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1. Introduction 

Many applications in watershed management, forestry, agriculture, and horticulture require 

hydrologically feasible estimates for assessing the rate at which water infiltrates and 

percolates through the soil, and how much of that is either taken up by the vegetation or 

passes through the ground until entering flow channels and streams further below in the 

landscape. In the literature, there are many approaches to do this, ranging from direct field 

measurements to numerical and theoretical constructs (Di Frederico and Tartakosky 2000; 

Pachepsky and Rawls 2005; Sudicky et al. 2010). Field measurements focus on, e.g., (i) direct 

measurements regarding the rate of infiltration, (ii) hydraulic gradients and hydraulic 

conductivities along hillslopes and aquifers, and (iii) stream discharge. Theoretical  

means infer soil and subsoil water retention and hydraulic conductivities from basic soil 

properties such as soil texture, organic matter content, and density. In turn, these estimates 

can then be used to determine temporal changes in soil moisture and soil moisture flow 

within fields (or hydrological response units), along hill slopes and across catchments, by 

way of simple trickle-down models (e.g., Church 1997), or complex geographically 

distributed hydrology models (Kim et al. 2008). The most elaborate models generate 

atmosphere-vegetation-soil transference fluxes based on empirical Eddy correlation 

techniques (Kuchment et al. 2006), while the simpler models use weather records involving 

precipitation and air temperature to assess daily changes in soil moisture and water flow 

(Balland et al. 2006; Murphy et al. 2009). This chapter (i) presents a generalized framework 

for estimating soil hydraulic conductivities at saturation, i.e., Ksat, at the soil-layer level, and 

(ii) applies this framework for modelling water retention and stream discharge for six well-

studied forest catchments across Canada, from east to west. Within this framework, special 

attention is given to ensure that 

i. soil moisture content at field capacity (FC) is always smaller than soil moisture content 
at the saturation point (SP),  

ii. the permanent witting point (PWP) is always smaller than FC,  
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iii. the bulk density of the soil (Db) is always smaller than the mean particle density (Dp) of 
the soil,  

iv. Ksat is strongly affected by the pore space of the soil, and 
v. estimates for Db, Dp, SP, FC, PWP and Ksat are functionally related to soil depth, 

texture, and organic matter content (OM) across a wide range of natural soil conditions, 
from organic to mineral, from loose to compact, and from shallow to deep.  

2. Estimating soil moisture flow, retention, and Ksat 

Equations that generate layer-specific estimates for Db, Dp, FC, PWP and Ksat  

from generally available soil data such as OM, texture (i.e., sand, silt and clay content) and 

soil depth are known as “point pedotransfer functions”, or point PTFs (Bouma, 1989; 

Gijsman et al. 2003; Børgesen and Schaap 2005; Pachepsky and Rawls 2005; Schaap  

2006; Børgesen et al. 2007). The following equations (Balland et al. 2008) were used to this 

effect: 

 Db Db Db Db

Db

a (Dp-a - b SAND) [1-exp (-c DEPTH) ] 
Db =

 1+d OM

+        (1) 

 FC FC-a (1-SAND)-b OM
FC=  SP 1-exp  

SP

  
  

  
          (2) 

 PWP PWP-a CLAY-b OM
PWP=  FC 1-exp  

FC

  
  

  
           (3) 

 10 Ksat Ksat 10 Ksatlog Ksat  a   b  log (Dp - Db)  c  SAND  = + +   (4) 

where a, b, c, and d are Db-, FC-, PWP- and Ksat-specific calibration coefficients, and 

 
OM min

1 OM 1-OM
 =

Dp Dp Dp
+   (5) 

determines the average value for Dp, with DpOM = 1.3 gcm-3 and Dpmin = 2.65gcm-3 referring 

to the particle density of soil organic matter and minerals, respectively. SAND, CLAY, OM, 

FC, PWP, and FC refer to f dry soil weight fractions (fine earth fraction only). DEPTH refers 

to the mid depth of each soil layer, in cm. Ksat is expressed in cm hr-1. Calibrating these 

equations with data taken from New Brunswick (NB) and Nova Scotia (NS) soil survey 

reports (CANSIS, 2000) produced the following results: 

 

1.23 (Dp-1.23-0.75 SAND) (1-exp (-0.0106 DEPTH) ) 
Db =

1+6.83 OM

+        (6) 

 -0.588 (1-SAND)-1.73 OM
FC=  SP 1-exp  

SP

  
  

  
     (7) 

 
-0.511 CLAY-0.865 OM

PWP=  FC 1-exp  
FC

  
  

  
      (8) 
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 10 10log Ksat  -0.98  7.94 log (Dp - Db)  1.96 SAND= + +     (9) 

with the best-fitted values for R2, MAE, RMSE and the corresponding a, b, c and d 
regression coefficients listed in Table 1. These results show that the precision so achieved 
varied in the following order: FC > PWP > Db > Ksat. This order likely reflects the extent by 
which changes in soil structure (or state of soil aggregation) affect the measurement of these 
variables. It appears that such changes have (i) only small if any effects on the pressure-plate 
determinations for FC and PWP, (ii) moderate effects on the in-situ Db determinations, but 
(iii) large effects on Ksat on account of disproportionate flow rates through fine to large 
pores, root channels and cracks. With organic soils, varying degrees of humification also 
matter, with well-humified matter being more compactable and less permeable than fibrous 
matter (Pepin et al., 1992; Paquet et al., 1993; Balland et al. 2008). The modelled variations of 
Ksat with changing OM, sand content, and Db are shown in Figure 1, together with plots of 
actual versus best-fitted NB and NS data. 
 

Property ax bx cx dx R2 MAE RMSE 

Db, g cm-3 1.17 0.83 0.022 6.1 
0.83 0.14 0.18 

 ±0.05 ±0.08 ±0.004 ±0.8 

FC, g g-1 0.588 1.734   
0.96 0.032 0. 048 

 ±0.016 ±0.049   

PWP, g g-1 0.511 0.865   
0.65 0.026 0.035 

 ±0.025 ±0.057   

log10Ksat -0.98 7.94 1.96  
0.80 0.38 0.49 

 ±0.11 ± 0.48 ±0.21  

Subscript x for a, b, c d mean Db, FC, PWP, or Ksat, as pertinent by row  

Table 1. Best-fitted results for Db, FC, PWP, and Ksat (cm hr-1) including their respective a, 
b, c, and d coefficients, coefficient of determination (R2), mean absolute error (MAE) and 
root mean square error (RMSE) for the New Brunswick and Nova Scotia soils data, based on 
Eqs. 1 to 4. 

The extent of inter-parametric correlations among the regression coefficients is shown in Table 
2. These correlations should, ideally, be as close to zero as possible to narrow the equifinal 
solution space for the best-fitted a, b, c and d coefficients. For example, the -0.89 correlation 
between aKsat and cKsat implies that an increase in cKsat will produce a corresponding decrease 
in aKsat. Hence, large non-zero inter-coefficient correlations numbers imply large uncertainties 
about the best-fitted coefficients for the parameter pair so identified.  
Applying the Ksat formulation to the Universal Soil Database (UNSODA, Leij 1996), instead 
of NB and NS data yielded, 

 10 10log Ksat  (-1.05  0.08)  (6.1 0.4) log ( Dp - Db)   (2.2  0.1) SAND= ± + ± + ±        (10)     

 (n = 481; R2 = 0.52; RMSE = 0.68; MAE = 0.54).  
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Db ax bx cx dx  log10Ksat ax bx cx 

ax 1     ax 1   

bx -0.0067 1    bx -0.043 1  

cx -0.45 -0.75 1   cx -0.89 -0.15 1 

dx 0.77 0.062 -0.16 1      

FC ax bx    PWP ax bx  

ax 1     ax 1   

bx -58 1    bx -0.34 1  

Table 2. Correlation coefficients between a, b, c and d parameters of equations 1 to 4, New 
Brunswick and Nova Scotia soil data. 

 

 

Fig. 1. Left and middle: 3-D visualisations of how log10Ksat varies with increasing soil bulk 
density (Db), sand fraction and organic matter (OM) fraction. Right: best-fitted log10Ksat 
versus actual data (right). 

Hence, the log10Ksat formulation based on the NS and NB data alone remained valid in its 
general form, but the coefficient values changed slightly, with the largest change associated 
with the log10(Dp -Db) coefficient, i.e., dropping from 7.9 to 6.1. This change may relate to 
procedural differences, e.g., using estimated Dp values from known SP and Db values (NB 
and NS data) versus direct Dp measurements (UNSODA). The plot of actual versus best-
fitted values in Figure 2 suggests a general agreement between the above Ksat formulation 
and the data from both sources.  

3. Catchment hydrology 

The Forest Hydrology Model (ForHyM; Balland et al. 2006; Fig 3) was used to  
simulate the the hydrothermal conditions within each of the discharge-monitored basins 
listed in Table 3. These simulations were driven by local weather records  
for daily precipitation (rain, snow) and air temperature. In this model, only gravitational 
water was allowed to flow, i.e., the amount of soil moisture above FC. The rate of this  
flow was set to be proportional to pore % of gravitational water multiplied by Ksat to 
estimate downward flow (“percolation”, or “infiltration”), and adjusted for % slope of the  
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Fig. 2. Scatter plot of actual versus best-fitted Ksat values (Eq. 10) for two data sources 

(UNSODA (Leij et al. 1996; NB & NS soil survey data, Balland et al. 2008). 

basin to estimate “lateral flow” or “interflow”. At saturation, downward flow into the 

next mineral soil was typically slower than lateral flow on account of decreasing  

Ksat with increasing soil density at lower soil depth. Infiltration into unsaturated soils 

was determined (i) by directly filling the partially available pore space up to SP, and  

(ii) by accommodating downward as well as lateral flow as long as the soil moisture 

content would remain above FC. For simplicity, the soil at each location was represented 

by the forest floor (or LFH layer), the A and B layers combined, and the C layer.  

The substrate below the C layer was represented by 1 m intervals to a depth of 12 m, i.e., 

to the depth of isothermal conditions year-round. Values for Dp, Db, SP, FC, PWP,  

Ksat were generated for each layer from local soil surveys, using Eqs. 1 to 9 (Table 4). 

Estimates for the moisture- and frost-varying heat capacity and conductivity were  

also generated for each layer according to Balland and Arp (2005). The outcomes of  

these calculations are illustrated in Figure 4 for a basin at Turkey Lakes in Ontario  

near Sault St. Marie north of Lake Superior, and the Moosepit Brook basin east  

of Kejimkujik National Park, Nova Scotia. The general conformance between the modelled 

and actual stream discharge is documented in Table 5 by way of the best-fitted regression 

coefficient and the corresponding R2 and RMSE values for each of the basins examined. 

The Ksat multiplier adjustments for the downward and lateral flow components  

are entered in Table 4. No adjustments were made to the layer-estimated values for  

Db, Dp, FC, and PWP (Eqs. 5 to 8). The following can be observed from Figs. 4 and 5 and 

Tables 1 to 5: 

i. There is generally good agreement between the actual and basin calibrated  

snowpack depth, and stream discharge at the daily to annual time scaless (Fig. 4,  

Table 5). 

ii. No adjustments were needed to match the monitored stream discharge with the 
incoming precipitation and model-assessed evapotranspiration rates.  
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iii. The Ksat adjustments for downward flow varied from 0.5 to 2 (Table 4), and were 
therefore within the generically determined precision for Ksat based on Eqs. 9 and 10 
and the layer specification for soil texture, organic matter, soil depth and soil density 
(Table 1).  

iv. The Ksat adjustments for lateral flow were more variable, thereby indicating that lateral 
flows through the basins were more complex and generally low thereby requiring 
downward Ksat adjustments for interflow, especially for the hummocky basins  
(Table 4). This was likely due to flow obstructions such as mounds and pits, empty  
or partially filled water pools above and below the regolith, erratic changes in soil  
depth, density, texture, organic matter, coarse fragment, and variations in the surface 
exposure of partially fractured bedrock especially along ridges, steep slopes and within 
crevices. Hayward Brook was particularly exceptional with its < Ksat multipliers for 
lateral flow. This undulating to rolling basin is underlain by calcareous shales, which 
generally have high flow variabilities, thereby enhancing downward flow (Schulze-
Makuch et al. 1999). 

v. For most soils, Db generally increases with soil depth (Eq. 1), and Ksat decreases 
accordingly (Eqs. 9 and 10). Within the A and B layers, Ksat values range from about 50 
to 500 cm hr-1. Within the subsoil, Ksat values are generally much lower by one to two 
orders of magnitude, especially on compacted tills. 

vi. The Ksat value for the forest floor, as projected by way of Eq. 5, is rather low,  

but corresponds to Ksat values normally associated with organic soils. Due to the 

high porosity of this layer, infiltration occurs quickly. The water so received is, 

however, released rather slowly to the underlying forest soil and only so once the 

field capacity of the forest floor is exceeded. As a result, soil layers underneath the 

forest floor often remain quite dry during the later portion of the summer and during 

early fall. At this time, soils may also become hydrophobic. As a result, surface water 

would then flow laterally over short distances towards nearby pits and depressions, 

where the soil would be moister and permit gradual infiltration and downward 

percolation. 

vii. The calibrated Ksat values for and depression lateral and downward flow generally 

fall within the Ksat uncertainty range associated with Eq. 9 and Eq. 10, with the  

best-fitted RSME values for Ksat varying from about ±0.4 to ±0.6. This range is similar 

to that obtained with (i) testing water recharge in wells receiving water from  

small depressions (about 50 m2) to catchments up to about 1200 ha or more, and after 

taking care of the scaling-up effect that is associated with these measurements 

(log10Ksat RMSE = ±0.61; Schulze-Makuch et al. 1999), and (ii) using tension 

infiltrometers and Guelph permeameters to determine Ksat by soil depth at Turkey 

Lakes (log10Ksat, RMSE = ± 0.45; Murray and Buttle 2006) and at Lac Laflamme, as 

detailed in Table 4.  

viii. Since the study locations represent a range of catchment size from about 70 to 1700 ha, 

there are no obvious trends with catchment size. Hence, the model-derived Ksat 

adjustments for the LFH, A&B and C layers are essentially independent of scale across 

this range. This is also in general agreement with Schulze-Makuch et al. (1999) who 

found that the up-scaling requirement for Ksat generally stops once the Ksat-

determining flow fields offer no additional heterogeneity. However, Laudon et al. 

(2007) concluded that stream discharge is less dependent on scale than on wetland 
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coverage per catchment, with discharge contributions of “event” water (or new water) 

amounting to 50% in wetland dominated catchment while limited to 10% to 30% in 

forest dominated catchments. Considering also  

a. that forest catchments are generally permeated by many converging flow channels 

with varying and weather-dependent thresholds for flow initiation,  

b. that forest catchments in glaciated landscapes such as the ones of this study are 

generally underlain by a layer of surface-fractured bedrock, and  

c. that this layer provides additional space for water pooling and hydraulically 

activated flows towards the streams,  

it is reasonable to suggest  that the Ksat estimates and their multipliers in Tables 3 and 4 

reflect similar flow heterogeneities within each of the many subcatchments for the 

catchments of this study.   

ix. The above approach requires layer-specific estimates for Ksat. If these are not available, 

then Ksat can be derived from layer-representative values for sand content, Dp and Db. 

When estimates for Dp and Db are not available, one can derived these via Eqs. 5 and 6 

for any soil depth and given values for sand and organic content. Generally, these 

values need to be representative of the LHF, A, B and C layers. The sensitivity of the 

resulting Ksat estimates to the natural variations of these quantities can be evaluated 

via Eq.s. 5, 6, and 9 or 10.   

 
 

 
 

Fig. 3. Specification overview for the Forest Hydrology Model ForHyM (Balland 2002). 
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Table 3. Watershed description by site, with hydraulic conductivity adjustments.  

  1
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Table 4. Hydrothermal soil profile, needed for the daily soil moisture, temperature and 
stream discharge calculations (Balland et al. 2008). 
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Fig. 4. ForHyM generated output for snow-on-the ground, frost depth, soil temperature, and 
stream discharge (daily as well as cumulative) within the forested basins at Turkey Lakes, 
Ontario (top) and for the Moosepit Brook basin  in Nova Scotia (bottom). Basin details: 
Tables 3 and 4.  

Top 

Bottom 
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Fig. 5. ForHyM generated output for daily runoff, interflow (forest floor, A&B layers) and 
baseflow (in mm), for the Rithet River, BC. Basin details: Tables 3 and 4.  

 

Site 
Year Month Week Day 

R2 β R 2 β R 2 β R 2 β 

Moosepit Brook 0.85 1.03 0.90 1.01 0.78 0.96 0.74 0.93 

Peggy Brook 0.94 1.45 0.85 1.02 0.72 0.87 0.65 0.90 

Hayward Brook 0.63 1.02 0.85 1.05 0.58 0.86 0.50 0.76 

Lac Laflamme 0.81 0.95 0.55 0.85 0.55 0.74 0.48 0.67 

Turkey Lakes 0.89 0.99 0.80 0.86 0.61 0.77 0.51 0.74 

Rithet River 0.88 1.11 0.95 1.00 0.82 0.93 0.60 1.04 

Table 5. Comparing ForHyM-modeled with measured daily, weekly, monthly and annual 
cumulative discharge: coefficient of determination (R2) and linear regression coefficient (β ; 
intercept = 0). 

4. Concluding remarks 

The Ksat, SP, FC, PWP values generated from layer-specific values for Db, Dp, Sand, Clay, 
organic matter and soil depth produce reasonable results for the extent of water retention 
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and flow rates for run-off, infiltration, interflow, percolation, baseflow and stream discharge 
across each of the six catchment areas of this study, with the layer-specific Ksat calibrations 
remaining within a factor of two of the generically derived Ksat estimates. For the well-
drained watersheds at Turkey Lakes (Ontario), Lac Laflamme (Quebec), and Rithet River 
(Vancouver Island, British Columbia), however, extra downward adjustments for interflow 
were needed, likely due to the combined effects of (i) high slope heterogeneities, thereby 
leading to a slow-down of lateral flows, and (ii) the close proximity of glacially fractured 
bedrock beneath the regolith along ridges, thereby encouraging deep percolation instead of 
lateral flow. For the calcareous substrate of the Hayward Brook watershed in New 
Brunswick, the downward Ksat adjustments for interflow are likely due to the greater 
porosity of the calcareous shales, which – in turn – required upward Ksat adjustments for 
soil and subsoil percolation. Similar adjustments would have to be made for agricultural 
areas where the flow rates would be accelerated by drainage tiles and ditches. Additional 
Ksat adjustments would be needed where soil bulk density (Db) changes on account of 
surface and sub-surface compaction, weather-induced shrinking and swelling, and freezing 
and thawing. In conclusion, the process of:  
i. estimating Ksat, FC, PWP and soil porosity from soil survey data for soil depth, texture 

and organic matter, 
ii. using these estimates as initial values for modelling the daily changes in the 

hydrothermal conditions and flows through of forest catchments, and  
iii. subsequently calibrating Ksat to improve the run-off, infiltration, percolation, interflow 

and base flow calculations 
generated good agreements between modelled and monitored stream discharge for the  
six forest catchments of this study at the daily level, year-round. The Ksat adjustments 
required to do so generally remained within a factor of 2 for the downward flow 
components. Additional adjustments were required for the catchments on steep and 
calcareous terrains.  
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