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1. Introduction 

Peroxisomes are small and abundant membrane-bound organelles that contain enzymes for 
a variety of metabolic functions, including ß-oxidation of fatty acids, synthesis of 
plasmalogens and bile acids, and H2O2 production (1, 2). A group of human genetic diseases 
involves peroxisomal disorders (3) derived from two type of alterations: i) defects in a single 
peroxisomal enzyme, as found in X-Linked Adrenoleukodystrophy and Acatalasemia; and 
ii) Peroxisome Biogenesis Disorders (PBDs), which include the Zellweger’s Syndrome (ZS). 
Intense research has been devoted for decades to understand the mechanisms of biogenesis 
and maintenance of peroxisomes. Despite the paramount progress, there are still enigmatic 
aspects, specially regarding the pathways followed by peroxisomal membrane proteins and 
the origin of peroxisomal membrane precursors (2). Here we give an overview of the 
evidence that involves the endoplasmic reticulum (ER) from the most important genetic 
tools in the field: fibroblast cultures derived from Zellweger patients and yeast mutants. 

2. Peroxisome biogenesis: challenging the paradigm 

2.1 Zellweger’s Syndrome (ZS) as the prototypic Peroxisome Biogenesis Disorder 
(PBD) 

ZS is characterized by craniofacial dysmorphia, neurological impairment, severe metabolic 
disturbances and neonatal death, caused either by complete absence of peroxisomes or by 
defects in protein importation into peroxisomal membrane precursors (1, 4-8). From the 
clinical point of view, a severity spectrum of these disorders has been established (SZ 
spectrum), including Neonatal Adrenoleukodystrophy (NALD; MIM 202370), Infantile 
Refsum disease (IRD; MIM] 266510) and SZ (ZS; MIM 214100) as the most severe (8). Initial 
studies in liver biopsies of ZS patients failed to find evidence of peroxisomal components 
and thus led to the notion that ZS patients lack peroxisomes (9). Later studies in Zellweger 
fibroblasts detected membranes containing peroxisomal membrane proteins (PMPs) but that 
lack most of the matrix proteins and were called "peroxisomal membrane ghosts" (10-12). 
Since then, a defect in the peroxisomal importing machinery for matrix proteins became 
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apparent as a crucial cause of ZS. The fibroblasts from these patients provided a genetic 
model system for studying the mechanisms of peroxisomal biogenesis (1), while the 
incorporation of genetic tools in yeast allowed complementary and more detailed 
approaches (13-15). 

2.2 Peroxisome growth and division versus de novo synthesis 

In 1985, Lazarow and Fujiki postulated that peroxisomes are autonomous organelles, like 

mitochondria and chloroplasts, that form by growth and division (16). This assumption was 

based on the findings that peroxisomal matrix and membrane proteins are synthesized on 

free ribosomes and are imported post-translationaly into pre-existing parenteral organelles. 

Kinetics assays measuring the peroxisomal incorporation of newly synthesized proteins (17), 

as well as the discovery of specific targeting sequences recognized by soluble receptors that 

direct import into the organelle, gave further support to this hypothesis (18). Furthermore, 

most of the complementation groups exhibit only peroxisomal ghosts as the result of defects 

in the importing machinery for peroxisomal matrix proteins (10, 11). However, the 

observation that de novo peroxisomal synthesis is possible, first demonstrated in yeast (13) 

and then in mammalian cells (19), challenges the “growth and division” model..  

2.3 The biogenesis of new peroxisomes is orchestrated by Pex3p, Pex16p and Pex19p 
peroxins 

The analysis of the genetic heterogeneity in ZS and disorders of peroxisome biogenesis in 

mammalian cells led to discover the peroxins and their encoding genes (PEX) as the source 

of alterations causing several phenotypes (20). To date 32 PEX genes encoding the 

peroxisomal biogenetic machinery have been identified and at least 12 different 

complementation groups have been described among ZS patients, most of them displaying 

peroxisomal ghosts (7, 8, 18, 20). However, three of these complementation groups, groups 9 

(PEX16 gene defect), 12 (PEX3 gene defect) and 14 (PEX19 gene defect) lack peroxisomes, 

peroxisome ghosts and any peroxisomal membrane (5, 7, 14, 19-26). This phenotype is 

reproduced in yeast by PEX3 and PEX19 mutations (13, 27). Strikingly, the expression of 

exogenous wild type PEX genes in ZS cells and mutant yeasts reestablish the generation of 

functional peroxisomes (13, 14, 19, 22, 26-31), demonstrating that new peroxisomes can be 

generated without requiring a preexisting organelle. 
These observations also indicate that early stages of peroxisome biogenesis are driven by 
peroxins Pex3p, Pex16p and Pex19p, respectively encoded by PEX3, PEX16 and PEX19 genes 
(18). Therefore, it became clear that elucidating the function of these peroxins should help to 
understand the biogenetic mechanisms of peroxisomes, from preexisting organelles or/and 
from newly made precursor membranes. 
Both matrix and PMPs are synthesized on free polysomes and captured in the cytosol by 
soluble receptors that direct them to peroxisomes. However, the importing machinery for 
PMPs involving Pex3p, Pex16p and Pex19p is different from the importing machinery for 
matrix proteins, both in sorting signals and importing peroxins (15, 32-35). Matrix proteins 
contain at least two distinct sorting signals: a tripeptide Peroxisomal Targeting Signal type I 
(PTS-1) and a nonapeptide Peroxisomal Targeting Signal type 2 (PTS-2), which are 
recognized by their respective cytosolic receptors Pex5p and Pex7p. These complexes are 
translocated by membrane importers involving Pex14p and RING peroxins (18, 36, 37). 
Instead, import of most PMPs depends on Pex19p that recognizes peroxisomal membrane-

www.intechopen.com



 
Peroxisomal Biogenesis: Genetic Disorders Reveal the Mechanisms 323 

targeting signals (mPTS) and acts as a cytoplasmic chaperone for nascent PMPs, stabilizing 
and targeting them to the peroxisomal membrane (18). Recent evidence indicates that Pex3p, 
which is an integral membrane protein initially considered the only PMP imported 
independently of Pex19p (33, 34), actually also interacts with Pex19p and is imported 
through a mechanism involving Pex16p as docking element (35). Pex16p is also an integral 
membrane protein and seems to act as a Pex3p receptor or as a membrane translocator 
component (34). In turn, Pex3p once integrated into the peroxisomal membrane constitutes a 
Pex19p docking element and recruits complexes of Pex19p and PMPs as part of the PMPs 
incoming mechanisms (18, 34). 
Recent experiments using a peroxisome-targeting assay in semi-intact CHO-K1 cells 

strengthened the notion that PMPs are directly imported into the peroxisomal membranes 

(35). This work also proposed a new classification of the import pathways. Previous work 

suggested the existence of two distinct PMPs import pathways (33, 34): (i) a Pex19p and 

Pex3p-dependent class I pathway followed by most PMPs including Pex16p, and; (ii) a 

Pex19p- and Pex3p-independent class II pathway, which so far had included Pex3p as the 

only PMP cargo yet identified. However, the most recent work found that Pex3p follows a 

novel import pathway involving a complex with Pex19p in the cytosol and a subsequent 

docking at Pex16p in the peroxisomal membrane (35). Based on these observations, it was 

suggested that pathways that depend on Pex19p-mediated membrane docking be classified 

as follows: (i) a class I pathway involving Pex3p as the membrane receptor, and; (ii) a class II 

pathway where Pex16p provides the docking site. 

Under this new scenery a problem arises regarding the initial stages of peroxisome 

membrane biogenesis. Pex16p is known to be imported by the Pex19p-dependent pathway 

mediated by Pex3p as membrane receptor for the Pex16p/Pex19p complex (33, 34, 38, 39). 

At the same time, in the new pathway the import of Pex3p is mediated by Pex16p acting as 

receptor of the Pex3p/Pex19p complex (35). This apparent “chicken-and egg” problem can 

be solved by considering an ER pathway in which Pex16p would use another membrane 

insertion mechanism than Pex3p (26, 30). 

3. The endoplasmic reticulum in peroxisomal biogenesis 

The absence or non-sense mutations of any of the PEX3; PEX19 and PEX16 genes preclude 

the generation of peroxisomes, which as mentioned above can be re-established by 

reintroducing the respective wild type genes (18). In yeast, the endoplasmic reticulum 

clearly emerged as the source of membrane involved in the initial biosynthetic event (40). 

Plants also contributed with evidence of an ER-to- peroxisome pathway (41-43). Although in 

mammalian cells such possibility has been more controversial, accumulated evidence (26, 

30) prompts reconsidering its validity. 

3.1 Experiments in yeast involve the endoplasmic reticulum as the origin of newly 
formed peroxisomes 

Yeast model systems provided the first evidence involving the ER in peroxisome biogenesis 

(44-46). In Yarrowa lipolytica, the finding of N-glycosylation in Px16p and Pex2p indirectly 

revealed trafficking through the ER to peroxisomes (40, 44). In Hansenula polymorpha, Pex3p, 

Pex8p and Pex14p accumulate in the ER in the presence of presence of Brefeldin (BFA) and 

become targeted to peroxisomes after BFA removal (47). In Saccharomyces cerevisiae, 
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Hoepfner et al., (14) showed direct evidence that Pex3p and Pex19p are synthesized in the 

ER and then move to peroxisomes. Complementation experiments in yeast lacking Pex3p, 

and thus lacking peroxisomes, demonstrated that certain structures growing out from the 

ER, and containing Pex3p-GFP, constitute peroxisomal precursors that delineate a 

subdomain of the ER (14, 31). Also in yeast, recombinant Pex3p bearing an attached signal 

sequence and, therefore, unequivocally addressed to the ER, ends up integrated into 

peroxisomes (22). More recently, work on Saccaromyces reported ER targeting of 16 PMPs 

mediated by Sec61p and Get13, both in proliferating wild-type cells and in mutant cells 

lacking peroxisomes (48). This work also showed that PMPs leave the ER in a Pex3-Pex19p-

dependent manner, implying a new functional role for Pex3p and Pex19p, i.e. promoting 

exit from the ER. The recent isolation of vesicular carriers that buds from the ER through a 

mechanism requiring Pex19p and carrying Pex3p and Pex15p provided compelling evidence 

for the existence of an ER-to- peroxisome pathway, which is independent of the COPII 

mediated pathway characteristic of the exocytic route (49). 

3.2 The ER-to-peroxisome pathway in plants 

Plants have also provided evidence of an ER-to-peroxisome pathway. In germinating castor 
beans, early pulse chase experiments showed peroxisomal proteins appearing first in the ER 
while en route to glyoxisomes that are specialized peroxisomes (41, 42). Pex16p has been 
reported in the ER as well as in peroxisomes (43) and its distribution suggested that specific 
domains might exist in the ER, defined by the concentration of certain peroxisomal proteins. 

3.3 The ER-to-peroxisome pathway in mammalian cells 

The ER-to-peroxisome pathway has been more difficult to disclose in mammalian cells. 
Several observations initially argued against the possibility that such a pathway might even 
exist or play a physiologically relevant function. For instance, kinetics studies have shown 
that Pex3p is rapidly imported into preexisting peroxisomes in wild type cells, one or two 
order of magnitude faster than the process of de novo peroxisome biogenesis (28). Thus, the 
chance to mediating de novo peroxisome biogenesis while most Pex3p is being consumed by 
importation into preexisting organelles seemed remote. On the other hand, attempts to 
follow up the newly synthesized Pex3p in vivo failed to find evidence of traffic through the 
ER to peroxisomes, both in wild type cells and in cells that lack peroxisomes (28, 34). This 
failure suggested that previous observations in yeast might not be extensible to mammalian 
cells. Until recently, the lack of direct evidence involving the ER in peroxisomal biogenesis 
in mammalian cells contributed to maintain the original notion of fission of pre-existing 
peroxisomes as the only source of the organelles (17). 
Early electron-microscopic observations revealed close associations of peroxisomes and the 
ER in intestinal cells (50). The functional relevance of such observations remained for a long 
time enigmatic. Suggestive evidence of an ER involvement in peroxisomal biogenesis 
includes the finding of synthesis of PMP50 in ER-bound ribosomes in rat liver (51) and 
lamellar structures containing Pex13 and PMP70 that are continuous with both the ER and 
peroxisomes in dendritic cells (52). The role of the ER so clearly shown in yeast, as a 
platform for the outgrowth of new peroxisomes, had to wait in mammalian cells for new 
experimental approaches. The most direct evidence of the ER in peroxisome biogenesis 
came from live cell imaging in synchronized transport systems. First, it was shown that 
Pex16p is addressed to the ER before its sorting to peroxisomes (30). Afterwards, a similar 
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route was revealed for Pex3p in ZS fibroblasts (26), thus providing the elusive evidence of 
previous studies. 
In wild type mammalian cells (Cos7 cells), experiments with a photoactivable Pex16p-GFP 

revealed a trafficking pathway initiated at the ER and leading to peroxisomes (30). These 

studies also showed that incorporation of Pex16p into the ER is independent of Pex19p and 

occurs cotranslationally (30), thus contrasting with the direct post-translational pathway 

that requires both Pex19p and Pex3p for import of Pex16p into the peroxisomal membrane 

(33, 34, 38, 39). Furthermore, overexpression of Pex16p in cells lacking peroxisomes due to a 

nonsense mutation of the PEX16 gene relocates Pex3p from mitochondria to the ER (30), 

suggesting that Pex16p is a Pex3p recruiting receptor at the ER, perhaps mimicking its 

recently proposed role in pre-existing peroxisomes (35). The evidence suggested that most 

peroxisomes derive from the ER pathway rather than from preexisting organelles. 

Prompted by the refreshing results on Pex16p traffic in living mammalian cells (30) and the 

contrasting observations regarding Pex3p trafficking in yeast (14, 22, 31) and mammalian 

cells (28, 34), we decided to study the sorting behavior of Pex3p and Pex16p in a fibroblast 

cell line (called MR) derived from a Chilean patient with ZS (26). In this new MR cell line we 

found complete lack of peroxisomes, including peroxisomal membrane ghosts, due to 

nonsense mutation in the PEX3 gene. An inactivating nonsense mutation generated a stop 

codon at position 53, previously reported in PEX3 deficient human cells (28). Cell 

fractionation and immunofluorescence showed peroxisomal matrix enzymes such as 

catalase and thiolase in the cytosol of these cells. Exogenous expression of Pex3p (tagged 

with GFP) restored the peroxisomal biogenesis. The newly generated peroxisomes imported 

catalase and thiolase. Therefore, the MR cells show the expected phenotype for the lack of 

function of Pex3p and for the reestablishment of Pex3p expression. 

Unexpectedly, we detected an important phenotypic feature previously unnoticed in ZS. 

Cells with PEX3 or PEX19 mutations usually mistarget endogenous PMPs to mitochondria, 

perhaps due to the presence of a cryptic and weak mitochondrial signal (24, 53). In 

congruency, by using a reported serum that specifically recognizes several human PMPs 

(11), we detected the majority of PMPs distributed in mitochondrial membranes in both MR 

and GM6231 cell lines (26). However, we also detected a small pool of endogenous PMPs 

distributed in ER membranes and small cytoplasmic vesicles (26). An early study in rat liver 

using cell fractionation methods described data suggesting the presence of PMP50 and 

PMP36 in ER membrane fractions (51). Only very recently a targeting of a variety of PMPs to 

the ER has been reported in yeast (48). However, this is a previously unknown feature of ZS 

cells, which not only entails great interest regarding the role of the ER in peroxisomal 

biogenesis but also suggests a new role of Pex3p and Pex16p dealing with the traffic of 

PMPs from the ER to peroxisomes. 
The interrelated functions of Pex16p and Pex3p (34, 35) suggest that these peroxins should 
act in concert. Thus, we analyzed the sorting behaviour of newly synthesized Pex3p and 
Pex16p in their respective mutant ZS as well as in the counterpart mutations. Microinjection 
expression experiments of GFP-coupled versions of these peroxins allowed the study of 
early stages of their transport. Previous studies in mammalian cells lacking PEX3 have 
shown that nuclear microinjection of PEX3 gene re-establishes peroxisomes within 3 h (28), 
but did not report an analysis of Pex3p distribution at shorter time periods. Strikingly, we 
found Pex3p-GFP localizing first to the ER and subsequently to peroxisomes in MR cells. 
Within the first hour of expression we detected almost 70% of the Pex3p-GFP mainly in the 
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ER. After 4 h Pex3p-GFP became clearly detectable in newly formed peroxisomes. These 
results contrast with those that failed to detect Pex3p sorted into an ER-to- peroxisome 
pathway in mammalian cells (28, 34). Our evidence that Pex3p follows the same pathway of 
Pex16p (26), strengthen the notion that mammalian cells share with yeast an ER 
involvement in peroxisomal biogenesis. 
In agreement with previous studies (30), we also found that Pex16p-GFP exogenously 

expressed in ZS cells GM6231, which carry a well characterized mutation of PEX16 and lack 

peroxisomes, follows an ER-to- peroxisome pathway and reestablishes peroxisomal 

biogenesis. In these GM6231 cells, Pex16p-GFP expressed by microinjection distributed in 

bright dots or vesicles likely corresponding to peroxisome precursors (26). Interestingly, we 

observed that MR fibroblasts lacking Pex3p distributed Pex16p-GFP mainly to the ER (26). 

Previous studies in mammalian cells lacking Pex19p have shown that exogenously 

expressed Pex16p-GFP is targeted to the ER and accumulates there without promoting 

newly synthesis of peroxisomes (30). There are also studies in yeast lacking Pex3p or Pex19p 

that show PMPs arrested in the ER (48), and more recently, that Pex19p is part of the 

mechanism which produces membrane carriers containing Pex3p from the ER (49). Taken 

together with our results, the overall evidence indicates that Pex16p does not require Pex3p 

for its insertion into the ER membrane, in agreement with its previously reported 

cotranslational incorporation (30), but seemingly does require Pex3p and Pex19p for exiting 

the ER in peroxisomal membrane precursors. Because Pex3p is a docking factor for Pex19p 

in peroxisomes (34), a likely explanation is that a Pex3p/Pex19p complex formed at the ER 

membrane promotes the formation of membrane carriers for Pex16p and presumably other 

PMPs. 

With regard to the role of Pex16p, GM6231 cells lacking Pex16p distributed Pex3p-GFP to 

mitochondria, indicating that Pex16p is crucial for the ER incorporation of Pex3p (26). 

Pex16p seems to act at earlier stages of peroxisomal membrane biogenesis than Pex3p (25). 

Actually, there is evidence that Pex16p is cotranslationally inserted into the ER and its 

overexpression leads to Pex3p recruitment to the ER (30). It is very likely that Pex16p once 

inserted into the ER membranes acts as receptor for Pex3p in the process leading to ER 

derived peroxisomal precursors. A requirement of Pex16p for ER targeting of Pex3p marks a 

big difference with most yeast strains, which do not express Pex16p. On the other hand, 

Pex3p could provide a docking site for Pex19p coupled to PMPs, as described in pre-existing 

peroxisomes (54). Pex19p-dependent recruitment of PMPs could then drive further 

progression of peroxisomal biogenesis. 

The mechanism of Pex3p incorporation into the ER remains unknown, but likely involves 

Pex16p cotranslationally inserted in the ER membrane (30). Other PMPs might be inserted 

into the ER following a Sec61-translocon mediated mechanism similar to that described for a 

number of PMPs in yeast (48). The process might include maturation of incipient 

peroxisomal membrane at certain regions of the ER or homotypic fusion with other 

peroxisomal precursor vesicles. 
Evidence in yeast indicates that new peroxisomes form by budding from ER in a COPI- and 
COPII- independent manner using a new branch of the secretory pathway (45). Definitive 
evidence of a COPII independent pathway has been recently reported in a reconstituted in 
vitro transport system in yeast (49). These observations in yeast agree with previous 
observations in mammalian cells (28, 55, 56) and with our recent results in MR and GM6231 
cells (26). Inhibition of either the COPI vesicular pathway with Brefaldin A or the COPII  
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Fig. 1. Integrated model of peroxisome biogenesis pathways. As previous models established, 
matrix and PMPs are synthesized in free polysomes and are post-translationally imported into 
pre-existent peroxisomes. Routes followed by these proteins are depicted as routes: (1) for 
matrix proteins bearing PTS1 or PTS2 that are incorporated into mature peroxisomes by 
importomer complex (18, 36, 37); (2) PMPs, including Pex16p and Pex3p, forming a complex 
with Pex19p follow either a subroute (2a) in which Pex3p acts as a docking site for Pex19p-
PMPs complexes (18, 34), or subroute (2b) mediated by Pex16p acting as docking site for Pex3p 
(34, 35). An additional subroute (2c) is followed by Pex3p targeted to the ER, presumably also 
in complex with Pex19p and requiring Pex16p as docking site (26). The ER-to-peroxisome 
route (3) includes the following steps: (3a) direct co-translational insertion of Pex16p (30), and 
likely other PMPs, as described in yeast (48); (3b) segregation of these proteins into specialized 
ER areas lacking ribosomes and other ER components, as suggested by the studies in dendritic 
cells (53); (3c) generation of hypothetical vesicular carriers, similar to those described in yeast 
(49), and/or lamellar carriers based on observations in dendritic cells (50). The ER-to-
peroxisome transport requires Pex19p (30, 49); (3d) formation of peroxisomal precursors, still 
lacking matrix proteins, which might be equivalent to the peroxisomal ghosts described in 
most ZS cells (10-12). Mature peroxisomes proliferate by growth and division (16) 
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vesicular pathway by a Sar1 mutant in PEX3 or PEX16 mutant fibroblasts do not affect the 
recovery of peroxisome biogenesis (28). Our experiments in PEX3 and PEX16 mutant 
fibroblasts (MR and GM6231) indicates that PMPs are incapable of leaving the ER, causing 
an enlargement of ER cisternae (26), while the biosynthetic traffic of the temperature 
sensitive VSVG-tsO45 seem to function normally (unpublished results). At the non-
permissive temperature of 40ºC, VSVG-tsO45 accumulates at the ER, but after shifting to the 
permissive temperature it becomes transported to the Golgi apparatus and then to the cell 
surface in both MR and GM6231 cells, at similar kinetics as in wild type cells. This 
observation provides the first evidence of a normal traffic between the ER, Golgi apparatus 
and plasma membrane in ZS lines. 

4. Summary and integrative model of peroxisome biogenesis 

We reviewed here the evidence supporting a role of the ER as a platform for the function of 
PMPs (Pex3p and Pex16p) in the initial stages of peroxisomal biogenesis and integrated all 
data in the model depicted in Figure 1. Our recently published data suggested that other 
PMPs are addressed to the ER and accumulate there in the absence of Pex3p or P16p (26), in 
agreement with the most recent results in yeast (48). There is no doubt that peroxisomes can 
be originated de novo and that peroxins crucially involved in the initial steps of peroxisome 
biogenesis can be sorted first to the ER and from there to nascent peroxisomes following a 
COP-II-independent route (45, 49). However, in mammalian cells there is also strong 
evidence of a direct pathway from the cytosol to pre-existing peroxisomes, which under 
normal circumstances seems to be a mayor route (28, 35). Even though only a small fraction 
of Pex3p might be targeted to the ER, this could be enough for providing new peroxisomal 
membrane precursors as required for sustaining a continuous peroxisomal growth and 
proliferation. Peroxisomes possess a machinery for direct import of Pex3 in a Pex19p- and 
Pex16p dependent manner (35). On the other hand, peroxisomal targeting of Pex16p 
depends on Pex19p and Pex3p (33, 34). This apparent “chicken-and-egg” problem (35) can 
be solved considering a Pex3p-independent source of Pex16p in peroxisomal precursors, 
generated after cotranslational insertion into ER membranes (26, 30). ER targeting of Pex16p 
would conform the platform for de novo peroxisome biogenesis, offering a docking site for 
Pex3p at the ER, as it does at the peroxisomal membrane. Once inserted in the ER 
membrane, Pex3p would offer a docking site for Pex19p complexes with other PMPs. This 
pathway would generate pre-peroxisomes that mature towards complete and functional 
entities in concert with the direct import route. Co-existing with the ER-to- peroxisome 
pathway, both Pex16p and Pex3p peroxins would become directly targeted to pre-existing 
peroxisomes in the described ‘‘mutual-dependent targeting’’ manner (35). In this way, the 
classical ‘‘growth and division’’ model of peroxisome biogenesis is complemented with an 
ER-dependent mechanism responsible for de novo renewal of peroxisomal membranes. 
These cellular mechanisms are important to consider when evaluating the pathogenesis of 
Human Peroxisomal Genetic Disorders. 
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