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1. Introduction

Communities of species are often sampled using so-called “presence-absence” surveys,

wherein the apparent presence or absence of each species is recorded. Whereas counts of

individuals can be used to estimate species abundances, apparent presence-absence data are

often easier to obtain in surveys of multiple species. Presence-absence surveys also may

be more accurate than abundance surveys, particularly in communities that contain highly

mobile species.

A problem with presence-absence data is that observations are usually contaminated by zeros

that stem from errors in detection of a species. That is, true zeros, which are associated with the

absence of a species, cannot be distinguished from false zeros, which occur when species are

present in the vicinity of sampling but not detected. Therefore, it is more accurate to describe

apparent presence-absence data as detections and non-detections, but this terminology is

seldom used in ecology.

Estimates of biodiversity and other community-level attributes can be dramatically affected

by errors in detection of each species, particularly since the magnitude of these detection

errors generally varies among species (Boulinier et al. 1998). For example, bias in estimates

of biodiversity arising from errors in detection is especially pronounced in communities

that contain a preponderance of rare or difficult-to-detect species. To eliminate this source

of bias, probabilities of species occurrence and detection must be estimated simultaneously

using a statistical model of the presence-absence data. Such models require presence-absence

surveys to be replicated at some – but not necessarily all – of the locations selected for

sampling. Replicate surveys can be obtained using a variety of sampling protocols, including

repeated visits to each sample location by a single observer, independent surveys by different

observers, or even spatial replicates obtained by placing clusters of quadrats or transects

within a sample location. Information in the replicated surveys is crucial because it allows

species occurrences to be estimated without bias by using a model-based specification of the

observation process, which accounts for the errors in detection that are manifest as false zeros.

Several statistical models have been developed for the analysis of replicated, presence-absence

data. Each of these models includes parameters for a community’s incidence matrix (Colwell
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et al. 2004, Gotelli 2000), which contains the binary occupancy state (presence or absence)

of each species at each sample location. The incidence matrix is only partially observed

owing to species- and location-specific errors in detection; however, the incidence matrix

can be estimated by fitting these models to the replicated, presence-absence data. Therefore,

any function of the incidence matrix – including species richness, alpha diversity, and beta

diversity (Magurran 2004)– also can be estimated using these models.

Models for estimating species richness – and other measures of biodiversity – from replicated,

presence-absence data were first developed by Dorazio & Royle (2005) and Dorazio et al.

(2006). By including spatial covariates of species occurrence and detection probabilities

in these models, Kéry & Royle (2009) and Royle & Dorazio (2008) estimated the spatial

distribution (or map) of species richness of birds in Switzerland. Similarly, Zipkin et al. (2010)

showed that this approach can be used to quantify and assess the effects of conservation

or management actions on species richness and other community-level characteristics.

More recently, statistical models have been developed to estimate changes in communities

from a temporal sequence of replicated, presence-absence data. In these models the

dynamics of species occurrences are specified using temporal variation in covariates of

occurrence (Kéry, Dorazio, Soldaat, van Strien, Zuiderwijk & Royle 2009) or using first-order

Markov processes (Dorazio et al. 2010, Russell et al. 2009, Walls et al. 2011), wherein

temporal differences in occurrence probabilities are specified as functions of species- and

location-specific colonization and extinction probabilities. The latter class of models, which

includes the former, is extremely versatile and may be used to confront alternative theories

of metacommunity dynamics (Holyoak & Mata 2008, Leibold et al. 2004) with data or to

estimate changes in biodiversity. For example, Dorazio et al. (2010) estimated regional levels

of biodiversity of butterflies in Switzerland using a model that accounted for seasonal changes

in species composition associated with differences in phenology of flight patterns among

species. Russell et al. (2009) estimated the effects of prescribed forest fire on the composition

and size of an avian community in Washington.

In the present paper we analyze a set of replicated, presence-absence data that previously

was analyzed using statistical models that did not account for errors in detection of each

species (Gotelli & Ellison 2002). Our objective is to illustrate the inferential benefits

of using modern methods to analyze these data. In the analysis we model occurrence

probabilities in assemblages of ant species as a function of large-scale, geographic covariates

(latitude, elevation) and small-scale, site covariates (habitat area, vegetation composition, light

availability). We fit several models, each identified by a specific combination of covariates, to

assess the relative contribution of these potential sources of variation in species occurrence

and to estimate the effect of these contributions on geographic differences in ant species

richness and other measures of biodiversity. We also provide the data and source code used in

our analysis to allow comparisons between our results and those obtained using alternative

methods of analysis.

2. Study area and sampling methods

2.1 Ant sampling

The data in our analysis were obtained by sampling assemblages of ant species found in

New England bogs and forests. The initial motivation for sampling was to determine the
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extent of the distribution of the apparent bog-specialist, Myrmica lobifrons, in Massachusetts

and Vermont. Bogs are not commonly searched for ants, but in 1997 we had identified

M. lobifrons as a primary component of the diet of the carnivorous pitcher plant, Sarracenia

purpurea, at Hawley Bog in western Massachuestts. This was the first record for M. lobifrons

in Massachusetts. At the time the taxonomic status of this species was being re-evaluated

(Francoeur 1997), and it was largely unknown in the lower (contiguous) 48 states of the United

States. In addition to our interest in M. lobifrons, we also wanted to explore whether bogs

harbored a distinctive ant fauna or whether the ant faunas of bogs were simply a subset of the

ant species found in the surrounding forests. Thus, at each of the sites selected for sampling,

we surveyed ants in the target bog and in the upland forest adjacent to the bog (Gotelli &

Ellison 2002).

At each of 22 sample sites, we established two 8 × 8 m sampling grids, each containing 25

evenly spaced pitfall traps. One sampling grid was located in the center of the bog; the other

was located within intact forest 50-500 m away from the edge of the bog. Each pitfall trap

consisted of a 180-ml plastic cup (95 mm in diameter) that was filled with 20 ml of dilute

soapy water. Traps were buried so that the upper lip of each trap was flush with the bog

or forest-soil surface, and left in place for 48 hours during dry weather. At the end of the

48 hours, trap contents were collected, immediately fixed with 95% ethanol, and returned to

the laboratory where all ants were removed and identified to species. Traps were sampled

twice in the summer of 1999, and the time between each sampling period was 6 weeks (42

days); therefore, we consider the two sampling periods as early- and late-summer replicates.

Locations of traps were flagged so that pitfall traps were placed at identical locations during

the two sampling periods.

2.2 Measurement of site covariates

The geographic location (latitude (LAT) and longitude (LON)) and elevation (ELEV, meters

above sea level) of each bog and forest sample site was determined using a Trimble Global

Positioning System (GPS). At each forest sample site we also estimated available light levels

beneath the canopy using hemispherical canopy photographs, which were taken on overcast

days between 10:00 AM and and 2:00 PM at 1 m above ground level with an 8 mm fish-eye

lens on a Nikon F-3 camera. Leaf area index (LAI, dimensionless) was determined from

the subsequently digitized photographs using HemiView software (Delta-T, Cambridge, UK).

Because there was no canopy over the bog, the LAI of each bog was assigned a value of zero.

To compute a global site factor (GSF, total solar radiation) for each forest sample site (Rich

et al. 1993), we summed weighted values of direct site factor (DSF, total direct beam solar

radiation) and indirect site factor (total diffuse solar radiation). GSF values are expressed as a

percentage of total possible solar radiation (i.e., above the canopy) during the growing season

(April through October), corrected for latitude and solar track. The GSF of each bog was

assigned a value of one.

Digital aerial photographs were obtained for each sampled bog from state mapping

authorities, or, when digital photographs were unavailable (five sites), photographic prints

(from USGS-EROS) were scanned and digitized. Aerial photographs were used to construct a

set of data layers (Arc-View GIS 3.2) from which bog area (AREA) was calculated. The area of

the surrounding forests was not measured, as the forest was generally continuous for at least

several km2 around each bog.
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3. Statistical analysis

We analyzed the captures of ant species observed at our sample sites using a modification

of the multi-species model of occurrence and detection that includes site-specific covariates

(Kéry & Royle 2009, Royle & Dorazio 2008). This modification allows a finite set of candidate

models to be specified and fit to the data simultaneously such that prior beliefs in each model’s

utility can be updated (using Bayes’ rule) to compute the posterior probability of each model.

The resulting set of posterior model probabilities can be used to select a single (“best”) model

for inference or to estimate scientifically relevant quantities while averaging over the posterior

uncertainty of the models (Draper 1995).

To compare our results with previous analyses (Gotelli & Ellison 2002), we analyzed the

data observed in bogs and forests separately. These two habitats are sufficiently distinct

that differences in species occurrence – and possibly capture rates – are expected a priori.

Furthermore, the potential covariates of occurrence differ between the two habitats, adding

another reason to analyze the bog and forest data separately.

3.1 Hierarchical model of species occurrence and capture

We summarize here the assumptions made in our analysis of the ant captures. Let yik ∈
{0, 1, . . . , Jk} denote the number of pitfall traps located at site k that contained the ith of n

distinct species of ants captured in the entire sample of R = 22 sites. At each site 25 pitfall

traps were deployed during each of 2 sampling periods (early- and late-season replicates);

therefore, the total number of replicate observations per site was constant (Jk = 50). While

constant replication among sites simplifies implementation of the model, it is not required.

However, it is essential that Jk > 1 for some (ideally all) sample sites because information

from within-site replicates allows both occurrence and detection probabilities to be estimated

for each species. In the absence of this replication these two parameters are confounded.

The observed data form an n × R matrix Yobs of pitfall trap frequencies, so that rows are

associated with distinct species and columns are associated with distinct sample sites. Note

that n, the number of distinct ant species observed among all R sample sites, is a random

outcome. In the analysis we want to estimate the total number of species N that are present

and vulnerable to capture. Although N is unknown, we know that n ≤ N, i.e., we know that

the number of species observed in the samples provides a lower bound for an estimate of N.

To estimate N, we use a technique called parameter-expanded data augmentation (Dorazio

et al. 2006, Royle & Dorazio 2011), wherein rows of all-zero trap frequencies are added to the

observed data Yobs and the model for the observed data is appropriately expanded to analyze

the augmented data matrix Y = (Yobs, 0). The technical details underlying this technique are

described by Royle & Dorazio (2008, 2011), so we won’t repeat them here. Briefly, however,

the idea is to embed the unobserved, all-zero trap frequencies of the N − n species in the

community within a larger data set of fixed, but known size (say, M species, where M > N)

for the purpose of simplifying the analysis. The conventional model for the community of

N species is necessarily modified so that each of the M − n rows of augmented data can be

estimated as either belonging to the community of N species (and containing sampling zeros)

or not (and containing structural zeros). In particular, we add a vector of parameters w =
(w1, . . . , wM) to the model to indicate whether each species is a member of the community

(w = 1) or not (w = 0). The elements of w are assumed to be independentally and identically
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Site k

Observed Partially observed

species i 1 2 · · · R 1 2 · · · R wi

1 y11 y12 · · · y1R z11 z12 · · · z1R w1

2 y21 y22 · · · y2R z21 z22 · · · z2R w2

...
...

...
...

...
...

...
...

n yn1 yn2 · · · ynR zn1 zn2 · · · znR wn

n + 1 0 0 · · · 0 zn+1,1 zn+1,2 · · · zn+1,R wn+1

...
...

...
...

...
...

...
...

N 0 0 · · · 0 zN1 zN2 · · · zNR wN

N + 1 0 0 · · · 0 zN+1,1 zN+1,2 · · · zN+1,R wN+1

...
...

...
...

...
...

...
...

M 0 0 · · · 0 zM1 zM2 · · · zMR wM

Table 1. Conceptualization of the supercommunity of M species used in parameter-expanded
data augmentation. Y comprises a matrix of n rows of observed trap frequencies and M − n
rows of unobserved (all-zero) trap frequencies. Z denotes a matrix of species- and
site-specific occurrence parameters. w denotes a vector of parameters that indicate
membership in the community of N species vulnerable to sampling.

distributed (iid) as follows:

wi
iid
∼ Bernoulli(Ω)

where the parameter Ω denotes the probability that a species in the augmented data set is a

member of the community of N species that are present and vulnerable to capture. Note that

the community’s species richness N is not a formal parameter of the model. Instead, N is a

derived parameter to be computed as a function of w as follows: N = ∑
M
i=1 wi. Therefore,

estimation of Ω and w is essentially equivalent to estimation of N (Royle & Dorazio 2011).

The incidence matrix of the community (Colwell et al. 2004, Gotelli 2000) is a parameter of the

model that is embedded in an M × R matrix of parameters Z, whose elements indicate the

presence (z = 1) or absence (z = 0) of species i at sample site k. Although Z is treated as a

random variable of the model, each element associated with species that are not members of

the community is equal to zero because zik is defined conditional on the value of wi as follows:

zik|wi ∼ Bernoulli(wiψik) (1)

where ψik denotes the probability that species i is present at sample site k. Thus, if species i is

not a member of the community, then wi = 0 and Pr(zik = 0|wi = 0) = 1; otherwise, wi = 1

and Pr(zik = 1|wi = 1) = ψik. For purposes of computing estimates of community-level

characteristics, Z may be treated as the incidence matrix itself because the M − N rows

associated with species not in the community contain only zeros and make no contribution

to the estimates.
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The matrix of augmented data Y and the parameters Z and w may be conceptualized as

characteristics of a supercommunity of M species (Table 1). This supercommunity includes N

species that are members of the community vulnerable to sampling and M − N other species

that are added to simplify the analysis. The parameters Z and w are paramount in terms of

estimating measures of biodiversity. We have shown already that estimates of w are used to

compute estimates of species richness N (a measure of gamma diversity). Similarly, Z may

be used to estimate measures of alpha diversity, beta diversity, and other community-level

characteristics. For example, summing the columns of Z yields the number of species present

at each sample site (alpha diversity). Similarly, different columns of Z may be compared

to express differences in species composition among sites (beta diversity). For example, the

Jaccard index, a commonly used measure of beta diversity (Anderson et al. 2011), is easily

computed from Z. The Jaccard index requires the number of species from two distinct sites,

say k and l, that occur at both sites. Off-diagonal elements of the R × R matrix Z
′
Z contain

the numbers of species shared between different sites. Therefore, the proportion of all species

present at two sites, say k and l, that are common to both sites is

Jkl =
z′kzl

z′k1 + z′l1 − z′kzl

where 1 denotes a M × 1 vector of ones, and zk and zl denote the kth and lth columns of Z.

Note that Jkl is a measure of the similarity in species present at sites k and l; its complement,

1 − Jkl , corresponds to the dissimilarity – or beta diversity – between sites.

In Section 4 we provide estimates of gamma diversity, alpha diversity, and beta diversity in

our analyses of the ant data sets. In these analyses we assume that the community of ants

contains a maximum of M = 75 species in the forest habitat and a maximum of M = 25

species in the bog habitat. The lower maximum is based on five years of collecting ants in New

England bogs that yielded only 21 distinct species (Ellison and Gotelli, personal observations).

The total number of ant species in all of New England is somewhere between 130 and 140

(Ellison et al. 2012); however, many of these species are field or grassland species, and six

species, which are not indigenous to New England, are restricted mainly to warm indoors.

By excluding these species and those found only in bogs, we obtain the upper limit for the

number of ant species in the forest habitat.

3.1.1 Modeling species occurrence probabilities

Equation 1 implies that each element of the incidence matrix is assumed to be independent

given ψik, the probability of occurrence of species i at sample site k. Let xk = (x1k, x2k, . . . , xpk)
denote the observed value of p covariates at site k. We assume that each of these covariates

potentially affects the species-specific probability of occurrence at site k. Naturally, the effects

of these covariates may differ among species, so their contributions are modeled on the

logit-scale as follows:

logit(ψik) = b0i + δ1b1ix1k + · · ·+ δpbpixpk (2)

where b0i denotes a logit-scale, intercept parameter for species i and bli denotes the effect

of covariate xl on the probability of occurrence of species i (l = 1, . . . , p). If each covariate is

centered and scaled to have zero mean and unit variance, b0i denotes the logit-scale probability

282 Biodiversity Loss in a Changing Planet

www.intechopen.com



Modern Methods of Estimating Biodiversity from Presence-Absence Surveys 7

of occurrence of species i at the average value of the covariates. This scaling of covariates also

improves the stability of calculations involved in estimating bi = (b0i, b1i, . . . , bpi ).
The additional parameter δ = (δ1, . . . , δp) in Eq. 2 is used to specify whether each covariate is

(δ = 1) or is not (δ = 0) included in the model. Specifically, we assume

δl
iid
∼ Bernoulli(0.5)

which implies an equal prior probability (0.5p) for each of the 2p distinct values of δ. This

approach, originally developed by Kuo & Mallick (1998), allows several regression models

to be considered simultaneously and yields the posterior distribution of δ. After all models

have been considered (as described in Section 3.2), the posterior probability Pr(δ|Y , X) of

each model (vis a vis, each distinct value of δ) can be computed. In our analyses the model

with the highest posterior probability is used to compute estimates of species occurrence and

biodiversity.

3.1.2 Modeling species captures

We assume a relatively simple model of the pitfall trap frequencies yik, owing to the simplicity

of our sampling design. Specifically, we assume that if ants of species i are present at site k

(i.e., zik = 1), their probability of capture pik is the same in each of the Jk replicated traps. This

assumption implies the following binomial model of the pitfall trap frequencies:

yik|zik ∼ Binomial(Jk, zik pik)

where pik denotes the conditional probability of capture of species i at site k (given zik = 1).

Note that if species i is absent at site k, then Pr(yik = 0|zik = 0) = 1. In other words, if

a species is absent at sample site k, then none of the Jk pitfall traps will contain ants of that

species under our modeling assumptions.

None of the covariates observed in our samples is thought to be informative of ant capture

probabilities; therefore, rather than using a logistic-regression formulation of pik (as in Eq. 2),

we assume that the logit-scale probability of capture of each species is constant:

logit(pik) = a0i

at each of the R sample sites.

3.1.3 Modeling heterogeneity among species

In order to estimate the occurrences of species not observed in any of our traps, a modeling

assumption is needed to specify a relationship among all species-specific probabilities of

occurrence and detection. Therefore, we assume that the ant species in each community

are ecologically similar in the sense that these species are likely to respond similarly, but

not identically, to changes in their environment or habitat, to changes in resources, or to

changes in predation. The assumption of ecological similarity seems reasonable for the

species we sampled owing to their overlapping diets, habitats, and life history characteristics.

As a point of emphasis, we would not assume ecological similarity if our assemblage had

included species of tigers and mice! The idea of ecological similarity has been used previously

to analyze assemblages of songbird, butterfly, and amphibian species (Dorazio et al. 2006,
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Kéry, Royle, Plattner & Dorazio 2009, Walls et al. 2011); however, this idea is not universally

applicable. For example, if the occurrence of one species depends on the presence or absence

of another species (as might occur between a predator and prey species or between strongly

competing species), then ecological similarity would not be a reasonable assumption. In

this case a model must be formulated to specify the pattern of co-occurrence that arises

from interspecific interactions (MacKenzie et al. 2004, Waddle et al. 2010). The formulation

of statistical models for inferring interspecific interactions in communities of species is an

important and developing area of research (Dorazio et al. 2010).

In assemblages of ecologically similar species, it seems reasonable to use distributional

assumptions to model unobserved sources of heterogeneity in probabilities of species

occurrence and detection. For example, occurrence probabilities may be low for some species

(the rare ones) and high for others, but all species are related in the sense that they belong to

a larger community of ecologically similar species. By modeling the heterogeneity among

species in this way, the data observed for any individual species influence the parameter

estimates of every other species in the community. In other words, inferences about an

individual species do not depend solely on the observations of that species because the

inferences borrow strength from the observations of other species. A practical manifestation

of this multispecies approach is that the estimate of a parameter (e.g., occurrence probability)

of a single species reflects a compromise between the estimate that would be obtained by

analyzing the data from each species separately and the average value of that parameter

among all species in the community. In the statistical literature this phenomenon is called

“shrinkage” (Gelman et al. 2004) because each species-specific estimate is shrunk in the

direction of the estimated average parameter value. Of course, the amount of shrinkage

depends on the relative amount of information about the parameter in the observations of

each species versus the information about the mean value of that parameter. An important

benefit of shrinkage is that it allows parameters to be estimated for a species that is detected

with such low frequency that its parameters could otherwise not be estimated. Such species

are often the rarest members of the community, and it is crucial that these species be included

in the analysis to ensure that estimates of biodiversity are accurate.

In the present analysis we use a normal distribution

[

b0i

a0i

]

iid
∼ Normal

(

[

β0

α0

]

,

[

σ2
b0

ρ σb0
σa0

ρ σb0
σa0 σ2

a0

])

, (3)

to specify the variation in occurrence and detection probabilities among ant species. The

parameters σb0
and σa0 denote the magnitude of this variation, and ρ parameterizes the extent

to which species occurrence and detection probabilities are correlated.

We also use the normal distribution to specify variation among the species-specific effects of

covariates on occurrence. Specifically, we assume bli
iid
∼ Normal(βl , σ2

bl
) (for l = 1, . . . , p),

so that the effects of different covariates are assumed to be mutually independent and

uncorrelated.

3.2 Parameter estimation

The hierarchical model described in Section 3.1 would be impossible to fit using classical

methods owing to the high-dimensional and analytically intractable integrations involved

284 Biodiversity Loss in a Changing Planet
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Posterior probability

Habitat Covariates Uniform prior Jeffreys’ prior

Forest LAT, LAI, GSF, ELEV 0.818 0.767

Forest LAT, LAI, ELEV 0.177 0.229

Forest LAT, ELEV 0.005 0.003

Forest LAT, GSF, ELEV < 0.001 0.001

Bog ELEV 0.424 0.416

Bog None 0.342 0.412

Bog LAT 0.082 0.070

Bog AREA, ELEV 0.060 0.034

Bog LAT, ELEV 0.045 0.029

Bog AREA 0.038 0.036

Bog LAT, AREA 0.006 0.003

Bog LAT, AREA, ELEV 0.004 0.001

Table 2. Posterior probabilities of models containing different covariates of species
occurrence probabilities. Covariates include latitude (LAT), leaf area index (LAI), light
availability (GSF), elevation (ELEV), and bog area (AREA). Models with less than 0.001
posterior probability are not shown.

in evaluating the marginal likelihood function. We therefore adopted a Bayesian approach

to inference and used Markov chain Monte Carlo methods (Robert & Casella 2004) to fit

the model. In the appendix (Section 7) we describe our choice of prior distributions for

the model’s parameters. We also provide the data and the computer code that was used to

calculate the joint posterior distribution of the model’s parameters. All parameter estimates

and credible intervals are based on this distribution.

4. Results

4.1 Effects of covariates on species occurrence

The posterior model probabilities calculated in our analysis of forest and bog data sets are only

mildly sensitive to our choice of priors for the logit-scale parameters of the model (Table 2).

Recall that these parameters are of primary interest in assessing the relative contributions of

geographic- and site-level covariates. Regardless of the prior distribution used (Uniform or

Jeffreys’ (see appendix)), the model with highest probability includes all four covariates (LAT,

LAI, GSF, ELEV) in the analysis of data observed at forest sample sites and a single covariate

(ELEV) in the analysis of data observed at bog sample sites. However, the model without

any covariates has nearly equal probability to the favored model of the bog data, and the

combined probability of these two models far exceeds the probabilities of all other models.

These results suggest that occurrence probabilities of ant species found in the bog habitat are

not strongly influenced by the LAT or AREA covariates, either alone or in combination with

other covariates.

285Modern Methods of Estimating Biodiversity from Presence-Absence Surveys
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Each of the four covariates used to model species occurrences in the forest habitat has

an average, negative effect on occurrence probabilities. Estimates of βl and 95% credible

intervals are as follows: LAT, -0.717 (−1.217,−0.257); LAI, -0.850 (−1.302,−0.440); GSF,

-0.494, (−0.916,−0.098); ELEV, -0.662 (−1.014,−0.339). However, as illustrated in Figure 1,

there is considerable variation among species in the magnitude of these effects . Similarly,

the estimated occurrence probabilities of ants in the bog habitat decrease with ELEV (β̂1 =
−0.500 (−1.019,−0.098)), and there is considerable variation among species (σ̂b1

= 0.320

(0.014, 1.000)) in the magnitude of ELEV effects.

4.2 Estimates of biodiversity

Our pitfall trap surveys revealed n = 34 distinct species of ants at the forest sample sites and

n = 19 species at the bog sample sites. The estimated species richness of ants found in the

forest habitat (N̂ = 43 (95% interval = (37, 70)) is nearly twice the estimated richness of ants in

the bog habitat (N̂ = 25 (95% interval = (21, 25)); however, the estimate of forest ant richness

is relatively imprecise and the estimate of bog ant richness is strongly influenced by the upper

bound (M = 25 species).

The numbers of species found in forest and bog communities are perhaps better compared

using estimates of species richness at the sample sites. These measures of alpha diversity

are plotted against each site’s elevation in Figure 2, which also includes the number of ant

species actually captured. The estimated richness at sites in the forest habitat usually exceeds

that at sites in the bog habitat when the effects of elevation on species occurrences are taken

into account. Note also that a site’s estimated species richness can be much higher than the

numbers of species captured because capture probabilities are much lower than one for most

species (Tables 3 and 4).

Site-specific estimates of beta diversity between bog and forest communities of ants are

relatively high, ranging from 0.71 to 1.0 (Figure 3). These estimates also generally exceed the

beta diversities between ants from different sites within each habitat (Figure 4), adding further

support for the hypothesis that composition of ant species differs greatly between forest and

bog habitats.

5. Discussion

5.1 Analysis of ant species

It is interesting to compare the results of our analyses with the results reported by Gotelli

& Ellison (2002), who analyzed the same data but did not account for errors in detection

of species. Gotelli & Ellison (2002) used linear regression models to estimate associations

between the number of observed species (which was referred to as “species density”) and

environmental covariates. For bog ants Gotelli & Ellison (2002) reported a significant

association between species density and latitude (P = 0.041) and a marginally significant

association between species density and vegetation structure (as measured by the first

principal-component score; P = 0.081). Collectively, these two variables accounted for about

30% of the variation in species density. In the present analysis of the bog data, the best fitting

model included the effect of a single covariate (ELEV) on ant species occurrence probabilities,

though a model without any covariates was a close second (Table 2). In the analysis of

forest ants Gotelli & Ellison (2002) reported significant positive associations between species
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Fig. 1. Estimated effects of covariates on occurrence probabilities of ant species in forest
habitat.
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Fig. 2. Estimates of site-specific species richness (open circles with 95% credible intervals) for
ants in forest habitat (upper panel) and bog habitat (lower panel) versus elevation. Number
of species captured at each site (closed circles) is shown for comparison.
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Capture probability Occurrence probability
Species Median 2.5% 97.5% Median 2.5% 97.5%

Amblyopone pallipes 0.028 0.008 0.073 0.043 0.005 0.237
Aphaenogaster rudis (species complex) 0.237 0.209 0.269 0.779 0.539 0.927
Campnnotus herculeanus 0.090 0.062 0.123 0.255 0.104 0.482
Campnnotus nearcticus 0.035 0.013 0.074 0.083 0.014 0.316
Campnnotus novaeboracensis 0.017 0.008 0.037 0.454 0.121 0.897
Campnnotus pennsylvanicus 0.131 0.107 0.158 0.587 0.322 0.819
Dolichoderus pustulatus 0.011 0.002 0.053 0.042 0.003 0.389
Formica argentea 0.011 0.001 0.053 0.044 0.003 0.411
Formica glacialis 0.012 0.002 0.055 0.045 0.003 0.413
Formica neogagates 0.096 0.049 0.163 0.038 0.005 0.166
Formica obscuriventris 0.010 0.001 0.051 0.046 0.003 0.448
Formica subaenescens 0.051 0.029 0.081 0.229 0.085 0.476
Formica subintegra 0.166 0.083 0.284 0.029 0.003 0.140
Formica subsericea 0.248 0.184 0.320 0.059 0.009 0.218
Lasius alienus 0.053 0.035 0.075 0.499 0.260 0.761
Lasius flavus 0.011 0.002 0.051 0.043 0.003 0.397
Lasius neoniger 0.036 0.013 0.076 0.097 0.020 0.333
Lasius speculiventris 0.012 0.003 0.040 0.080 0.009 0.502
Lasius umbratus 0.017 0.007 0.037 0.429 0.109 0.931
Myrmecina americana 0.011 0.002 0.052 0.042 0.003 0.398
Myrmica detritinodis 0.078 0.049 0.117 0.169 0.055 0.378
Myrmica lobifrons 0.056 0.036 0.082 0.299 0.118 0.568
Myrmica punctiventris 0.248 0.218 0.279 0.739 0.474 0.911
Myrmica species 1 (“AF-scu”) 0.102 0.078 0.131 0.368 0.152 0.642
Myrmica species 2 (“AF-smi”) 0.064 0.039 0.097 0.148 0.036 0.385
Prenolepis imparis 0.012 0.002 0.054 0.031 0.002 0.334
Stenamma brevicorne 0.017 0.005 0.046 0.103 0.014 0.526
Stenamma diecki 0.030 0.014 0.056 0.302 0.097 0.725
Stenamma impar 0.049 0.026 0.081 0.168 0.052 0.396
Stenamma schmitti 0.013 0.005 0.030 0.252 0.046 0.753
Tapinoma sessile 0.023 0.010 0.047 0.171 0.035 0.552
Temnothorax ambiguus 0.056 0.015 0.138 0.031 0.003 0.150
Temnothorax curvispinosus 0.057 0.022 0.113 0.037 0.005 0.169
Temnothorax longispinosus 0.086 0.062 0.114 0.333 0.141 0.587

Table 3. Estimated probabilities of capture and occurrence (with 95% credible intervals) for
ant species captured in forest habitat. Probabilities are estimated at the average value of the
covariates observed in the sample.
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Capture probability Occurrence probability

Species Median 2.5% 97.5% Median 2.5% 97.5%

Camponotus herculeanus 0.014 0.002 0.050 0.190 0.040 0.731

Camponotus novaeboracensis 0.066 0.043 0.094 0.348 0.172 0.571

Camponotus pennsylvanicus 0.007 0.001 0.040 0.134 0.017 0.723

Dolichoderus plagiatus 0.015 0.002 0.073 0.105 0.016 0.515

Dolichoderus pustulatus 0.090 0.071 0.112 0.701 0.491 0.863

Formica neorufibarbis 0.007 0.001 0.040 0.126 0.015 0.691

Formica subaenescens 0.353 0.308 0.402 0.371 0.194 0.580

Formica subsericea 0.014 0.004 0.037 0.295 0.083 0.774

Lasius alienus 0.020 0.006 0.054 0.191 0.051 0.550

Lasius speculiventris 0.050 0.010 0.138 0.077 0.014 0.263

Lasius umbratus 0.008 0.001 0.034 0.210 0.037 0.766

Leptothorax canadensis 0.007 0.001 0.039 0.142 0.018 0.764

Myrmica lobifrons 0.559 0.529 0.589 0.916 0.748 0.984

Myrmica punctiventris 0.006 0.001 0.039 0.150 0.018 0.783

Myrmica species 1 (“AF-scu”) 0.015 0.002 0.073 0.102 0.015 0.486

Myrmica species 2 (“AF-smi”) 0.008 0.001 0.034 0.231 0.041 0.826

Stenamma brevicorne 0.007 0.001 0.041 0.149 0.019 0.772

Tapinoma sessile 0.167 0.133 0.207 0.356 0.184 0.561

Temnothorax ambiguus 0.007 0.001 0.042 0.127 0.017 0.697

Table 4. Estimated probabilities of capture and occurrence (with 95% credible intervals) for
ant species captured in bog habitat. Probabilities are estimated at the average value of the
covariates observed in the sample.
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Fig. 3. Estimates of beta diversity (open circles with 95% credible intervals) between ant
communities present in bog and forest habitats at each sample location.
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samples collected in forest habitat (upper panel) or bog habitat (lower panel).
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density and the first two principal components of vegetation structure, and they reported

significant negative associations between species density and four other covariates (LAT, LAI,

GSF, and ELEV). Collectively, these six regressors accounted for 83% of the variation in species

density. In the present analysis of forest data, the best-fitting model included the effects of

four covariates (LAT, LAI, GSF, and ELEV), and the estimated effects of these covariates were

all significantly negative, which agrees qualitatively with the regression results of Gotelli &

Ellison (2002), though principal components of vegetation structure were not included in the

present analysis.

In comparing the results obtained using the linear regression model (Gotelli & Ellison 2002)

and the hierarchical model of species occurrences and captures, we note that while both

models revealed the same set of negative predictors of ant occurrence in forest habitat

(Figure 1), the regression model’s associations between species density of bog ants and two

predictors (latitude and vegetation structure) are not supported by the hierarchical model.

Part of the difference in these results may be attributed to the fact that slightly different data

sets were used in the two analyses. Species detected using tuna baits, hand collections, and

leaf-litter sorting (in forest habitats) were included in the regression analysis, whereas only

species captured in pitfall traps were used in the present analysis. However, these differences

in data are relatively minor because the alternative sampling methods used by Gotelli &

Ellison (2002) added only a few rare species to their analysis. Instead, we believe the different

results stem primarily from differences in the underlying assumptions of these two models.

The regression model assumes (1) that the effects of environmental covariates are identical for

each species and are linearly related to species density and (2) that residual errors in species

density are normally distributed and do not distinguish between measurement errors and

heterogeneity among species in their response to covariates. In contrast, the hierarchical

model assumes that the effects of environmental covariates differ among species (Figure 1)

and that occurrence probabilities and capture probabilities can be estimated separately for

each species (Tables 3 and 4) owing to the replicated sampling at each site.

The estimated probabilities of occurrence and capture of each species are of great interest in

themselves and highlight differences in species compositions between ants found in bog and

forest habitats. For example, the forest species with the highest occurrence probability was

Aphaenogaster rudis (species complex) (ψ̂ = 0.779). This species is taxonomically unresolved

and currently includes a complex of poorly differentiated species across its geographic range

(Umphrey 1996). Myrmica punctiventris had the second highest occurrence probability (ψ̂ =
0.739). Both of these species are characteristic of forest ant assemblages in New England.

A. rudis (species complex) was never captured in bogs and the occurrence probability of M.

punctiventris in bogs was only 0.150, almost a fivefold difference between the two habitats.

In bogs the highest occurrence probabilities were estimated for the bog specialist, Myrmica

lobifrons (ψ̂ = 0.916), and for Dolichoderus pustulatus (ψ̂ = 0.701), a generalist species that

sometimes builds carton nests in dead leaves of the carnivorous pitcher plant Sarracenia

purpurea (A. Ellison and N. Gotelli, personal communication). Occurrence probabilities of

these species in forests were only 0.299 (M. lobifrons) and 0.042 (D. pustulatus), a 3- to 16-fold

difference. These pronounced differences in the occurrence probabilities of the most common

species in each habitat suggest that the two habitats support distinctive ant assemblages, a

conclusion also supported by the relatively high estimates of beta diversity between habitats

(Figure 3).
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Fig. 5. Estimates of species-specific capture probability versus occurrence probability for ants
in forest habitat (upper panel) and bog habitat (lower panel). Note difference in scale
between ordinates of upper and lower panels.
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Although occurrence and capture probabilities were positively correlated among species

(Figure 5), a few rare forest species (Formica subintegra and Formica subsericea) had relatively

high capture probabilities. In the forest habitat the two species with the highest capture

probabilities were F. subsericea (p̂ = 0.248) and Myrmica punctiventris (p̂ = 0.248). In bogs these

species had capture probabilities of only 0.014 (F. subsericea) and 0.006 (M. punctiventris), a 17-

to 41-fold difference. The two species with the highest capture probabilities in the bog habitat

were Myrmica lobifrons (p̂ = 0.559), the bog specialist, and Formica subaenescens (p̂ = 0.353). In

the forest habitat these species had capture probabilities of only 0.056 (M. lobifrons) and 0.051

(F. subaenescens), a 7- to 9-fold difference.

The estimated probabilities of occurrence of most species in the forest habitat decreased with

latitude (Figure 1), which is consistent with previous regression analyses of species density

(Gotelli & Ellison 2002, figure 1). However, the occurrence probabilities of three species

(Camponotus herculeanus, Lasius alienus, and Myrmica detritinodis) significantly increased with

latitude. Two of these species, C. herculeanus and M. detritinodis, are boreal, cold-climate

specialists (Ellison et al. 2012), whereas L. alienus has a more widespread distribution.

Under climate change scenarios of increasing temperatures at high latitudes, species whose

occurrence probabilities currently increase with latitude might disappear from New England

as their ranges shift northward; other species in the assemblage might show no change in

distribution, or might increase in occurrence.

To summarize the comparisons between our results and those reported by Gotelli & Ellison

(2002), we note that within-site replication of presence-absence surveys allowed us to

estimate species-specific probabilities of capture and occurrence and species-specific effects

of environmental covariates. These results represent a considerable advance over traditional

regression analyses of observed species density. Using a hierarchical approach to model

building, we were able to infer sources of variation in measures of biodiversity – such as

the effect of elevation on site-specific species richness (Figure 2) and the effect of habitat on

beta diversity (Figure 3) – and to determine how these community-level patterns were related

to differences in occurrence of individual species. Although many macroecological data sets

collected at large spatial scales do not include within-site replicates, regional studies often use

replicated sampling grids of traps or baits (Gotelli et al. 2011) that are ideal for the kind of

analysis we have described. We therefore recommend that within-site replication be used in

presence-absence surveys of communities, particularly when surveys are undertaken to assess

levels of biodiversity.

5.2 Benefits and challenges of hierarchical modeling

Our analysis of the ant data illustrates the benefits of using hierarchical models to

estimate measures of biodiversity and other community-level characteristics. By adopting

a hierarchical approach to model building, an analyst actually specifies two models: one for

the ecologically relevant parameters (or state variables) that are usually of primary interest but

are not directly observable, and a second model for the observed data, which are related to the

ecological parameters but are influenced also by sampling methods and sampling errors. This

dichotomy between models of ecological parameters and models of data is extremely useful

and has been exploited to solve a variety of inference problems in ecology (Royle & Dorazio

2008).
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In our hierarchical model of replicated, presence-absence surveys, the parameter of primary

ecological interest is the community’s incidence matrix. This matrix is only partially

observable because a species may be present at a sample location but not observed in the

surveys. We use a binomial sampling model to specify the probability of detection (or capture)

of each species and thereby to account for detection errors in the observed data. In this way

estimates of the community’s incidence matrix are automatically adjusted for the imperfect

detectability of each species.

In our approach, measures of biodiversity are estimated indirectly as functions of the

estimated incidence matrix of the community. Thus, species richness and measures of alpha

or beta diversity depend on a set of model-based estimates of species- and site-specific

occurrences. This approach differs considerably with classes of statistical models wherein

species richness is treated as a single random variable – usually a discrete random variable –

that represents the aggregate contribution of all species in the community. This “top-down”

view of a community may yield incorrect inferences if heterogeneity in detectability exists

among species or if the effects of environmental covariates on occurrence differ among species,

as illustrated in our analysis of the ant data.

The inferential benefits of using hierarchical models to estimate measures of biodiversity are

not free. As described earlier, the price to be paid for the ability to estimate probabilities of

species occurrence and species detection is replication of presence-absence surveys within

sample locations. In our opinion the improved understanding acquired in modeling the

community at the level of individual species and the versatility attained by having accurate

estimates of a community’s incidence matrix far outweigh the cost of additional sampling.

That said, there are other, perhaps less obvious, costs associated with these hierarchical

models. Specifically, estimates of species richness and other community-level parameters

may be sensitive to the underlying assumptions of these models, and these assumptions

can be difficult to test using standard goodness-of-fit procedures. For example, the choice of

distributions for modeling heterogeneity among species or sites may exert some influence on

estimates of species richness. We assumed a bivariate normal distribution for the distribution

of logit-scale, mean probabilities of occurrence and detection, but other distributions – even

multimodal distributions – also might be useful. In single-species models of replicated,

presence-absence surveys, estimates of occurrence are sensitive to the distribution used to

specify heterogeneity in detection probabilities among sample sites (Dorazio 2007, Royle

2006); therefore, similar sensitivity can be expected in multispecies models, though this aspect

of model adequacy has not been rigorously explored.

Another assumption of our model that is difficult to test is absence of false-positive errors

in detection. In other words, if a species is detected (or captured), we assume that its

identify is known with certainty. However, in surveys of avian or amphibian communities

where species are detected by their vocalizations, misidentifications of species can and do

occur (McClintock et al. 2010a,b, Simons et al. 2007). These misidentifications are even more

common in circumstances where surveys are conducted by volunteers whose identification

skills are highly variable (Genet & Sargent 2003). If ignored, false-positive errors in detection

induce a positive bias in estimates of species occurrence because species are incorrectly

“detected” at sites where they are absent. While it is possible to construct statistical models

of presence-absence data that include parameters for both false-positive and false-negative

detection errors (Royle & Link 2006), these models are prone to identifiability problems. To
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reduce these problems, Royle & Link (2006) recommended that the model’s parameters be

constrained to ensure that estimates of misclassification probabilities are lower than estimates

of detection probabilities. This constraint, though sensible, does not provide a solution when

the probabilities of misclassification and detection are nearly equal (McClintock et al. 2010b,

Royle & Link 2006). The development of statistical models of species occurrence that include

both false-positive and false-negative errors in detection, as well as unobserved sources of

heterogeneity in both occurrence and detection probabilities, is an active area of research

owing to the difficulties associated with aural detection methods.

The conceptual framework described in this paper is broadly applicable in ecological

research and in assessments of biodiversity. Hierarchical, statistical models of multispecies,

presence-absence data can be used to estimate current levels of biodiversity, as illustrated

in our analysis of the ant data, or to assess changes (e.g., trends) in communities over time

(Dorazio et al. 2010, Kéry, Dorazio, Soldaat, van Strien, Zuiderwijk & Royle 2009, Russell

et al. 2009, Walls et al. 2011). The models of community change are especially relevant

in ecological research because they provide an analytical framework wherein data may be

used to confront alternative theories of metacommunity dynamics (Holyoak & Mata 2008,

Leibold et al. 2004). Although a few classes of statistical models have been developed to

infer patterns of co-occurrence among species (MacKenzie et al. 2004, Waddle et al. 2010),

models for estimating the dynamics of interacting species (e.g., competitors or predators)

from replicated, presence-absence data have not yet been formulated. Such models obviously

represent an important area of future research.
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7. Appendix: Technical details

7.1 Model fitting and software

Here we describe methods for fitting our hierarchical model using the Markov chain

Monte Carlo (MCMC) algorithms implemented in the software package, JAGS (Just Another

Gibbs Sampler), which is freely available at the following web site: http://mcmc-jags.

sourceforge.net. This software allows the user to specify a model in terms of its

underlying assumptions, which include the distributions assumed for the observed data and

the model’s parameters. The latter distributions include priors, which are needed, of course,
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to conduct a Bayesian analysis of the data (see below). Part of the reason for the popularity of

JAGS is that it allows the model to be specified and fitted without requiring the user to derive

the MCMC sampling algorithms used in computing the joint posterior. That said, naive use

of JAGS may yield undesirable results, and some experience is needed to ensure the accuracy

of the results.

We prefer to execute JAGS remotely from R (R Development Core Team 2004) using functions

defined in the R package RJAGS (http://mcmc-jags.sourceforge.net). In this way

R is used to organize the data, to provide inputs to JAGS, and to receive outputs (results)

from JAGS. However, the model’s distributional assumptions must be specified in the native

language of JAGS. The data files and source code needed to fit our model are provided below.

In our analysis of each data set, the posterior was calculated by initializing each of 5 Markov

chains independently and running each chain for a total of 250,000 draws. The first 50,000

draws of each chain were discarded as “burn-in”, and every 50th draw in the remainder of

each chain was retained to form the posterior sample. Based on Gelman-Rubin diagnostics of

the model’s parameters (Brooks & Gelman 1998), this approach appeared to produce Markov

chains that had converged to their stationary distribution. Therefore, we used the posterior

sample of 20,000 draws to compute estimates of the model’s parameters and 95% credible

intervals.

7.2 Prior distributions

Our prior distributions were chosen to specify prior indifference in the magnitude of each

parameter. For example, we assumed a Uniform(0,1) prior for Ω, the probability that a

species in the augmented data set is a member of the N species vulnerable to capture. It

is easily shown that this prior induces a discrete uniform prior on N, which assigns equal

probability to each integer in the set {0, 1, . . . , M}. We also used the uniform distribution

for the correlation parameter ρ; specifically, we assumed a Uniform(-1,1) prior for ρ, thereby

favoring no particular value of ρ in the analysis.

Each of the heterogeneity parameters (σa0 , σb0
, σbl

) was assigned a half-Cauchy prior (Gelman

2006) with unit scale parameter, which has probability density function

f (σ) = 2/[π(1 + σ2)].

Gelman (2006) showed that this prior avoids problems that can occur when alternative

“noninformative” priors are used (including the nearly improper, Inverse-Gamma(ǫ, ǫ)

family).

Currently, there is no consenus choice of noninformative prior for the logit-scale parameters

of logistic-regression models (Gelman et al. 2008, Marin & Robert 2007). To specify a prior

for the logit-scale parameters of our model (α0, β0, βl), we used an approach described by

Gelman et al. (2008). Recall that the covariates of our model are centered and scaled to

have mean zero and unit variance; therefore, we seek a prior that assigns low probabilities

to large effects on the logit scale. The reason for this choice is that a difference of 5 on the logit

scale corresponds to a difference of nearly 0.5 on the probability scale. Because shifts in the

value of a standardized covariate seldom, in practice, correspond to outcome probabilities that

change from 0.01 to 0.99, the prior of a logit-scale parameter should assign low probabilities to

values outside the interval (-5,5). The family of zero-centered t-distributions with parameters

σ (scale) and ν (degrees of freedom) can be used to specify priors with this goal in mind.
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For example, Gelman et al. (2008) recommended a t-distribution with σ = 2.5 and ν = 1 as

a “robust” alternative to a t-family approximation of Jeffreys’ prior (σ = 2.5 and ν = 7).

However, when the logit-scale parameter (say, θ) is transformed to the probability scale

(p = 1/(1 + exp(−θ))), both of these priors assign high probabilities in the vicinity of p = 0

and p = 1, which is not always desirable. As an alternative, we used a t-distribution with

σ = 1.566 and ν = 7.763 as a prior for each logit-scale parameter of our model. This

distribution approximates a Uniform(0, 1) prior for p and assigns low probabilities to values

outside the interval (-5,5).

Given our choice of priors and the amount of information in the ant data, parameter estimates

based on a single model are unlikely to be sensitive to the priors used in our analysis.

However, it is well known that the distributional form of a noninformative prior can exert

considerable influence on posterior model probabilities (Kadane & Lazar 2004, Kass & Raftery

1995). Because these probabilities are used to select a single model for inference, we examined

the sensitivity of the model probabilities to our choice of priors. In particular, we considered

a t-family approximation of Jeffreys’ prior (σ = 2.482 and ν = 5.100) as an alternative for the

logit-scale parameters of our model. As described earlier, Jeffreys’ prior is commonly used in

Bayesian analyses of logistic-regression models.

7.3 Data files and source code

The following files were used to fit our hierarchical model to the ant data sets.

AntDetections1999.csv – species- and site-specific capture frequencies of ants in bog

and forest habitats (format is comma-delimited with first row as header)

GetDetectionMatrix.R – R code for reading capture frequencies of ants from data file

and returning a species- and site-specific matrix of capture frequencies of ants collected in

a specified habitat (’Forest’ or ’Bog’)

GetSiteCovariates.R – R code for reading covariates from data file

MultiSpeciesOccModelAve.R – R and JAGS code for defining and fitting the hierarchical

model

SiteCovariates.csv – site-specific values of covariates (format is comma-delimited with

first row as header)
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