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Sources of Third–Order Intermodulation 
Distortion in Bulk Acoustic Wave Devices:  

A Phenomenological Approach 

Eduard Rocas and Carlos Collado 
Universitat Politècnica de Catalunya (UPC), Barcelona 

Spain 

1. Introduction 

Acoustic devices like Bulk Acoustic Wave (BAW) resonators and filters represent a key 
technology in modern microwave industry. More specifically, BAW technology offers 
promising performance due to its good power handling and high quality factors that make 
it suitable for a wide range of applications. Nevertheless, harmonics and 3IMD arising from 
intrinsic nonlinear material properties (Collado et al., 2009) and dynamic self-heating (Rocas 
et al., 2009) could represent a limitation for some applications.  
Driven by the need for highly linear devices, there is a demand for further development of 
accurate models of BAW devices, capable of predicting the nonlinear behavior of the 
device and its impact on a circuit. Many authors have attempted to model the 
nonlinearities of BAW devices by using different approaches, mostly involving 
phenomenological lumped element models. Although these models can be useful because 
of their simplicity, they are mainly limited to narrow-band operation and they usually 
cannot be parameterized in terms of device-independent parameters (Constantinescu et 
al., 2008). Another approach consists of extending all the material properties on the 
constitutive equations to the nonlinear domain and introducing the nonlinear relations to 
the model implementation, which leads to several possible nonlinear sources increasing 
model complexity (Cho et al., 1993; Ueda et al., 2008). On the other hand, (Feld, 2009) 
presents a one-parameter nonlinear circuit model to account for the intrinsic 
nonlinearities. Such a model does not include the self-heating mechanism and can 
underestimate the 3IMD by more than 20 dB. 
In this work, a model that uses several nonlinear parameters to predict harmonics and 3IMD 
distortion is presented.  Its novelty lies in its ability to predict the nonlinear effects produced 
by self-heating in addition to those due to intrinsic nonlinearities in the material properties. 
The model can be considered an extension of the nonlinear KLM model (originally proposed 
by Krimholtz, Leedom and Matthaei) (Krimholtz et al., 1970) to include the thermal effects 
due to self-heating caused by viscous losses and electrode losses. For this purpose a thermal 
domain circuit model is implemented and coupled to the electro-acoustic model, which 
allows us to calculate the dynamic temperature variations that change the material 
properties. In comparison to (Rocas et al., 2009), this work describes the impact that 
electrode losses produce on the 3IMD, presents closed-form expressions derived from the 
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circuit model and validates the model with extensive measurements that confirm the 
necessity to include dynamic self-heating to accurately predict the generation of spurious 
signals in BAW devices. 

2. Nonlinear generation mechanisms 

The origin of nonlinearities in BAW resonators has been controversial and there still exists 
no consensus (Nakamura et al., 2010). However, recent results point to several underlying 
causes which combine in different ways to give rise to a wide range of nonlinear effects 
(Rocas et al., 2009). We summarize the nonlinear effects of a stiffened elasticity, and then 
address the nonlinearity due to self-heating caused by viscous losses and electrode losses. 
We develop a circuit model to describe self-heating effects, and compare the measured 
results with simulations. Closed-form expressions for a simple one-layer BAW device model 
are then extracted to better understand the nonlinear generation mechanisms. 

2.1 Nonlinear stiffened elasticity 

Nonlinear elasticity has been proposed as the predominant contribution to the measured 

second harmonics and as a potential source of the observed 3IMD products (Collado et al., 

2009) in two-tone experiments.  

The approach described in (Collado et al., 2009) starts by considering a nonlinear stress-

strain relation under electric field described by a nonlinear stiffened elasticity cD(T) in the 

form of the polynomial 

 2
0 1 2( )D D D Dc T c c T c T= + Δ + Δ  (1) 

where T is the stress. As detailed in (Collado et al., 2009), (1) translates into a nonlinear 

distributed capacitance Cd(v) in the equivalent electric model of the acoustic transmission 

line (Auld, 1990), in which the voltage v is equivalent to force. In the equivalent electric 

model (1) transforms into: 

 2
,0 1 2( ) .d dC v C C v C v= + Δ + Δ  (2) 

Equation (2) leads to the nonlinear acoustic Telegrapher’s equations which can be used to 
obtain the maximum voltage amplitude occurring along a resonating transmission line as 

shown in (Collado et al., 2009; Collado et al., 2005). When the device is driven by two tones 

at frequencies ωl and ω2, standing waves with maximum force amplitudes Vω1 and Vω2 are 
trapped in the line. Then, as detailed in (Collado et al., 2009), the nonlinear capacitance (2) is 
responsible for generating 3IMD signals that result from adding the contributions due to 

Δc1D and Δc2D:  

 
12 1 2

2 * 2
1 1 LV A Q V V Cω ω ω= Δ  (3) 

 
12 1 2

2 *
2 2 LV A Q V V Cω ω ω= Δ  (4) 

where ω12 = 2ω1 - ω2, QL is the loaded quality factor and A1 and A2 are constants that depend 

on the geometry of the device and on its materials. Identical results would be obtained for 

the 3IMD at 2ω2 - ω1 (which we will denote as ω21). 
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2.2 Self-heating 

Third-order intermodulation distortion due to dynamic self-heating is a well known process 
in microwave power amplifiers (Camarchia et al., 2007; Parker et al., 2004; Vuolevi et al., 
2001) but has received less attention in passive devices (Rocas et al., 2010). What makes it 
different from the 3IMD caused by intrinsic nonlinearities is its dependence on the envelope 
frequency of the signal. For the particular case of a two-tone experiment, in which the 
envelope is a sinusoid, the thermal generation of 3IMD has a low-pass dependence on the 
envelope frequency due to the slow dynamics related with heating effects. 
Recent results of two-tone 3IMD tests in BAW resonators as a function of the tones spacing 
reveal the important impact of self-heating effects in thin-Film Bulk Acoustic Resonators 
(FBAR) (Collado et al., 2009; Feld, 2009; Rocas et al., 2008) and Solidly Mounted Resonators 
(SMR) (Rocas et al., 2009). Heating produced by viscous damping in the acoustic domain 
and by ohmic loss in the electric domain produce local temperature oscillations which affect 
the temperature-dependent material properties. 

If ω1 = ω0 - Δω / 2 and ω2 = ω0 + Δω / 2 are the input signals for a two-tone test, dissipation 
occurs as a result of electric and acoustic losses, and the quadratic dependence of the 
dissipated power on the signal amplitude   

 

2

1 0 2 0 cos cos
2 2

dP V t V t
ω ω

ω ω
    Δ Δ   

∝ − + +       
       

 (5) 

gives rise to several frequency components of the dissipated power: 

 

2 2 2
1 2 1 0

2
2 0 1 2 0

1 2

1 1 1
 cos(2 )

2 2 2
1

cos(2 ) cos(2 )
2

cos( ).

dP V V V t t

V t t V V t

V V t

ω ω

ω ω ω

ω

∝ + + −Δ +

+ Δ +

+ Δ

 (6) 

These frequency components produce temperature variations on the device at the same 

frequencies. These temperature variations K(ω) can be written in terms of the dissipated 
power and the thermal impedance as (Parker et al., 2004) 

 ( ) ( ) ( ).th dK Z Pω ω ω=  (7) 

It is important to point out that the temperature variation at the envelope frequency (Δω = ω2 

- ω1) is the most relevant for the generation of spurious signals because of the low-pass filter 

character of the thermal impedance Zth(ω).  These slow temperature oscillations induce low 
frequency changes of the material properties, and consequently, generate undesired 3IMD. 
In addition to being able to calculate the temperature oscillations, we also need to determine 
how these oscillations influence the device performance. For the specific case of BAW 
devices, there is consensus in assuming that the detuning of BAW devices with temperature 
is due to the variation of multiple material properties with temperature (Lakin et al., 2000; 
Ivira et al., 2008; Petit et al., 2007). We reflect this in our model by adding a temperature-
dependent term to the stiffened elasticity in (1) 

 2
0 1 2( , )D D D D D

Kc T K c c T c T c K= + Δ + Δ + Δ  (8) 
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where K represents the temperature, the equivalent capacitance is  

 2
,0 1 2( , ) ,d d KC v K C C v C v C K= + Δ + Δ + Δ  (9) 

where each of the nonlinear terms ΔC1, ΔC2 and ΔCK are related to their counterparts Δc1D , 

Δc2D, ΔcKD  respectively, as detailed in Appendix I. 

The term ΔCK generates 3IMD, whose maximum voltage Vω12 can be found in a similar way 

as the contribution of ΔC1  in (3) and ΔC2 in (4) (see details in Appendix I): 

 
12 1

* ,T L K d thV A Q C P Z Vω ω ω ωΔ Δ= Δ  (10) 

where AT is a constant that depends on  the device geometry and material parameters, QL is 

the loaded quality factor, Zth,Δω is the thermal impedance (7) evaluated at Δω, and  Pd,Δω is the 

Δω frequency component of the dissipated power in (6). Equation (10) describes the 3IMD 
signal due to self-heating effects, inside the acoustic transmission line, in terms of the 
dissipated power. As detailed in the following sub-sections, the dissipated power is due to 
both electric and acoustic loss, thus both effects contribute to the 3IMD in (10). 

2.2.1 3IMD due to viscous losses 

Viscosity is introduced in the model as a complex elasticity (Auld, 1990), which translates 
into a shunt resistance Rd,η in series with the shunt capacitance Cd in a transmission line 
implementation. Appendix II details a model transformation to go from the original Rd,η to 
an equivalent model in which the viscosity is implemented as a conductance Gd in parallel 
with the capacitance Cd. The equivalent model allows for an easier extraction of the closed-
form expressions.  
The instantaneous dissipated power due to viscous damping at each position z along the 
transmission line of length l (thickness of the piezoelectric layer) is 

 
1 2

2, ( )
cosd

d

P z z
G V V

z l
ω

ω ω

πΔ∂  
=  

∂  
, (11) 

which can be integrated along l to obtain the total dissipated power 

 
1 2

*
,

1

2
d dP lG V Vω ω ωΔ = . (12) 

Equation (12) can be combined with (10) to obtain the peak 3IMD voltage (Vη,ω12 ) due to the 
viscous damping  

 
12 1 2

* 2 *
,

1

2
T d L K thV A lG Q C Z V Vη ω ω ω ωΔ= Δ  (13) 

2.2.2 3IMD due to loss in the electrodes 
There is certain agreement in considering ohmic losses as a significant dissipation 
mechanism (Thalhammer et al., 2005) in addition to the viscous damping. As it will be 
discussed in section II.B.3, electrodes losses are introduced in the circuit model as parasitic 
series resistances at the input and at the output ports, and their values are determined by 
fitting the model to the measured scattering parameters in the linear regime. Their 
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contribution to the 3IMD can be calculated by the use of (10) and the power dissipated in the 
parasitic resistances PρΔω: 

 
12 1

*
, T L K thV A Q C P Z Vρ ω ρ ω ω ωΔ Δ= Δ  (14) 

Whereas the parasitic resistance and distributed conductance can be obtained from the 
measured scattering parameters, that is, they produce distinguishable measurable effect, 
examination of (13) and (14) looks like both self-heating mechanisms produce the same 
experimental observable so they may not be distinguishable. This is true if a two-tone 
experiment at a fixed frequency is performed, but the two effects have different frequency 

dependence that can be distinguished if the central frequency ω0 of the 2 tones is swept 

while keeping the tones spacing Δω constant. This happens because the frequency pattern of 
the dissipation due to ohmic losses is different than that produced by viscous losses, as 
shown in Fig 1. This information is extremely useful to validate the model with 3IMD 
measurements by looking at the frequency dependence of the 3IMD. 

Note that (13) and (14) keep the same definition of thermal impedance Zth,Δω. This is because 
the electrodes and the piezoelectric layer are thin and made of good thermal conductors, so 
that the thermal impedance between those layers is negligible, as will be verified with the 
temperature simulations shown in Section III.B.2. 
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Fig. 1. Simulations of the dissipated power, for an input power of 20 dBm, due to acoustic 
viscous damping (solid line) and electrode electric losses (dashed line) 

2.2.3 Circuit model with self-heating effects 

A circuit model implementation to reproduce thermal effects should be capable of 
predicting dynamic temperature variations. To achieve this, we extend the nonlinear KLM 
model (Collado et al., 2009) to include the thermal domain (Rocas et al., 2009). 
The procedure starts with the one dimensional heat equation along the z direction: 

 
2

2
,

p d

th th

CK K P

z k t k

ρ∂ ∂
= −

∂ ∂
 (15) 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

488 

where the equivalent distributed parameters can be identified as the volumetric heat 
capacitance 

 ,d th pC Cρ=  (16) 

and the thermal resistance 

 ,

1
d th

th

R
k

=  (17) 

with Cp and kth being the material-specific heat capacity and thermal conductivity, 
respectively. 
With the above-mentioned distributed parameters, a thermal distributed model can be 
constructed as a cascade of sections of series resistances and shunt capacitance, where each 
section corresponds to a specific thickness and area. Figure 2 shows a segment with Rth= 

Rd,th·Δz/A and Cth= Cd,th·A·Δz, where A is the area of the cross-section perpendicular to the z 
direction.  In such a thermal equivalent circuit the equivalents of voltage and current are the 
temperature and heat respectively. 
 

Rth/2

Cth

Rth/2

Z direction
 

Fig. 2. Implementation of a Δz section of thermal equivalent circuit 

The thermal model of a multilayer SMR can be implemented as a cascade of the previously 
described sections for each material, as shown in Fig. 3. The boundary conditions are the 
ambient temperature, modeled as a voltage source under the substrate, and the parallel 
combination of the radiation and convection resistances, terminated with a voltage source at 
ambient temperature on the upper side of the device (Larson et al., 2002). 
 

Z direction

...

Cth,Si Tamb

Rth,1/2

Cth,1

Rrad

Rconv

Tamb

Rth,1/2 Rth,Si/2Rth,Si/2Rth,2/2

Cth,2

Rth,2/2

 

Fig. 3. Thermal model of the upper and lower materials’ stacks with boundary conditions 

As it can be seen from Fig. 3, the thermal impedance seen from any point along the line has 
a low-pass filter behavior, which means that for faster variations of the heat source, smaller 
temperature variations are produced.  
The piezoelectric layer is implemented as a cascade of cells, in which the dissipated power 
due to viscous damping is directly coupled to its correspondent thermal cell. A current 
source is used because current is the analogue of heat in the thermal domain. The 
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temperature rise is used to modify the distributed acoustic capacitance CNL(T,K), as shown 
in Fig. 4. 
 

∆z

Ld/2

CNL(T,K)Gd

+

F

-

+

F+dF

-

Rth/2

Cth

Ld/2
Pd

+

K

-

+

K+dK

-

Thermal
Domain

Acoustic
Domain

Rth/2

 

Fig. 4. Implementation of a section of the piezoelectric layer with the acoustic and thermal 
domains coupled by the generated heat at Gd and the temperature K. Ld is the acoustic 
distributed inductance Ld = ρ·A·Δz. 

 

Thermal Domain Extension

... ...

......

Nonlinear
KLM model

Rin Rout

∆z

Top Layers
(Thermal Domain)

Bottom Layers
(Thermal Domain)Piezoelectric Layer

Electro-Acoustic
Conversion

ZairZair

Top Layers
(Acoustic Domain)

Bottom Layers
(Acoustic Domain)

TambTamb

Rrad

Rconv

Rth,1/2

Cth,1 Cth,Si

Rth,1/2 Rth,Si/2 Rth,Si/2

 

Fig. 5. Complete circuit model with thermo-acoustic model of the piezoelectric layer, top 
and bottom layers, and lossy electrodes. Electric losses, in the electrodes, and viscous losses, 
in the piezoelectric layer, produce dissipation that is coupled to the thermal domain to 
reproduce temperature rise. The temperature rise is used to change the material properties 

On the other hand, the parasitic electrodes losses are implemented by use of a lumped 
resistor at the input and output of the modeled device as shown in Fig. 5. As done for the 
viscosity, the dissipation in each resistor is coupled to the thermal model as a heat source. In 
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fact, dissipation in the input and output resistors is coupled to the correspondent top and 
bottom thermal sections that model the electrodes. The complete model can be seen in Fig. 5, 
where a cell of the piezoelectric layer like that in Fig. 4, is highlighted in red. 
In the figure above, the electric-acoustic conversion box includes those elements of the KLM 
model whose purpose is the electro-acoustic signal conversion (Krimholtz et al., 1970). 
Additionally, the material layers above and below the piezoelectric are shown as simplified 
blocks for clarity. 

2.2.4 Comparison of formulation and nonlinear simulations 

We use the circuit model of Fig. 5, with only a piezoelectric layer, to check the accuracy of 
the formulation described in the previous section. The circuit model has been simulated, 
reproducing a two-tone experiment, with Harmonic Balance techniques by use of a 
commercial CAD software. A simple model is implemented making use of 100 cells to 
reproduce a 1.25 μm thick and 2.33·10-8 m2 piezoelectric layer with a quality factor of 1800. 
The electrodes losses and viscous losses are coupled to a low-pass thermal impedance. 
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Fig. 6. Comparison of the magnitude and phase of 2ω1-ω2 calculated with equation (13) 
(circles) in Fig.6a (viscous losses, no electrode losses) and equation (14) (circles) in Fig.6b 
(electrode losses, no viscous losses), vs. simulation with the circuit model (solid lines) 
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In the first set of simulations we keep the tones spacing constant at Δω/2π = 220 Hz and 
sweep the central frequency ω0 in a 600 MHz range around the resonance frequency, which 
is 2.18 GHz. By doing this, we can distinguish the 3IMD produced by viscous self-heating 
from that produced by electric self-heating by analyzing the resulting frequency 
dependence. In the former case, we do not connect the dissipation in the electrodes to the 
thermal domain (Fig.6a), whereas in the latter case we do not connect the dissipation in the 
piezoelectric layer to the thermal domain (Fig.6b). The 3IMD frequency dependences are a 
direct consequence of the frequency dependences of the dissipated power. More specifically, 
a minimum at the anti-resonance frequency appears in Fig. 6.b because there is minimum 
current flowing through the electrodes at anti-resonance, which can be used in experimental 
measurements to identify different sources of self-heating effects. 
In the second set of simulations we keep the central frequency constant at 2.18 GHz and we 
change the separation between tones from 100 Hz to 1 MHz. This allows us to reproduce the 
low-pass filter behavior of the thermal impedance. Figure 7 shows the results of the second 
set of simulations for a wide range of separation between tones when the self-heating effects 
are due to viscous losses, where it is clear the low-pass filter behavior of the temperature 
induced effects. A very similar plot was obtained for electrode losses, which is not shown 
for simplicity.   
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Fig. 7. Magnitude and phase of equation (13) (circles) and simulations with the circuit model 
(traces) for a wide range of separation between tones 

Figures 6 and 7, in addition to giving useful qualitative information about the 3IMD 
generation due to the self-heating mechanism, show that the formulation of equations (13) 
and (14) is in very good agreement with the simulations, so that these expressions can be 
used for a better understanding of the temperature-induced 3IMD in BAW resonators. 

3. Experimental results 

Four state-of-the-art rectangular Solidly-Mounted Resonators (SMR) from a commercial 
manufacturer, with different areas summarized in Table 1, have been measured. The 
resonators have a 1.25 μm thick aluminum nitride layer and a W - SiO2 Bragg mirror 
(alternating layers of W and SiO2), and show quality factors around 1800. 
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From (8) it is clear that several sources, characterized by ΔcD1, ΔcD2 and ΔcDK, can generate 
3IMD. Therefore, we follow a step-by-step procedure that includes several experiments to 
determine which nonlinear source is designed responsible for each observable at each 
experiment by use of the circuit model: 

• We first adjust the linear model to the measured S-parameters of the devices, so that the 
electric and viscous losses can be quantified. The procedure consists of a fine tuning of 
the material properties.   

• Second harmonic measurements are performed along the frequency range of interest to 

extract the intrinsic nonlinear parameter ΔcD1.  

• The term ΔcD2 also contributes to the 3IMD generation. We use the literature value in 
(Łepkowski et al., 2005) because this contribution cannot be independently extracted 
from measurements. 

• Third-order intermodulation distortion measurements with sweeping the tone spacing 
are conducted to quantify the frequency dependence of the thermal impedance, and set 

the temperature coefficient of stiffened elasticity ΔcKD accordingly. 

3.1 Linear modeling of the devices under test 

Broadband one-port S-parameters measurements of the devices have been performed after 
an on-wafer OSL calibration. The measurements have been done at a power level of -10 dBm 
to ensure the linear regime and are used to fit the linear parameters of the circuit model. The 
only differences between the devices are the resonator area and electrode losses. 
Electric losses due to the resistivity of the electrodes are modeled as lumped parasitic 
resistances, so their values are dependent on the resonator area and have a broadband effect 
on the linear device response. Table 1 summarizes the device areas and electric resistances. 
On the other hand, acoustic losses due to viscosity only have an observable effect at those 
frequencies where there is substantial electro-acoustic coupling, that is around resonance 
and anti-resonance. By using the model transformation in Appendix II, the acoustic losses 
that fit all devices can be described with the same material viscosity value η = 0.033 N·s·m-2, 
what verifies the validity of the linear model. 
 

Resonator Area (m2) Electric Resistance Rs (Ω) 

A1 6.41e-8 0.28 

A2 4.88e-8 0.37 

A3 2.33e-8 0.42 

A4 1.25e-8 1 

Table 1. Tested devices 

3.2 Nonlinear characterization 

The nonlinear behavior of a BAW resonator arises from different contributions due to 
intrinsic nonlinear material properties and self-heating mechanisms.  

3.2.1 Intrinsic nonlinearities 

Intrinsic nonlinearities due to the stiffened elasticity, as shown in (1), predominate above 
other intrinsic nonlinear material contributions. As a consequence, the second harmonic has 
the same frequency dependence as the mechanical stress in the piezoelectric layer (Collado 
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et al., 2010). In fact, as done in (Collado et al., 2010), the second harmonic is used to extract a 
unique unitless value ΔcD1 = 10.5 of the stiffened elasticity that fits the second harmonic for 
all the devices.  
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Fig. 8. 3IMD measurements (squares are 2ω1-ω2, circles are 2ω2-ω1) and circuit simulations of 
the ΔcD1 and ΔcD2 contributions to the 3IMD (2ω1-ω2 and 2ω2-ω1 overlap). Both 
measurements and simulations are done for Δf = 220 Hz. The intrinsic nonlinearities are not 
sufficient to explain the measurements. Measurements (squares and triangles) and 
simulations (dashed lines) of ω1 and ω2 are also presented 
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Fig. 9. 3IMD measurements (squares are 2ω1-ω2, circles are 2ω2-ω1) and circuit simulations of 
the ΔcD1 and ΔcD2 contributions to the 3IMD (2ω1-ω2 and 2ω2-ω1 overlap), for several 
separations between tones. The intrinsic contributions cannot reproduce the envelope 
frequency-dependent 3IMD level 
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The parameter ΔcD1 is responsible for second harmonic generation, which in turn mixes with 

the fundamental frequencies ω1 and ω2, and gives rise to 3IMD. On the other hand, ΔcD2 

directly generates a certain level of 3IMD distortion. We use the literature value of ΔcD2 = -

1·10-10 N-1m2 (Łepkowski et al., 2005). 

With the above-mentioned values of intrinsic nonlinearity, simulations of 3IMD are 

performed obtaining values which are below the measured levels, as shown in Fig. 8. This 

shows that other contributions exist. Figure 9 shows 3IMD measurements at different 

envelope frequencies, centered at the frequency where the 3IMD is maxima. The 

measurements reveal a strong dependence with the envelope frequency that cannot be 

accounted for intrinsic nonlinearities. The dependence of the 3IMD level on the envelope 

frequency suggests that the 3IMD is dominated by a thermal effect.  

3.2.2 Self-heating 

The thermal model, as presented in section II.B.3, is implemented by using the literature 

values of thermal conductivity and specific heat for each layer. The materials stack is 

composed of more than ten layers. Dissipation on the electrodes and viscous losses are 

coupled to the thermal domain by means of current sources. By using the model we can 

determine the temperature distribution along the materials stack, even at different envelope 

frequencies as shown in Fig. 10. Note that the temperature is almost the same in the 

piezoelectric layer and the electrodes, which validates the hypothesis in Section II.B.2, of 

negligible thermal impedance between the electrodes and the piezoelectric layer, to obtain 

the closed-form expressions. 
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Fig. 10. Simulations of the distribution of the z temperature variation, inside the resonator, 
calculated with the circuit model. Simulations are done for resonator A1 at Pin = 30 dBm, for 
different separation between tones 

A value of ΔcDK/cD0= -15 ppm/K is found to fit the 3IMD best for all resonators. Figure 11 

shows the intrinsic and self-heating 3IMD contributions independently as well as the sum of 
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all contributions, which match the measurements for all the tone separations. The model 

reproduces very well the measured 3IMD values except the asymmetry between lower and 

higher 3IMD that appears for envelope frequencies around 6 MHz. This asymmetry is 

considered to be a consequence of a cancellation between different 3IMD contributions and 

is currently under investigation. 
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Fig. 11. Measurements (stars, triangles, squares and circles are ω1, ω2, 2ω1-ω2 and 2ω2-ω1 
respectively) and simulations (thin dotted line is ω1 and ω2, solid line is 2ω1-ω2 and 2ω2-ω1 
overlapped) of the fundamentals and the 3IMD for different tones spacing for A1. The 
dotted line, the dash-dot line and the dashed line are simulations of the 3IMD contribution 
due to ΔcDK, ΔcD2 and ΔcD1 respectively. The solid line is the 3IMD simulation with all the 
nonlinear contributions 
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Fig. 12. Measurements (filled circles are 2ω1-ω2, empty circles are 2ω2-ω1) and simulations 
(solid line is 2ω1-ω2, dash-dot line is 2ω2-ω1) of the 3IMD for resonators A1, A2, A3 and A4 in 
Fig.12.a, Fig.12.b, Fig.12.c and Fig.12.d respectively. The figures also show the dissipation in 
the electrodes (dashed line) and in the piezoelectric layer due to viscous losses (dotted line) 
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Figure 12 shows measurements and simulations of the 3IMD about the frequency range of 
interest, for each resonator, by use of the circuit model. In this experiment, the two tones are 
swept around the resonating frequencies keeping the separation between tones constant at 
100 Hz. The results show good agreement between simulations and measurements above 
the nonlinear system baseline level, which is around -60 dBm. 
The dashed and dotted lines in Fig. 12 show the simulated dissipated power due to 
electrodes losses and viscosity respectively, which have different frequency dependences 
according to the maximum electric current and mechanical stress, respectively. 3IMD 
measurements for resonators A3 and A4 in Fig. 12 show a peak at the antiresonant 
frequency that is underestimated by the simulations. The frequency dependence in that 
range points to a possible electric-field contribution to the 3IMD. This contribution is below 
the system nonlinear baseline level for resonators A1 and A2, and the area scaling has not 
been successfully reproduced by use of an electric-field dependent permittivity or stiffened 
elasticity in the acoustic transmission line, so further research is needed. 

4. Conclusion 

The role of self-heating and material nonlinearities in the generation of 3IMD in bulk 
acoustic wave devices has been evaluated through measurements, models and equations. 
Self-heating is found to have a very significant contribution to 3IMD and thus thermal 
considerations are critical in the device design. The presented circuit model implementation 
offers the possibility to predict 3IMD in BAW resonators, given their materials stack and 
geometry. With such information one can use the resonator model to accurately predict 
3IMD in filters. Further research will be performed to investigate the relation between the 
electric-field contribution to 3IMD and the cancellation shown in the measurements. The 
development of a 3D equivalent thermal model, to take into account complex heat 
dissipation through the substrate, will also be investigated.  

5. Appendix I – 3IMD equations 

At each elemental section, and following a similar process than that described in (Collado et 
al., 2009), the nonlinear capacitance acts as an infinitesimal nonlinear current generator at 
2ω1 - ω2  (and 2ω2 - ω1), when ω1 and ω2 are at resonance: 

 12

1

, *
12

( ) 1
cos

2

nl

K

I z z
j C K V

z l

ω

ω ω

π
ω Δ

∂  
= Δ  

∂  
 (18) 

where KΔω =Zth (Δω ) Pd (Δω ) .  
Therefore the broadband energy balance all over the acoustic transmission line leads to 
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6. Appendix II - Model transformation 

Losses are introduced as a complex elasticity by means of the viscous damping coefficient η: 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

498 

 t
cc

∂

∂
+→ η

 (20) 

The inverse damping coefficient can also be understood as the conductance per unit length 
Gd=η-1. With that, the acoustic telegrapher equations, making use of the analogy between the 
acoustic and electric domains, can be written as: 
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and 
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The shunt admittance of the acoustic transmission line implementation, given by (22) and in 
which A·cD=Cd-1, is a shunt capacitance in series with a resistance. To transform this to be a 
capacitance in parallel with the loss term, we introduce eq. 8 in eq. 22 and expand the shunt 
admittance in as a Taylor series. The result is a conductance value in parallel with a 
nonlinear capacitance of the form: 

 2
,0 1 2( , )d d KC v K C C v C v C K= + Δ + Δ + Δ  (23) 

whose terms are related with the material linear and nonlinear properties as follows: 
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7. Appendix III - Broadband loaded quality factor 

The loaded quality factor can be defined as (Russer, 2006)  

 0

1
L

Q
Q

β
=

+
 (28) 

where β relates the dissipated power in the acoustic resonator Pres, that is the acoustic 
transmission line, and the externally dissipated power Pext as follows: 

 .ext

res

P

P
β =  (29) 
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By circuit analysis of the KLM circuit model, it can be found that β is 
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where Zin is the input impedance of the device and Xm is the series reactive term of the KLM 
model (Krimholtz et al., 1970). Q0 in (28) represents the unloaded quality factor, that is 
obtained from S-parameters using (Feld et al., 2008)  
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