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Hachioji, Tokyo,  
Japan 

1. Introduction 

Microbes are widely distributed on and within the Earth (Gold, 1992; Whitman et al., 1998). 

They have co-evolved with the Earth through their history and have acquired their 

diversity. Although most of microbes (estimated more than 99% of the total species numbers 

present on Earth) are still uncultivated (Amann et al., 1995), vigorous surveys in natural 

environments, from cold poles to hot deep-sea vents, by microbiologists revealed the wide 

distribution of microbes. The accumulation of 16S rRNA gene sequence data and the 

development of useful bioinformatics tools allow us to image a big picture of microbial 

biodiversity and biogeography in natural environments (Martiny et al., 2006). This will help 

us to address some fundamental questions about microbial community: where they are; 

what species are present there; how they constitute communities; what are the factors that 

control the diversity and distribution pattern of the communities; and how they have 

evolved from the past to present and will evolve in future. Considering the wide 

distribution and powerful metabolic function of microbes, they are likely to contribute to the 

maintenance of the whole ecosystem on Earth and to global climate change.  

1.1 Biodiversity and biogeography 

“Microbial biodiversity” (or simply “biodiversity”, “microbial diversity”) includes 

phylogenetic (genotypic) and physiologic (phenotypic) diversity of microbial communities. 

In many previous papers (and also in this chapter), microbial biodiversity indicated the 

phylogenetic diversity that can be measured based on variation in nucleotide sequences of 

genes (16S rRNA gene have been used frequently). The biodiversity measures can be 

distinguished into the measure of diversity within a single community (-diversity) and that 

of the partitioning of diversity among two or more communities (-diversity). The 

biodiversity can be measured qualitatively (based on the presence/absence of each taxon) 

and quantitatively (taken account for the abundance of each taxon). Furthermore, species-

based (treated all taxa as equally) and divergence-based (taken account for the phylogenetic 

distance between each taxon) measurements are used. The above classification and methods 

for biodiversity measurements have been well summarized (Lozupone & Knight, 2008). To 

avoid misinterpretation of results, it is needed to understand the principles of these diverse 

measurements for microbial biodiversity. Because the microbial diversity potentially affects 
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on the ecosystem functioning (Duffy & Stachowicz, 2006; Prosser et al., 2007), it is important 

to measure and interpret correctly the microbial diversity in natural environments.  

Microbial biogeography is the descriptive and explanatory study of microbial biodiversity 
over space and time. It aims to reveal where microbes live, and what kinds of microbes are 
present there and how many they exist. The scope of biogeography extends to understand 
the underlying mechanism of generating and maintaining the distribution pattern of 
microbial communities in natural environments. Traditional biogeography has focused on 
large eukaryotes, such as plants and animals. Recent development of molecular biological 
techniques enabled us to approach the biogeography for microbes, including protists and 
prokaryotes in gene sequence level (Darling et al., 2000; Whitaker et al., 2003). This offers a 
challenge to the famous classical Baas Becking hypothesis ‘Everything is everywhere, but, the 

environment selects’ (Baas Becking, 1934). To assess how the environmental similarity (i.e., 
contemporary physicochemical condition) and geographic distance (i.e., historical event) 

affect on the distribution patterns of biodiversity of microbial communities or population, -
diversity are associated with physicochemical and geographic differences among each 
environment. A variety of habitats in natural environments have been targeted for microbial 
biogeography, such as soil (Cho & Tiedje, 2000; Fierer & Jackson, 2006), lake sediments 
(Yannarell & Triplett, 2005), ocean (García-Martínez & Rodríguez-Valera, 2000), deep-sea 
sediments (Schauer et al., 2009) and deep-sea hydrothermal fields (Kato et al., 2010). These 
studies have suggested that the distribution pattern of microbes in habitats is controlled by 
not only environmental factors (e.g., pH, salinity and oxygen concentration) but also 
geographic isolation. However, further data collection and reliable explanation are needed 
to propose and evaluate theories regarding the generation and evolution of distribution 
pattern of microbes in natural environments. While the study of microbial biodiversity and 
biogeography seems to be descriptive, it is the first step and the essential base for theory 
construction in microbial ecology (Prosser et al., 2007). 

1.2 Seafloor microbial communities 

Deep seafloor is seemingly an unrelieved, monotonous and poor environment, like a desert 
where organisms are scarcely present. Actually, this notion is not always correct. There are 
variable environments on the deep seafloor, such as hydrothermal vents, cold seeps, iron-
rich mats, out crops of young crustal rocks and aged ferromanganese crusts (hereafter, Mn 
crusts). Furthermore, phylogenetically and physiologically diverse microbes (especially 
prokaryotes, i.e., the domain Bacteria and Archaea) thrive in these environments (e.g., Takai 
& Horikoshi, 1999; Inagaki et al., 2002; Santelli et al., 2008; Kato et al., 2009a; Nitahara et al., 
2011). Following the Baas Becking hypothesis, these microbes may adapt to each 
environment and should form a unique community structure. However, the hypothesis has 
not been tested well for the microbial communities on the deep seafloor, especially non-
hydrothermal and unsedimented areas far from land where organic inputs derived from 
surface photosynthetic ecosystems are not significant. Such deep seafloor accounts for a 
large part of the surface area of Earth (Smith & Sandwell, 1997). Microbes on and within the 
seafloor are thought to play a role in geochemical cycling between oceans and Earth crusts 
(Edwards et al., 2005). Hence, understanding the microbial diversity and biogeography on 
the deep seafloor is important for modeling the global relationship between microbes and 
Earth at present and can be applied for in past and future. Furthermore, recently, massive 
sulfide deposits and Mn crusts on the deep seafloor have been focused on as mineral 
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resources (Rona, 2003; Hoagland et al., 2010). There are diverse microbes on/in these 
seafloor minerals (Kato et al., 2010; Nitahara et al., 2011). Microbial biogeography on the 
deep seafloor will contribute ultimately to develop deep-sea mining techniques utilizing 
microbes in future. 

2. Analytical methods 

The study of microbial biodiversity and biogeography starts upon collecting data of 
microbial communities in the environments. In this chapter, we introduce the analysis 
methods of microbial communities based on nucleotide sequences of genes, especially the 
small subunit ribosomal RNA gene (called 16S rRNA gene for prokaryotes) which is 
generally used for such analysis of biodiversity and biogeography. 16S rRNA genes have 
some merit for the analysis: 1) all prokaryotes have this gene; 2) its sequence length 
(approximately 1500 bases) is moderate and adequate for analysis; 3) there are some 
conserved regions that allow to design PCR primers; 4) there are some variable regions that 
allow to affiliate the sequences in species-level; 5) enormous sequences have been deposited 
in public database and can be used conveniently; and 6) useful bioinformatics tools 
specialized for this gene are available.  
Recent rapid development of molecular biological techniques including gene amplification 
and nucleotide sequencing enabled us to approach unexpected biodiversity of microbes in 
natural environments. Especially, next-generation sequencing techniques (e.g., 
pyrosequencing) open new windows for approaching microbial biodiversity (Sogin et al., 
2006). However, it is hard to gain biological meanings of the biodiversity resulted from short 
sequences (~400 bases) that are produced by the next-generation sequencing. At least, nearly 
full-length sequences of 16S rRNA genes are needed to connect biodiversity to ecology. It 
should be noted that information on the gene sequences cannot be related to ecology 
directly. To connect biodiversity to ecology, the determination of the whole-genome 
sequence is not enough and information on function of microbes derived from the gene 
sequences must be obtained by culture-dependent analysis. However, cultivation of all 
microbes in an environment is impossible by now. Actually, most prokaryotes on Earth are 
still uncultivated (Amann et al., 1995).  
There are several steps to measure and compare the biodiversity of microbial communities 
based on 16S rRNA gene analysis (Figure 1). The target environmental samples are 
collected, genomic DNA is extracted from the samples, and then 16S rRNA gene sequences 
in the genome DNA extracts are determined by PCR-cloning-sequencing analysis. In some 
cases, analyses of electrophoresis patterns, such as denaturing gradient gel electrophoresis 
(DGGE) and terminal restriction fragment length polymorphism (T-RFLP), without 
sequencing process are also used for biodiversity measurement; however these analyses 
mask valuable information on the biodiversity in contrast to sequencing analysis (Nocker et 
al., 2007). It should be noted that PCR-cloning-sequencing analysis alone is insufficient for 
the determination of biodiversity because of the presence of methodological biases 
(Wintzingerode et al., 1997) in addition to relatively high cost performance regarding time 
and money. For example, even if the same DNA extract was used, the diversity and 
composition of microbial communities determined using different primer sets were 
dramatically different from each other (Kato et al., 2011). Hence, for reliable assessment of 
the biodiversity and distribution pattern of microbial communities, 16S rRNA gene 
sequences used for comparative analysis should be obtained by the same method.  
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Fig. 1. Flow chart of the recommended analysis steps for microbial diversity and 
biogeography. 

All of the 16S rRNA gene sequences collected are aligned into an alignment dataset. The 
alignment process is very important to assess more accurate biodiversity and biogeography 
because the wrong alignment dataset cause overestimation of biodiversity and of difference 
among communities. Alignments have often been performed by multiple sequence 
alignment tools such as ClustalW (Larkin et al., 2007) and MUSCLE (Edgar, 2004). However, 
against the vast 16S rRNA gene datasets including one thousand sequences or more, it takes 
an immense amount of time. Recently, improved alignment methods incorporating the 
secondary structure of 16S rRNA genes and using a reference alignment have been provided 
from several 16S rRNA gene database projects, such as RDP using Infernal (Cole et al., 2009), 
Greengenes using NAST aligner (Desantis et al., 2006), and SILVA using SINA aligner 
(Pruesse et al., 2007). However, these methods, in particular NAST, have predicted higher 
diversity as compared with the results from the pair-wise and multiple alignment methods 
(Schloss, 2010). The sequences with long insertions seem to be better aligned by Infernal 
built in RDP than the other methods from our experience. It is known that several 
prokaryotes, especially Archaea, have long insertions (including introns) in their 16S rRNA 
gene (Burggraf et al., 1993; Itoh et al., 1998; Itoh et al., 2003). Chimera sequences have often 
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observed in datasets. Such chimera sequences must be removed from the datasets before the 
following analysis by using chimera-check tools such as Mallard (Ashelford et al., 2006) and 
Bellerophon (Huber et al., 2004). NAST automatically checks chimera sequences in the 
datasets and remove the chimeric part of the sequences. However, the sequence with 
relatively longer insertion seems to be also recognized as a chimera sequence by NAST. 
Until more improvement of the alignment method and chimera check function, we 
recommend not using NAST for the following phylogenetic analysis. Overall, for alignment 
of 16S rRNA gene sequences, SINA aligner built in SILVA, or MUSCLE in the case of lower 
sequence numbers, is recommended for alignment. Finally, accuracy of the alignment 
dataset should be confirmed by the naked eyes. 
After the construction of a 16S rRNA gene alignment dataset, the sequences are assigned as 

operational taxonomic units (OTUs) or phylotypes for each habitat. An OTU is a group of 

similar sequences each other, which is defined based on the genetic distance thresholds. In 

general, 97% (0.03 cut-off), 95% (0.05 cut-off) or 80% (0.20 cut-off) similarity threshold are 

used as species-, genus- and family-level taxonomic definition, respectively (Ludwig et al., 

1998). For comparative analysis of communities, the same definition level of OTUs must be 

used. Assessment of sequences to OTUs can be performed using DOTUR (Schloss & 

Handelsman, 2005) and its current version mothur (Schloss et al., 2009). A distance matrix 

generated from the alignment dataset using ARB (Ludwig et al., 2004) or DNADIST in 

PHYLIP package (Felsenstein, 1989) is needed for calculation using DOTUR. The matrix can 

be generated by mothur itself. 

-diversity measures can be calculated using the distance matrix generated from the 

alignment dataset: Chao1 species richness estimates, abundance-based coverage estimator of 

species richness (ACE) and rarefaction curves (species-based, qualitative), Shannon and 

Simpson indices (species-based, quantitative), Phylogenetic Diversity (PD; divergence-

based, qualitative) and  (divergence-based, quantitative), and so on (Lozupone & Knight, 

2008). Species-based measurements of -diversity can be performed using mothur at once. 

PD and  can be calculated by PHYLOCOM (Webb et al., 2008) and ARLEQUIN (Excoffier 

et al., 2005), respectively. 

-diversity can be also measured using the distance matrix generated from the alignment 
dataset: Sørensen and Jaccard indices (species-based), UniFrac and FST (divergence-based), 

and so on (Lozupone & Knight, 2008). These -diversity values provide measures of 
distance between pairs of communities. Furthermore, the measured distance matrix can be 
used for multivariate statistical techniques such as clustering [e.g., unweighted pair group 
method using arithmetic average (UPGMA)] and ordination [e.g., principal coordinate 

analysis (PCoA)]. Several species-based measures of -diversity can be calculated using 
SONS (Schloss & Handelsman, 2006), which has been incorporated into mothur. UniFrac 
(Lozupone & Knight, 2005; Lozupone et al., 2006), and its current version Fast UniFrac 

(Hamady et al., 2009), is an effective divergence-based method for -diversity (Lozupone et 
al., 2010) and can easily perform clustering and ordination analyses. For UniFrac analysis, a 
phylogenetic tree and definition data for OTUs and habitats are needed as input data. This 
tree can be constructed from the alignment dataset by neighbor-joining (NJ) or maximum-
likelihood (ML) method. NJ tree can be constructed using ARB or ClearCut (Sheneman et 
al., 2006). ML tree can be constructed using FASTTREE (Price et al., 2010) or PHYML 
(Guindon et al., 2010). Such clustering and ordination analyses can also be performed using 
R (R Development Core Team, 2011). In addition, the shared OTU numbers and the shared 
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Chao1 richness among communities can be calculated and viewed automatically in Venn 
diagrams using mothur. Overall, our recommendation of the analytical steps is shown in 
Figure 1. 

3. Microbial biodiversity and biogeography of microbial communities on deep 
seafloor 

3.1 Data collection 

In this chapter, we try to assess microbial biodiversity and biogeography on deep seafloor 
using the recent useful bioinformatics tools as described above, though few data from non-

hydrothermal and unsedimented deep-seafloor in open sea are available for biogeographical 
analysis. To investigate the distribution pattern of microbial communities on the seafloor in 

open sea, several data were collected (Table 1) and used for the following analysis. The 
locations where the samples were collected are shown in Figure 2. The samples of the 

collected data are basaltic rocks, Mn crusts, sulfide deposits called as dead chimney which 
were collected from hydrothermally inactive vents, sandy sediments that were not organic-

rich, and overlying bottom seawater (Figure 2). Although the samples were mainly collected 

on spreading ridges, they were collected far from hydrothermal vents and may not be 
significantly influenced by hydrothermal activity. We analyzed and compared the 

communities as described above using the 16S rRNA gene sequences collected.  

3.2 -diversity 

-diversity for a microbial community is often indicated using Chao1 species richness 
estimates, rarefaction curves and/or Shannon’s index value. However, we should not 

simply compare these indicators of -diversity provided by the investigators because these 
indicators are biased by the PCR primers, alignment software and OTU or phylotype 

clustering methods used in the analyses. As is often the case, the sequences deposited into 
public databases do not contain all clones in the libraries but only the representative OTUs. 

Furthermore, the definition levels of OTUs are not always consistent; OTU0.03 (i.e., 97% 
similarity level) are usually used, but OTU0.01 or others are also used in some cases. In 

general, OTU0.03 or OTU0.05 is used as species or genus level definition, respectively. In this 

chapter, to compare-diversity for the communities for the collected data as impartially as 

possible, the percentage of the number of OTU0.05 in total clone numbers, N0.05/Nt, were 

used (Table 1). This comparison can roughly address the difference in the-diversity, even 
if only representative sequences were deposited and several definition levels of OTU (<0.05 

cut-off) were used.   
The N0.05/Nt are summarized in Figure 3. The N0.05/Nt for the samples of dead chimneys 

and seawater, except Asp, were <40%. In contrast, those for the samples of Mn crusts, 
basaltic rocks, except Rh3, and sediments were 50% or higher. Noted that the N0.05/Nt for 

Re5 and Rj were very high (>90%) likely due to the small total clone numbers compared 
with the other rock or sediment samples (Table 1). The relatively high N0.05/Nt of Asp may 

be due to contamination from seafloor sediment at the sampling. In fact, some phylotypes 
recovered from Asp were closely related to those from seafloor rocks and sediments (Kato et 

al., 2009b). The N0.05/Nt did not correlate with the total clone numbers analyzed (r2 = 0.223) 
when the data of Asp, Re5 and Rj were excluded (the plot is not shown). Thus, the difference 

in the -diversity associated with each habitat type is potentially meaningful for microbial  
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Fig. 2. (A) Location of the samples of which data were used in this chapter, and photographs 
of on-site observation of (B) sulfide chimney, (C) Mn crust, (D) sandy sediment and (E) 
basaltic rocks. These photographs (B-E) were taken at the Southern Mariana Trough and 
Takuyo-Daigo Seamount.  
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Table 1. List of the clone libraries used in this study. 
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ecology. It is difficult to answer questions, like why the diversity of dead chimneys and 
seawater are lower than that of Mn crusts, basaltic rocks and sediments. Further data 
collection and experimental investigations are needed to answer.  
 

 

Fig. 3. The percentage of the number of OTU0.05 in the total clone number for each sample. 

Measurement and comparison of -diversity is the first step in the study of biogeography. 
Investigating what kinds of habitats represent high or low diversity within a community is 
important for understanding the mechanism how microbial communities acquire the 
diversity. It should be noted that unification of the methodological process including DNA 
extraction and PCR primer sets in sequencing process (Wintzingerode et al., 1997), and 
alignment software, used region in the alignment dataset and distance calculation methods 
in phylogenetic and statistic processes (Schloss, 2010) is important to compare fairly the 
diversity among communities.  

3.3 -diversity 

To compare the microbial communities for each sample based on the -diversity measures, 
UniFrac was used here. The result of clustering analysis is shown in Figure 4A. In UniFrac 
analysis, the jackknifing method can be used to assess confidence in the nodes of the 
UPGMA tree. In the present case, all nodes, except the root, in the tree were not strongly 
supported by jackknifing (<50%). The PCoA results are shown in Figures 4B to E. Figure 4B 
is a three-dimensional image representing the first, second and third principal coordinate 
axes. Based on the results of clustering analysis and PCoA and taken each habitat-type into 
account, the samples were affiliated to six groups as shown in Figure 4. Group1 to Group3 
represent the communities of basaltic rocks and Mn crusts and of each one of the sediment 
and chimney, respectively. Group4 and Group5 represent communities of dead chimneys 
and those of ambient bottom seawater, respectively. Group6 including As and Sdi is the 
most far from the other communities. Re5 was excluded from any groups due to the 
unambiguous behavior that may be caused by the small size of the clone libraries.  
Using UniFrac, we can easily compare the samples and see the difference in community-
level (Figure 4). The results indicated that seawater communities Group5 were clearly 
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distinguished from the other communities. However, the difference between Group4 
(representing dead chimney communities) and Group5 were not shown by the two-
dimensional image by the first and second axes (describing 10.81% and 7.79% of the 
variation, respectively; Figure 4C). On the other hand, these communities were separated 
along the third axis describing 6.93% of the variation. This means that the third most 
influential factor for the community similarity, not the first and second factors, is the factor 
separating the seawater and dead chimney communities. If certain environmental 
characteristics in habitats (e.g., pH and availability of energy sources such as iron, sulfide 
and ammonium as electron donors and oxygen, nitrate and sulfate as electron acceptors) 
and physiological characteristics of microbes in the communities (e.g., life styles of free-
living and attachment) were correlated with the third axis, this traits would be the factor 
causing the difference between seawater and dead chimney communities. Likewise, details  
 

 

Fig. 4. The comparative results from (A) cluster analysis and (B-E) principal coordinate 
analysis using UniFrac. (B) The 3D image based on the first to third principal coordinates 
and (C-E) 2D images for the first vs. second, first vs. third, and second vs. third principal 
coordinates are shown, respectively.  
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of geographical and physicochemical characterization of the environments and 
physiological characterization of the communities in the habitats will help us to address the 
factors, for example, causing the difference among Group1 to Group4, causing the grouping 
of Group2 that contains Rh1, Mt and Sdt despite of the different habitat types (Mn crust, 
basaltic rock and sediment), and causing the difference between Group6 and the other 
groups.  
Geographic distance may be one of the factors affecting the biogeography of the microbial 
communities. For example, the genetic distance between pairs of populations of 
Synechococcus or Sulfolobus in hot springs is related to the geographic distance despite the 
similar environmental characteristics of each habitat, which can be interpreted due to 
genetic drift caused by geographical isolation or to adaptation to the fluctuating 
environment in the past time (Papke et al., 2003; Whitaker et al., 2003). For the deep seafloor 
communities, the relationships between the community similarity and the geographic 
distance are shown in Figure 5. For all habitat types (i.e., basaltic rocks, Mn crusts, dead 
chimneys, sediments and bottom seawater), the similarity between the communities seems 
not to be related to the geographic distance (Figure 5A). For basaltic rocks and dead 
chimneys (Figure 5B and C), positive correlation between the community similarity and 
geographic distance is also not observed. In such solid habitats, environmental 
characteristics can be varied; for example, the gradient of oxygen concentration may occur 
due to chemical and biological consumption. The environmental varieties will affect on the 
microbial community diversity and composition in these habitats. This means that the 
community traits would be dramatically biased by its sampling position (e.g., interior or 
exterior parts of a sample). Hence, it is difficult to show the clear relationship between the 
community similarity and the geographic distance for solid habitats. For overlying bottom 
seawater (Figure 5D), our result implies that the community similarity is related to the 
geographic distance. Such correlation for marine microbial communities has been already 
reported (García-Martínez & Rodríguez-Valera, 2000). Further data sampling from various 
depths and locations in global oceans will provide a more clear view of oceanic 
biogeography. 
 

 

Fig. 5. The relationship between the community similarity and the geographic distance. The 
results of (A) all habitat types integrated, (B) basaltic rocks, (C) dead chimneys, and (D) 
ambient seawater are shown, respectively. The similarities between pairs of communities 
are calculated using UniFrac: the value 1 means that the two communities are the same. The 
geographic distance between pairs of habitats is calculated using spDistN1 in sp package of 
R software. Fitted line and coefficient regression value are shown in each figure.  
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To address the relationship between the community similarity and the phylogeny of the 
OTUs in each community, the OTUs in each community must be compared at nucleotide-
sequence level, neither the band pattern of DGGE nor the fragment sizes of T-RFLP. As 
shown by the results of UniFrac (Figure 4), the community similarity on the deep seafloor 
has positively related to the habitat types. How many OTUs were shared among each 
community in genus- and family-levels (i.e., 0.05 and 0.20 cutoff) are shown in Venn 
diagrams (Figure 5) depicted by mothur. 
Among the solid samples (i.e., basaltic rocks, Mn crusts, dead chimneys and sediments), the 
integrated community for the dead chimneys and that for the basaltic rocks contain many 
unique OTUs0.05 (67.7% and 70.0%, respectively) in genus-level in contrast to that for 
sediments or Mn crusts (39.6% and 41.9%, respectively) (Figure 6A). In family-level, over 
80% of OTUs0.20 of each community were shared with others (Figure 6B). These unique 
OTUs0.05 potentially contain indigenous members for each habitat; for example, the unique 
clusters for basaltic rocks, Ocean Crust Clades I to VII defined by Mason et al. (2007), and for 
sulfide chimney, Cluster A to C defined by Kato et al. (2010). Unfortunately, it is unclear 
whether and how these potential indigenous members play a role in the microbial 
ecosystem and elemental cycling because they are not phylogenetically close to known 
cultured species and their physiological characteristics are unknown (Mason et al., 2007; 
Kato et al., 2010). Further cultivation effort and characterization is important to link the 
phylogeny of the OTUs to their function and significance in the environments.  
Over 50% of the OTUs0.05 in the Mn crusts were shared with those in the basaltic rocks 
(Figure 6A). Furthermore, all of the OTUs0.20 in the Mn crusts were shared with those in the 
basaltic rocks (Figure 6B). These results indicate that the bacterial members in the 
communities of the Mn crusts and basaltic rocks are phylogenetically close to each other, 
which is consistent with the UniFrac (divergence-based) result that the Mn crust 
communities clustered with some basaltic rock communities (Group2 in Figure 4). The 
phylogeny of the shared and unique OTUs can be confirmed by phylogenetic analysis (such 
as homology search against public databases and phylogenetic tree construction), although 
this is not shown in this chapter. Although the physiology of OTUs (e.g., metabolic function, 
growth rate and optimal growth temperature and pH) cannot be directly determined by 
their phylogeny, the physiological characteristics of OTUs may not be so different from 
those of certain cultured species that are closely related to the OTUs. The physiology of 
OTUs inferred from their phylogeny will provide basal information for constructing 
working hypothesis of the microbial ecosystem modeling and for preparing culture media 
targeting these uncultured members.  
Such comparative analysis using nucleotide sequences are also used to check cross-
contamination among each habitat. The shared OTUs between the bottom seawater 
community and others are shown in Figure 6C and D. In genus-level, approximately 6-8% of 
the total OTUs0.05 of the Mn crusts, dead chimneys or basaltic rocks were shared with the 
seawater community (Figure 6C). In family-level, 83%-100% of OTUs0.20 of each community 
were shared with others (Figure 6D), similar to the comparison among the solid samples 
(Figure 6B). Given that all of the OTUs0.05 detected in the seawater are indigenous in the 
seawater, these shared OTUs0.05 observed in the solid samples are potentially contaminants 
from the seawater community. However, it is also possible that these shared OTUs0.05 are 
different from each other in higher-similarity level (e.g., 97% or 99% similarity). 
Microdiverse clusters at the level of >99% similarity have been reported for marine 
prokaryotes such as Pelagibacter (SAR11 cluster) (Acinas et al., 2004), Marine Group I 

www.intechopen.com



 
Microbial Biodiversity and Biogeography on the Deep Seafloor 

 

369 

Crenarchaeota (Durbin & Teske, 2010), and for Halomonas and Marinobacter (Kaye et al., 
2011). Hence, we need to be careful in concluding the shared OTUs between target and 
reference environments to the contaminants from the reference environment.  
 

 

Fig. 6. Venn diagrams comparing the OTU0.05 or OTU0.20 memberships found in the sandy 
sediment, Mn crusts, dead chimneys, basaltic rocks and seawater samples. The comparative 
results among the sandy sediment, Mn crusts, dead chimneys and basaltic rocks are shown 
in (A) OTU0.05 or (B) OTU0.20 levels. The comparative results among the seawater, Mn crusts, 
dead chimneys and basaltic rocks are shown in (C) OTU0.05 or (D) OTU0.20 levels. 
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4. Concluding remarks 

In this chapter, we introduce the recent bioinformatics tools for assessing the microbial 
diversity and biogeography. These useful tools allow us to analyze vast sequence data fast 
and correctly and to get the entire view of the biogeography of microbial communities in 
natural environments. We should use these tools for analysis of microbial biodiversity and 
biogeography effectively. Furthermore, both nucleotide sequencing technology and 
bioinformatics are developing steadily. Microbiologists, especially who study not only 
biogeography and biodiversity, but also evolution, ecology and biogeosciences, should 
always try not to overlook these advancing techniques and to apply to their studies. We 
applied the recent bioinformatics tools for actual data collected from deep seafloor 
environments. Our results provide insight into the microbial diversity and biogeography of 
the global deep seafloor in open oceans: for example, relationship between the community 
similarity and habitat types or geographic distance, commonality and difference among the 
communities in community- and OTU- levels. For providing persuasive explanation 
regarding the biogeography in the global deep seafloor, carefull collection of more 
molecular biological and environmental data from more seafloor habitats in various 
locations are needed.  
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