, and were set to K1, 2 = Kf , 

K3, 4 = Kr, zsi means a suspension stroke of each wheel, zti means deformation of the each tire. 
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The spring and damping forces which act between the wheels and the vehicle body, are 

given by the following equation. 

  ( ) ( 1, , 4)    di i si i siF K z C t z i  (6) 

2.2 Modeling of the passenger 

Various models of a seated human have been proposed so far. In this paper, the passenger's 
motion is expressed to the seated human model shown in Fig. 2. Therefore, it is easy to 
understand the passenger’s motion. To the seated position, Ps, the body part has three 
 

www.intechopen.com



 
Robust Active Suspension Control for Vibration Reduction of Passenger's Body 

 

95 

zr1

Tf Tr

TrLf Lr

Pitch CTR
Roll CTR

P1

P2

P3

P4

px2

zu1 zu3

zcg

zu3 zu4

Kt

Kf
Cf

Kｒ
Cr

Kｒ
Cr

Kｒ

Cr

F1

F1

F3

F3

F3

F3

F4

F4

Mt Mt Mt
Mt

Mb , Ir , Ip

Side view Rear view

Plane view

Forward

zr3 zr3 zr4

Kt Kt Kt

fq

px4

px1 px3

py1

py2

py3

py4

pz3,4pz1,2

S1

S2

S3

S4

 
Fig. 1. Full vehicle model 

 

Symbol Value Symbol Value 

Mb 1900 kg Tf 1.53 m 

Mt 50 kg Tr 1.50 m 

Ir 600 kgm2 Hr 0.45 m 

Ip 3000 kgm2 Hp 0.53 m 

Kf 33×103 N/m px1,2 0.04 m 

Kr 31×103 N/m py1 0.4 m 

Kt 260×103 N/m py2 -0.4 m 

Lf 1.34 m pz1,2 -0.045 m 

Lr 1.46 m    

Table 1. Specification of vehicle mode 

degree of freedom (DOF) which is longitudinal, lateral, and vertical motions. The head has 3 
DOF. First, the head moves up and down to the body parts. Second, the head rotates around 
the point, Pp, at the pitch direction. Third, the head rotates around the point, Pr, at the roll 
direction. Thus the passenger model has a total of 6 DOF. Between the each part, it has a 
spring and a damper. The equation of motion of the passenger model is as follows. 
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Fig. 2. Passenger model 

 

 kpi cpi rpi 

i [N/m] [N/m/s] [m] 

1 40000 2000 0.1 

2 15* 0.9** 0.1 

3 96000 1120 0.05 

4 22500 600 0.2 

5 2000 400 0.3 

6 20* 1.2** 0.3 

Table 2. Specification of passenger model (*:Nm/rad, **:Nm/rad/s) 

      4 4 2 2 42 2          bh b p p b p p b p h p hm x k x x c x x c k r  (7) 

      5 5 6 6 52 2          bh b p p b p p b p h p hm y k y y c y y c k r  (8) 
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Where, 

,  


b
bh b h hbh

b h

m
m m m m

m m
. 

Each parameter of the passenger model is set to mb = 45 kg, mh = 7.5 kg, Ihr = 8.3×10-2 kgm2, 

Ihp = 5.0 kgm2, and Ihp = 5.5×10-2 kgm2 based on the adult male's height and weight data. In 

addition, the acceleration of the passenger’s head is derived from a geometric relation. 

 2

1

h b h

h b h

x x r

y y r





 

 

 
 

 (13) 

As shown in Table 2, the spring, the damper, and length were adjusted to conform the 
passenger model and an experimental data which was reported in previous research 
shown in Figs. 3 and 4 (Tamaoki et al., 1996, 1998). The results shown in Figs. 3(c) and 4(c) 
demonstrate that the gain characteristics of the model were nearly equal to the 
experimental ones. However, as shown in Figs. 3(b) and 4(b), there were some differences 
in the high-frequency band for the phase properties. To reduce these differences, the 
passenger model must be made more complex, but this necessitates the use of a higher 
order control system. Because the purpose of our controller is to reduce the vertical 
vibration of the passengers in comparison with the lateral vibration, we designed it using 
this passenger model. 

2.3 Vehicle-passenger model 

In this section, the passenger for the vehicle model was assumed to sit in the front-left seat 

in designing the control system to reduce passenger vibration and motion. The vehicle-

passenger model is shown in Fig. 5. The passenger model is set to the vehicle model in a 

front-left seat to design the controller. The translational motion of the position of the seat 

and the motion of the vehicle have the following relation; 

 

 
 

1 1

1 1

1 1 1





 

 

  

  

p p z

p r z

p cg y x

x H p

y H p

z z p p

 (14) 

The equation of state of the vehicle-passenger model is defined as the following equation.  

   1 2( ) ( ) ( )   p p px t A x t B w t B u t  (15) 
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(a) xp input                        (b) yp input                          (c) zp input 

Fig. 3. Transfer function from seat to the head (Translational motion, Dot: Experiment 
(Tamaoki et al., 1998), Line: model) 
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           (a) xp input                            (b) yp input                             (c) zp input 

Fig. 4. Transfer function from seat to the head (Rotational motion, Dot: Experiment 
(Tamaoki et al., 1996), Line: Model) 
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Fig. 5. Vehicle-passenger model 
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3. Design of controller 

3.1 Disturbance accommodating control 

We found that feedforward control of disturbance information in the finite frequency range 

and feedback control improve performance (Okamoto et al., 2000). The power spectral 

density of the actual velocity of disturbances had flat characteristics in a low frequency, and 

decreased according to frequency at a region of high frequency. We assumed that it 

regarded as the colored noise formed by shaping filter which has a transfer function with 

low-pass characteristics. This filter of the each wheel is based on the road condition which 

defined by ISO (ISO-8608, 1995). The filter is as follows: 

 
2

2 2
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di di di di gi
di

i di di
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Q

w t C x t i

w s
i

w s s s

. (16) 

where, wgi is road input of the each wheel, wi is road input of the vehicle-passenger model of 
the generalized plant to design the controller as shown in Fig. 6. It was referred to as 

50 2  d  and 0.706 d . 
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3.2 Disturbance accommodating H∞ control. 

The feedforward control of disturbances resulted in worse accuracy outside the assumed 
frequency (Okamoto et al., 2000). Furthermore, because each resonance frequency of the 
vehicles, passenger, and tire differs, the control system design considering each resonance 
frequency is needed. Therefore, the control system was designed by using the H∞ method in 
the control theory. 
We integrated each state variable of the road disturbance model and frequency weights for 
controlled values. The frequency weights are as follows: 

 

( ) ( ) ( )

( ) ( ) ( 1, ,4)
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( ) ( 1, ,4)
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z s
K W s i

z s

. (17) 

where, zpi is controlled value of the vehicle-passenger model, zgi is controlled value of the 
generalized plant. Figure 6 shows a block diagram of the generalized plant to design the 
controller, and the state-space form of the generalized plant is as follows: 
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. (18) 

H∞ norm of the transfer function from disturbance wg(t) to controlled value z(t) is expressed 
by the following equation. 
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2

sup
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g gz w
u
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where, *  is a minimum of H∞ norm of the generalized plant realized with H∞ controller. 

The controller is the following equation (Glover & Doyle, 1988). 

 
     
   

 



k k k k

k k

x t A x t B y t

u t C x t
 (21) 

The measured outputs, y(t), are four vertical accelerations of the wheel position of the 
vehicle body. The controlled values, z(t), are vertical acceleration of the passenger’s head, 
vertical velocity of the sprung, tire deformation, and actuating force. Frequency weight Wi, 
shown in Fig. 7 was determined by trial and error. 
A bandpass filter, W1, that had a peak frequency equal to the resonance frequency of the 
passenger’s head was used based on sensitivity curves (ISO-2631-1, 1997), such as that being 
standardized by ISO and shown in Fig. 8. In order to prevent the increase of response in 
each resonance, a low pass filter W2 and a bandpass filter W3 are used. Moreover, to prevent 
steady control input and minimize energy consumption, a high pass filter, W4, was used. 
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We compare the proposal method and two generalized control methods to verify the control 
performance. As one of the generalized control methods, the controller in which the one of the 
controlled values is vertical acceleration of the body CoG (Vehicle CoG Control), is designed. 
Another is that one of the controlled values is vertical acceleration of a seated position (Seat 
Position Control). The design of two generalized control methods are changed the controlled 
value z1 into the vertical acceleration of CoG of the vehicle body and seated position, 
respectively. Frequency weights, W1(s), W2(s), W3(s), W4(s), Kw2 = 400, Kw3 = 5000, and Kw4 = 1.31, 
use the same value also in the three methods. The following section describes Kw1. 
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Fig. 6. Generalized plant for “Passenger Control” 
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Fig. 8. Sensitivity curve of vertical vibration (ISO-2631-1, 1997) 

4. Simulation 

In this section, two kinds of numerical simulations were carried out. One is to verify control 
performance in comparison with other methods. Another is to verify robustness for the 
difference in passenger’s vibration characteristic. 

4.1 Assumption 

We verified the effectiveness of the proposed method by using the vehicle-passenger model 
with H∞ controller. We used MATLAB (The Math Work Inc.) for the calculations, and the 
Runge-Kutta method for the differential equations. The computational step size is 1 ms. In 
addition, it assumes that we perform the evaluation in an ideal condition, and the model to 
design the controller and the model for evaluation are same models. 

4.2 Driving condition 

It assumes that the PSD characteristic of the road surface is C class defined by ISO (ISO-
8608, 1995). The vehicle speed is 16.6 m/s (60 km/h). The vehicle runs the straight for 10 
seconds, and the input of the road surface to each wheel is independent. Figure 9 shows the 
PSD of the road disturbance. Figure 10 shows the road displacement.  

4.3 Design of the frequency weight Kw1 

In each method, if the evaluation function of acceleration is raised, it is clear that each 
acceleration set as the controlled value is reduced, and the actuating force increases. To set 
the same actuating force, frequency weight Kw1 of each method was adjusted so that RMS 
value of the actuating force of the four wheels sets to 1000 N. The each frequency weight, 
Kw1, of “Vehicle CoG Control”, “Seat Position Control” and “Passenger Control” is 244, 315, 
and 78 respectively. 

4.4 Difference of vehicle-passenger model 

In the numerical simulation, there are some diffidence in the vehicle-passenger model as 
shown in Table 3. In sections 4.5.1 and 4.5.2, passenger models sit in the front-left seat and 
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front-right seat. In section 4.5.2, some specifications of the passenger model are different 
from the generalized plant to design controller. 

4.5 Results 
4.5.1 Comparison with the “Vehicle CoG Control” and “Seat Position Control” 

Figure 11 shows the time histories of the vehicle and the passenger 1’s vertical acceleration 

for 3 second. In this paper, passenger 1 sits a front-left seat, and passenger 2 sits a front-

right. In the acceleration of the vehicle body, it was confirmed that there is few differences 

among the three methods. On the other hand, in the acceleration of the passenger's head, the 

proposed method is the smallest, and it was confirmed that the proposed method is effective 

for the passenger’s vibration reduction. 

The actuating force of each wheel in each method is shown in Fig. 12. In the Vehicle CoG 

Control, the actuating force of all wheels is generated in the same direction. In the other 

method, the actuating force of the left/right wheel is generated in a different direction. 

Therefore, the vertical accelerations of the seated position and the passenger’s head are 

reduced by controlling the roll motion of the vehicle body. 

Figure 13 shows the Lissajous figure of lateral and vertical accelerations of the seated 

position, the passenger's body and the head part respectively. This figure is seen from the 

front of vehicle. In upper-right figure of Fig. 13 (c), the proposed method has control effect 

which vertical acceleration of the passenger 1's head is reduced in comparison with “Vehicle 

CoG Control”. Moreover, the proposed method has not only the vibration reduction effect 

of the passenger 1's head, but also the vertical acceleration reduction effect of the passenger 

1's body. 
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Fig. 9. PSD of road surface profile 
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Figure 14 shows power spectrum density (PSD) of the vertical acceleration of the 
passenger’s head in each method, and actuating force. In the frequency band of 4-7 Hz 
with resonance of a passenger’s head, although the proposed method has the vibration 
reduction effect better than other methods. On the other hand, PSD of the actuating 
force does not necessarily have the highest value in the frequency band. In this 
frequency band, the proposed method can reduce the passenger's vibration by the 
limited actuating force. 
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Fig. 10. Road displacement 

 
 

 
Generalized plant 

to design controller

Simulation model 

Section 4.5.1 Section 4.5.2 

Vehicle Fig. 1, Table 1 ¬ ¬

Passenger Fig. 2, Table 2 ¬ Table 4 

 Seated position ･Front-left 
･Front-left 

･Front-right 
¬  

Table 3. Vehicle-passenger model 

In each frequency band, the sensitivity of the vertical acceleration for the human is 
defined by sensitivity curves (ISO-2631, 1997). In this paper, we estimate the root mean 
square (RMS) value which is added the sensitivity compensation expressed by a high 
order transfer function (Rimel & Mansfield, 2007). Figure 15 shows the ratio of the RMS 
value of each vertical acceleration to those values of “Vehicle CoG Control”. In the 
passenger 1, it was confirmed that the proposed method can reduce the RMS value of the 
passenger 1's head (head 1). Moreover, in the passenger 2, it was confirmed that the RMS 
value of the passenger 2's head (head 2) is not increased by the proposed method, and the 
proposed method had the vibration reduction effect equivalent to the generalized control 
methods.  
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Fig. 11. Vehicle and passenger’s behavior (Vertical acceleration, unit : m/s2) 
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Fig. 13. Lissajous figure (Lateral and vertical acceleration) 
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Fig. 15. RMS value of vertical acceleration 

From these results, it was confirmed that the proposed method can effectively reduce 
passenger's vibration by using H∞ control which including the dynamics of human body 
and seated position. By means of setting the passenger’ motion to one of the amounts of 
evaluation function, the proposed method can directly control the passenger's vibration. 

4.5.2 Comparison with the different passenger model 

In this section, the robust performance against the difference in a passenger’s vibration 
characteristic is verified. In previous research, there are many reports about seated human 
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Fig. 16. Frequency response from seat to the head (Vertical motion, dot : Experiment 
(Varterasian & Thompson, 1977), Line : Model) 
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dynamics. Varterasian & Thompson reported the seated human dynamics from a large 
person to a small person(Varterasian & Thompson, 1977). Robust performance is verified by 
supposition that such person sits in the vehicle. Figure 16 shows the frequency response  
from vertical vibration of seat to vertical vibration of the head. Dot is 15 subjects' resonance 
peak. In this section, three outstanding subjects' data of their report is modeled in the 
vibration characteristic of vertical direction. The damper and spring were adjusted to 
conform the passenger model and an experimental data. The characteristic of the passenger 
model of three outstanding subjects are shown in Table 4. 
 

 
kp3 

[N/m] 
cp3 

[N/m/s] 

Nominal model 960000 1120 

Subject 1 1320000 1150 

Subject 2 576000 960 

Subject 3 960000 2550 

Table 4. Difference of specifications 
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Fig. 17. PSD of vertical acceleration (Passenger 1’s head) 

The numerical simulation is carried out on the same road surface conditions as the section 

4.5.1. Figure 17 shows PSD of the vertical acceleration of the passenger 1’s head and Fig. 18 
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shows RMS value. In PSD of 7 Hz or more, RMS value of vertical acceleration of subject 1’s 

head becomes higher than the nominal model. Moreover, RMS of subject 1 is the highest. On 

the other hand, RMS of subjects 2 and 3 is reduced in comparison with the nominal model. 

The physique of subject 1 differs from other subjects. When such a person sits, the specified 

controller should be designed. From these results, the proposed method has robustness for 

the passenger of the general physique. 
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Fig. 18. RMS value of vertical acceleration of passenger 1’s head 

5. Conclusion  

This study aims at establishing a control design method for the active suspension system in 

order to reduce the passenger's vibration. In the proposed method, a generalized plant that 

uses the vertical acceleration of the passenger’s head as one of the controlled output is 

constructed to design the linear H∞ controller. In the simulation results, when the actuating 

force is limited, we confirmed that the proposed method can reduce the passenger's 

vibration better than two methods which are not include passenger’s dynamics. Moreover, 

the proposed method has robustness for the difference in passenger’s vibration 

characteristic. 
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