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1. Introduction 

Biomaterials play essential roles in modern strategies in regenerative medicine and tissue 

engineering by designable biophysical and biochemical cues that direct cellular behavior 

and function [1-4]. The guidance provided by biomaterials may improve restoration and 

function of damaged or nonfunctional tissues both in cell-based therapies, such as those 

where carriers deliver transplanted cells or matrices induce morphogenesis in bioengineered 

tissues constructed ex vivo, and in cellular therapies, such as those where materials induce 

growth and differentiation of cells from healthy residual tissues in situ [3, 5-7].  

Stem cells are defined by their ability to self-renew and produce specialized progeny [8, 9]. 
Consequently, they are the most versatile and promising cell source for the regeneration of 
aged, injured and diseased tissues. According to their developmental status, stem cells can 
be classified into two categories: embryonic stem cells and adult stem cells. However, 
despite the remarkable potential clinical applications of each of these stem-cell populations, 
their use is currently limited. Thus, a major goal is to develop new culture based 
approaches, using advanced biomaterials, that more closely mimic what the body already 
does so well, to promote differentiation of pluripotent cells [3]. 
Nanomedicine, the application of nanotechnology for medical purpose, is emerging as a 

new interdisciplinary research field, cutting across biology, chemistry, engineering and 

medicine. It is expected to lead major advances in disease detection, diagnosis, treatment 

and further to replacement of damaged tissues and organs. Over the past two decades, there 

have been significant advances in disease diagnostics, drug delivery, stem cell therapy and 

tissue engineering. In parallel, nanotechnology has shown great potential for the creation of 

the next generation of new biomaterials. 

Biomaterials that promote regeneration are important in both research and clinical 
applications [10]. However, current implants have a limited life-expectancy, and younger 
patients who receive them generally expect to endure revision surgeries to replace worn 
components. A primary problem with current designs is the generation of wear debris 
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particles at the articulating surface that causes local pain and inflammation. Large debris are 
normally sequestered by fibrous tissue, while small debris are taken up by macrophages 
and multinucleated giant cells which may release cytokines that result in inflammation. 
Thus, the proposed solution for the problem caused by wear debris is to develop durable 
materials for the articulating surfaces that are more wear resistant, which would reduce the 
generation of debris particles.  
Recently, it was shown that diamond particles (NDs), the diamond structure at a nanometer 
scale (4-5 nm in size), appear to possess high bioactivity at the molecular level, presenting 
antioxidant and anticarcinogenic properties. Functionalization of NDs with biological 
molecules, such as peptides, proteins and nucleic acid, has led to practical significance for 
biomedical applications, covering their use for single particle imaging in cells, drug delivery 
and protein separation. For instance, carboxylated nanodiamond has been shown as a useful 
probe for detecting and labeling the interaction of nanoparticles and bio-objects such as cells 
and bacteria [11], because NDs can be easily functionalized to conjugate with bio-molecules 
and can emit bright fluorescence without photobleaching [12-15]. Moreover, the ND 
particles were phagocytosed into cells by macropinocytosis and clathrin-mediated 
endocytosis pathways during tracking of cells. However, cell growth ability such as cell 
division and differentiation were not altered after long-term cell culture for 10 days. 
Together, NDs are non-cytotoxic and with bright fluorescence, thus has served as a versatile 
tool in biosensing and bioimaging applications [12, 16].  
Diamond has been one of the most desired and investigated materials in the past years. 
From an extensive list of superlative properties, the ultra-hardness, the chemical inertness, 
the high thermal conductivity, and the high optical transparency are just a few examples of 
its remarkable nature. Applications such as cutting tools, abrasives, structural components, 
heat sinks, bearings, and optical windows (X-ray, IR, and laser windows) are examples that 
diamond has a wide-ranging impact in many fields. 

2. Nanodiamond films 

In the late 1980s, polycrystalline diamond films with fine grains were grown for optical 
coatings [17, 18], wear resistant coatings [19], high-pressure synchrotron X-ray windows [20] 
and X-ray lithography masks [21]. The first reference to these materials as ‘nanocrystalline’ 
was at the Workshop on the Science and Technology of Diamond Films in 1990 [17]. Most of 
these materials would now be classified as forms of nanocrystalline diamond (NCD) and 
further characterized the presence of large intrinsic stress and non-diamond phases in these 
material [22-25]. These NCD materials were all grown in hydrogen-rich chemical vapour 
deposition (CVD) environments, with typically less than 2% methane (or hydrocarbon) in 
hydrogen as reactants, exhibiting clusters (cauliflower morphologies), limited surface 
smoothness, high compressive stress, delamination, and high content of non-diamond 
phase. NCD was deposited on Si or other substrates which had been ‘treated’ or ‘seeded’ to 
increase the diamond nucleation density [26, 27]. This wet seeding process was in solution 
containing diamond powder for ultrasonication to create necessary nucleation sites and the 
process was varied among labs and individuals [28, 29]. By controlling nucleation density 

and growth conditions, grain sizes were usually 5–150 nm for films less than several m 
thick. In 1994, Gruen and coworkers [30-32] developed the growth of nanocrystalline 
diamond films by CVD under hydrogen-poor and carbon-containing argon gas plasmas 
conditions. In 1999 [33], this new material was reviewed under the label of ‘Nanocrystalline 
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Diamond Films’. In 2001 [34], the label ultra-nanocrystalline diamond films (UNCD) came to 
be applied to these materials in order to distinguish them from the more traditional NCD 
films discussed above [35]. The nanocrystallinity is the result of new growth and nucleation 
mechanisms, which involve the insertion of C2, carbon dimer, into carbon-carbon and 
carbon-hydrogen bonds, resulting in heterogeneous nucleation rates on the order 1010 cm2 s-1 

[26, 29]. Detailed investigations using synchrotron-based, near-edge X-ray absorption fine-
structure spectroscopy (NEXAFS) showed that UNCD films grown using this seeding 
approach and growth chemistry are of very high quality, with greater than 99% sp3 bonding 
[33]. The UNCD films, a form of NCD, has led to applications in micro-electromechanical 
systems (MEMS) and nano-electromechanical systems (NEMS) [36-38], corrosion resistance 
[39], biocompatible coatings [40-42], and biosensors [16, 43, 44].  
Diamond coatings with nanosized crystallites, NCD, present a great potential in 
biomedicine and biotechnology. NCD combines surface smoothness with high corrosion 
resistance and biotolerance, which are ideal features for applications in medicine onto 
surgical tools and medical implants. For example, joint implants coated with NCD can take 
benefit of its protective character. The NCD coating acts as a selective protective barrier 
between the implant and the human environment, preventing the release of metallic ions 
into the body. NCD presents the highest resistance to bacterial colonization when compared 
to medical steel and titanium [45]. This property is very important since infection due to 
microbial colonization of the implant surface may lead to implant rejection. In addition, the 
high wear resistance and the low coefficient of friction of NCD allow the reduction of the 
amount of wear debris generated during the joint functioning, thus increasing the life of the 
prosthesis [46]. Further, the residues formed due to wear in this case are diamond particles, 
which are completely harmless, initiating little or no adverse reactions from human 
monocytes and polymorphonuclear leukocytes [47-49]. NCD is also included in this recent 
group of materials and can be used as a template for the immobilization of active molecules 
for biological applications or for biosensor applications [44, 50-52]. One example is the 
functionalization of NCD surface with bone morphogenetic protein-2 (BMP-2) creating a 
biomimetic coating that results in improved osseointegration, which is a powerful strategy 
in tissue engineering as well as in bone tissue regeneration [53]. The NCD surface can also 
be modified with the linking of antibody, human IgG, which provide biomolecular 
recognition capability and specificity characteristics, proving a biologically sensitive field-
effect transistor (Bio-FET) [44].  
This paper offers a review of present knowledge of the synthesis and characterization, cell 
behavior, focused on in vitro adhesion, proliferation and differentiation on nanodiamond 
films. The aim is to highlight nanodiamond films as new generation biomaterials for 
improving the future development on clinical transplantation and tissue engineering. 

3. Surface modifications 

Cellular adhesion is of fundamental importance in many biological processes as the adhered 
cells will sense, interpret, integrate, and then respond to the extracellular signals. Chemical 
and physical signals from the substrate such as surface energy, topography, electrostatic 
charge, and wettability play a vital role in stimulating cell adhesion and influencing cell 
growth behavior. The cellular adhesion properties of as-grown diamond surfaces or 
functionalized diamond surfaces have been studied recently. The as-grown diamond films 
were characterized as hydrophobic surfaces with abundance of C-C and C-H bonds [54]. 
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The functionalized surface properties of diamond can be made hydrophobic or hydrophilic 
with hydrogen or oxygen termination, respectively, which have implications for cellular 
adhesion. The methods of surface modifications are summarized as following: 
1. Hydrogen termination (hydrophobic surface):  
2. Diamond films were treated in pure hydrogen plasma treatment at 300-800 W in the 

microwave plasma CVD system at 5 mTorr for 2-15 min. All freshly prepared 
hydrogen-terminated diamond samples were used immediately for cell culture.[55-58] 

3. Oxygen termination (hydrophilic surface):  
a. Diamond samples were exposed to UV irradiation (18 W, 254 nm) for 18 h in air. 

After UV functionalization, the samples were rinsed with ultrapure water, 
tetrahydrofuran, and finally with hexane.[55]  

b. Diamond films were exposed to pure oxygen plasma CVD system at 800 W at 5 
mTorr for 10-15 min.[56, 58]  

c. Diamond films were oxidized in concentrated HNO3 at 60-70∘C for 24 hours. This 

oxidation reaction transformed the face of the film from hydrophobic to 
hydrophilic surface by adding carboxylate groups to the films. [59, 60]  

4. Bio-molecular conjugation [61-64] 

4. Nanodiamond-cell interaction: biological performance and response 

Cell adhesion is involved in various natural phenomena such as embryogenesis, 

maintenance of tissue structure, wound healing, immune response, and tissue integration of 

biomaterial. The biocompatibility of biomaterials is very closely related to cell behavior on 

contact with them and particularly to cell adhesion to their surface. Surface characteristics of 

materials, such as their topography, chemistry, or surface energy, play an essential part in 

cell adhesion on biomaterials. Thus attachment, adhesion and spreading belong to the first 

phase of cell/material interactions and the quality of this phase will influence the cell's 

capacity to proliferate or to differentiate itself on contact with the implant. Material/cell 

interaction depends on the surface aspects of materials which may be described according to 

their wettability, topography, chemistry and surface energy. These surface characteristics 

determine how and what kinds of biological molecules will adhere to the surface and more 

particularly determine the orientation of adhered molecules, and also finally determine the 

cell behavior while in contact [3, 8, 65]. As previously shown, cells in contact with a surface 

will firstly attach, adhere and then spread. This first phase depends on specific adhesion 

proteins such as integrin and cadherin as demonstrated by Chen et al [66]. Thereafter, the 

quality of this adhesion will influence their morphology, and their capacity for proliferation 

and differentiation. Early in vitro biocompatibility and cytocompatibility studies focused on 

the morphology and growth capacity of cells on nanodiamond films with various chemical 

compositions and topographies [15, 53, 56, 58, 67, 68]. Recently, it was found that 

nanodiamond films further determine the differentiating stage in stem cells, which expands 

other possibilities for nanodiamond films into organ repair and tissue engineering.  

4.1 Biocompatibility tests: morphological aspect and growth capacity of cells on 
nanodiamond films 

NCD films possess numerous valuable physical, chemical and mechanical properties, 
making NCD an excellent material for implantable biomedical devices. There is still one 
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very important property required for biomaterials, i.e., biocompatibility. The 
biocompatibility of a material is determined by in vitro and in vivo tests, involving the 
interaction of the material with cells.  
In vitro studies of biocompatibility of UNCD coatings, produced by MPECVD using Ar/CH4 
as reactive gas, were carried out by Shi et al. [69]. They grew mouse embryonic fibroblasts 
(MEFs) on UNCD films up to 4 days and found that UNCD film coated substrates can 
dramatically promote the growth of MEFs, while the quartz substrates inhibit cell 
attachment. On growing human cervical carcinoma cell line (HeLa), neuronal cell line 
(PC12) and osteoblastic cells (MC3T3) on UNCD films, no toxicological effects on the cells in 
culture were observed. It was noted that maximum cell attachment, cell spreading and 
nuclear coverage were observed on UNCD films compared to two commonly used materials 
in MEMS platinum and silicon substrates [70]. Amaral et al performed bone marrow cell 
culture tests on NCD films, prepared by using a hot-filament chemical vapor deposition 
(HFCVD) technique in Ar-CH4-H2 gas mixtures, to observe its effects on cellular reaction, 
osteoblast, and osteoblast activity [71]. The nanometric feature of NCD resulted in increased 
bone cell proliferation and minimized activity of osteoclast-like cells. Following previous 
study, Amaral and coworkers cultured primary human gingival fibroblast cell cultures on 
NCD films for 21 days and no damage to the cells was observed. On performing the 
cytotoxicity tests using a standard cell line, it was found out that NCD films promotes cell 
attachment and normal cell growth rates [72]. Several other studies were made on the 
morphological behavior of mesenchymal stem cells on NCD coating prepared by MPECVD 
method in hydrogen-rich gas mixtures, which revealed good surface biocompatibility of the 
coatings [58] . Their investigations indicated that NCD coatings were biocompatible to not 
only cell lines, but also primary stem cells.  
All these in vitro studies showed that NCD films tended to promote the growth and 
adhesion of cells without any toxicological effect. There are other applications where it is 
desirable that there should not be any cell attachment to a surface, for example, in case of 
catheters and temporary implants. After getting a primary indication of the biocompatibility 
of NCD films through in vitro tests, several in vivo studies were initiated by implants with 
NCD coating in laboratory animals. An attempt was made to study the osseous healing at 
the implant sites by inserting implants into 4-year-old female sheep calvaria for 3 days, 1 
week and 4 weeks intervals. It was observed that implant surfaces coating with NCD films 
and then conjugating with BMP-2 enhanced osseointegration in vivo. After implanting NCD 
coated implants in transplantation sites of sheep for different time periods, it has been 
observed that the NCD-coated implants did not show any significant toxicological effect and 
are well tolerated in the sheep body. Results further suggest that this technical advancement 
can be readily applied in clinical therapies with regard to bone healing, since primary 
human mesenchymal stromal cells strongly activated the expression of osteogenic markers 
when being cultivated on NCD absorbed with physiological amounts of BMP-2 [73].  
The above in vitro and in vivo studies indicated the biocompatibility of NCD films prepared 

by a variety of techniques. The general finding so far is that control of cell adhesion and 

proliferation on NCD can be achieved by altering NCD surface chemistry and surface 

topography and wettability, probably due to the correlation between these surface 

properties and the adsorption of endogenous proteins that regulate cell behavior. Adsorbed 

proteins can be detected on biomaterials within seconds of exposure to the blood, and a 

monolayer of adsorbed proteins forms in seconds to minutes. Fibronectin, vitronectin and 

laminin are pro-adhesive proteins, with relatively high concentration in blood, that are 
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recognized by various cellular integrin receptors [74]. It has been observed that fibronectin 

governs the adhesion and spreading of cells on a material surface [75]. These plasma 

proteins play an important role in the initial recruitment of cells to the biomaterial surface. 

The glycoprotein fibronectin consists of multiple specific binding sites and is capable of 

interacting with a wide variety of other biomaterials, through the formation of fibrilar 

extracellular matrix or fibrils. So, the specific surface of a biomaterial plays a key role in 

adsorption of fibronectin or other pro-adhesive proteins and hence better proliferation of 

cells. The interaction of neural stem cells with UNCD films and the consequent cellular 

signaling processes are schematized in Figure 1. Some studies revealed that the adhesion 

and spreading of cells on NCD surfaces is related to the bonding structure present on the 

surface and the ratio of sp2/sp3 [76]. It has also been observed that the microstructure of the 

NCD films and the kind of treatments seemed to influence the biological effects of cells. 

However, the correlation between these surface properties (chemistry, topography and 

wettability) and cell responses is complicated and not clearly understood. 

 

 

Fig. 1. Schematic drawing summarizes the role of H-UNCD films in mediating 
differentiation from neural stem cells. Absorbed fibronectin on H-UNCD surface activates 

integrin 1 (CD29), focal adhesion kinase (FAK) and (extracellular signaling kinase) ERK1/2 
pathways and, in turn, leads to an ultimate and specification of neuronal differentiation 
from NSC. 

4.2 Topography effects of nanodiamond films on cells 

The comparison of the behavior of different cell types on nanodiamond films shows that 
they react differently according to surface smoothness [55, 57, 60, 68, 77, 78]. Scanning 
electron microscopy (SEM) and immunofluorescence staining examinations of osteoblast on 
nanodiamond films with various surface roughness (nanometer and micrometer) generally 
demonstrated that enhanced osteoblast functions (including adhesion, proliferation, 
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intracellular protein synthesis, alkaline phosphatase activity and extracellular calcium 
deposition) on nanocrystalline diamond (RMS~20 nm) compared to submicron diamond 
grain size films and control for all time periods tested up to 21 days [57, 60]. In addition, an 
SEM study of osteoblast attachment on NCD films explains the topographical impact 
diamond had on osteoblast functions by showing complex and longer filopodia extensions.  
To investigate the adhesion of normal human dermal fibroblast cells grown on NCD films 
with various surface smoothnesses, atomic force microscopy were performed. The 
examination demonstrated that cell viability and adhesion force was better on smooth 
surfaces (UNCD films) compared to micron diamond grain size films, no matter the 
terminations of diamond films [55]. Although mesenchymal stem cells and non-
differentiated cells adhere similarly on all NCD surfaces with different roughness (20, 270, 
and 500 nm) and control polystyrene, their metabolic activity on NCD surfaces is increased. 
On the other hand, osteoblasts adhere on NCD significantly more than on polystyrene, and 
their metabolic activity is decreased on nano/microrough NCD surfaces in contrast to 
mesenchymal stem cells. These differences could be attributed to the distinct properties of the two 

cell types in the human body. Alternatively, the different response of osteoblasts could be attributed 

to the specific surface topography as well as to the biocompatible properties of diamond. 
[79]. Hence the controlled topographically structured NCD coatings on various substrates is 
promising for preparation of better implants, which offer faster colonization by specific cells 
as well as longer-term stability. 

4.3 Surface chemistry effects of nanodiamond films on cells 

The bio-compatibility and resistance to chemical corrosion of diamond may increase lifetime 
of stents, joints, and other implants in the human body. It is also possible to make a chemical 
functionalization of diamond surface and create bio-passive or bio-active patterns. 
Kalbacova et al [80] showed that viability and adhesion of human osteoblasts (SAOS-2) 
cultured on NCD films are predominantly determined by NCD surface termination. 
Increasing surface nano-roughness plays a secondary yet positive role. Hydrophilic surface 
of NCD films (O-terminated surface) provides good conditions for osteoblast adhesion and 
spreading and consequently on their viability (metabolic activity and proliferation). It was 
shown that hydrophobic H-terminated diamond surfaces are less favorable for osteoblast-
like cell adhesion and growth than hydrophilic O-terminated surfaces [80, 81]. This is in 
agreement with observations on other materials and cells, such as Ti6Al4V titanium alloy 
[82, 83] and human dermal fibroblast [55]. In addition to cells lines, different kinds of stem 
cells have also been studied and the results show difference on cell lines and stem cells. 
Chen et al [56] cultured neural stem cells on different functionalized diamond films in low 
serum and without any differentiation factors to investigate the biological effects on NSCs. 
We found that H-terminated UNCD films spontaneously induced cell proliferation and 
neuronal differentiation and O-terminated UNCD films were also shown to further improve 
neural differentiation, with a preference to differentiate into oligodendrocytes. Clem [58] 
reported that H-terminated ultra-smooth nanostructured diamond surfaces supported 
robust adhesion and survival of mesenchymal stem cells, while oxygen (O)- and fluorine 
(F)-terminated surfaces resisted cell adhesion. Thalhammer [84] used four different 
materials (glass, PCD, NCD and Si) coated with monolayers nanodiamonds and displayed 
promising similarity to the protein-coated materials regarding neuronal cell attachment, 
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Fig. 2. Scanning electron photomicrographs of neural stem cells cultured on H-UNCD films 
in regular medium without any differentiating reagents for seven days. Higher 
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magnification scanning electron microscopy was performed to enlarge different areas (A-E) 
in graph (a) and (A-B) in graph (b). Yellow arrows show the filopodia at higher 
magnifications. 

neurite outgrowth and functional network formation. Importantly, the neurons were able to 

grow in direct contact with the NCD-coated material and could be easily maintained in 

culture for an extended period, equal to those on protein-coated substrates. To further 

investigate the interaction of cell to NCD film, Chen et al observed the morphology of cells 

cultured in H-terminated UNCD films and revealed that there were filopodia/nano-

diamond interactions (Figure 2). Thus, NCD layering might prove a valuable material for 

implants on a wide range of substrates. These indicate that diamond films can be easily 

modified to either promote or prevent cell/biomaterial interactions. This is an interesting 

feature for tissue engineering and bio-electronics. A question remained though to what 

kinds of mechanism and key points to affect the degree of the cell adhesion and selectivity. 

5. Molecular mechanisms of signaling transduction from UNCD films to 
nuclei 

Cells do not interact with a naked material either in vitro or in vivo. At the beginning step, 
the material is conditioned by the biological fluid components. This is a complex process 
strongly dependent on the cell culture conditions including the underlying substrate and 
mediating medium/proteins. Surface energy may influence protein adsorption and the 
structural rearrangement of the proteins on positively and negatively charged substrates 
(hydrophilic/hydrophobic surface). Protein from serum containing media adsorbed on 
surfaces forming multiple molecular layers. Hydrophobic H-terminated surfaces were 
found less favorable for osteoblastic cell adhesion, spreading and viability than hydrophilic 
O-terminated surfaces [5]. Recently, it was shown that microscopic (30–200 μm) patterns of 
H- and O-terminated surface can lead to a selective adhesion and arrangement of osteoblasts 
[85]. This effect also works on human periodontal ligament fibroblast and human cervical 
carcinoma (HeLa) cells [85-87]. The differential adsorption of “serum proteins” on the 
negative or positive charged regions from medium with fetal bovine serum (FBS) was 
studied. It was proposed that the selectivity is due to the serum proteins, which are 
adsorbed in about the same monolayer thickness (2–4 nm) on both H and O-diamond 
surfaces, but in different composition and conformations of proteins [88]. When osteoblasts 
were placed on the diamond surface in McCoy's 5A medium without FBS, cell attachment 
on H/O-patterned diamond surfaces was not selective [85, 89]. This excluded a direct effect 
of diamond C-H and C-O surface dipoles on the cell selectivity. FBS adsorption to diamond 
proceeds in two stages. Formation of monolayer thickness (2-4 nm) FBS layer on both H- 
and O-diamond was observed within short period of time (<18 h) [86, 88]. AFM 
nanoshaving showed that this primary FBS layer is less adhesive to H-diamond than to O-
diamond. After long time adsorption (6 days), formation of a thick FBS layer was observed 
on H-diamond (~35 nm) than on O-diamond (~17 nm) [86]. Moreover, it is clear that not 
only the nature of adsorbed biological molecules but also their conformation and 
composition will influence consequent cell adhesion. Changes in conformation of pre-
adsorbed specific proteins, fibronectin, (not bovine serum albumin or vitronectin, which is 
abundant in FBS) were observed. These would affected cell binding domain conformations 
and then affect the affinity with its cell surface receptor [58, 86].  
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Osteoblast adhesion on materials may also be considered in relation to the expression of the 

various adhesion proteins and cell receptors. Numerous studies using immunefluorescent 

staining have shown the presence of vinculin and pY397 focal adhesion kinase (FAK) in 

cultured human osteoblasts on nanostructured diamond films [60, 78, 79]. The osteoblasts 

adhered on ultra nano-cones and nano-cones, showing large focal adhesions and relatively 

strong activation of FAK, are thus more predestined for successful colonization of the entire 

environment [60, 78]. Hamilton [90] suggested that osteoblast response to substrates with 

specific topographical features requires FAK-Y397-Src-Y416 complexes for ERK1/2 

phosphorylation. Yet on smooth surfaces, Src-independent routes of ERK1/2 activation are 

present, which finally induce the differentiation of osteoblast further to promote bone 

formation. The same cell signaling pathway has been studied on other materials, such as 

titanium alloys [83]. According to published data, the contact of cell to fibronectin could be 

 

 

Fig. 3. The confocal immunofluorescence image of neural stem cells grown on the H-UNCD 
film in the regular medium without any differentiating reagents for 8 hours of culture. 
Alexafluor 594 labeled phospho-FAK (Red) and DyLight 488 labeled phospho-ERK (Green). 
The phospho-FAK and phospho-ERK were detected in the cells simultaneously and 
localized to their proper subcellular positions. In the quadrant of X-Z and Y-Z stacking 
images, phospho-FAK was observed in basal cell membrane adherent to H-UNCD films, 
while phosphor-ERK was shown assembled in the cell body.  
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mediated by integrin β1 [91, 92]. Integrins are transmembrane protein family and composed 

of  and  subunits as heterodimer. Functions of integrins were involved in the regulation of 

proliferation, survival, migration and differentiation. The high level of integrin β1 

expression has been used to enrich human epidermal and rodent neural stem cells from 

more restricted progenitor populations [58, 92]. Moreover, Chen et al [66] showed that 

increased levels of neuronal differentiation in neural stem cells grown on H-UNCD surfaces 

are due to absorbance of fibronectin from medium to H-terminated UNCD films, resulting 

in integrin β1-FAK-ERK1/2 signaling (Figure 3) in conditions of low serum-growth factors 

and free of differentiating reagents. 

 

Number Function gi number Name 

1 
Extracellular 

matrix 
224863 Fibronectin  

2 

Blood 

78099200 Hemoglobin subunit epsilon 

3 126022898 Hemoglobin alpha subunit 1 

4 203283896 Apolipoprotein A-I preproprotein  

5 3915607 Apolipoprotein A-I   

6 77735387 Fetuin B  

7 166159174 
Angiotensinogen (serpin peptidase inhibitor, clade A, 
member 8)  

8 95147674 Complement factor B  

9 2501351 Transferrin  

10 27807209 Alpha-2-macroglobulin  

11 78369364 
Group-specific component (vitamin D binding 
protein)  

12 

Epithelium 

16303309 Type II keratin 5 

13 148747492 Keratin 2 

14 73996312 
Similar to Keratin, type II cytoskeletal 5 (Cytokeratin 
5) (58 kDa cytokeratin) isoform 3 

15 9910294 Keratin 71 

16 4159806 Type II keratin subunit protein  

17 Cytoskeleton 28336 Mutant beta-actin  

18 

Others 

27806907 Clusterin   

19 2232299 IgM heavy chain constant region   

20 27806809 Regucalcin  

Table 1. Differential protein expression profile identified by LC-MS/MS, showing proteins 
preferentially absorbed on H-UNCD films, but not on Petri dish polystyrene surface. 

6. Proteomic analysis of proteins that are adsorbed to UNCD films by using 
LC-MS/MS 

We showed that the abundant fibronectin adsorbed onto the H-UNCD film formed locally 

dense and conformed layer that allows for the pro-adhesive motifs to be accessible by 

integrins and further activates the whole signaling pathway [66]. To further investigate what 

other serum proteins might be bound to UNCD films, we performed proteomic analysis, 
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using LC-MS/MS on serum proteins that are adsorbed to H-UNCD films. We demonstrated 

that H-UNCD films could adsorb proteins from culture medium more efficient than Petri 

dish’s polystyrene surface could (Table 1). These proteins included not only fibronectin but 

also proteins that are known to be present in blood, epithelium, cytoskeleton, and others. It 

would be of interest to further explore the roles of these proteins in shaping the UNCD-cell 

interaction and the ultimate differentiation into desired cell types. 

7. Conclusion 

Highly intense research on biocompatibility of NCD films showed that it is a promising 
material for biomedical applications. NCD films possess easy surface functionalization and 
nano-topography, offering favorable condition for the growth of fibroblasts, osteoblasts and 
stem cells without inflammatory response and cytotoxicity. From published in vitro studies, 
NCD films elicited an improved proliferation and differentiation capacity for human 
osteoblasts and neural stem cells, compared to conventional polystyrene Petri dishes. The 
relevant mechanism of cellular signaling transduction has been investigated and shown to 
act through fibronectin-integrin-FAK-ERK pathway. These results suggest the potential 
usage of NCD films as novel medical devices and implants such as a coating for joint 
implant and nerve repair in tissue engineering. The delamination and corrosion of the NCD 
films during its long-term use in medical implants are to be carefully considered for its 
future biomedical applications. We performed proteomic analysis, using LC-MS/MS, to 
identify proteins that are adsorbed to UNCD films. We demonstrated proteins such as 
fibronectin, transferrin, and several keratin proteins that could be adsorbed more efficiently 
onto UNCD films than to Petri dish’s polystyrene surface. It would be of interest to further 
explore the roles of these proteins in shaping the UNCD-cell interaction and the subsequent 
differentiation into desired cell types. Finally, more systematic studies in vivo are now 
warranted to confirm its use in biomedical devices for commercial applications. 
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