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1. Introduction 

An acoustic wave basically is a mechanical oscillation of pressure that travels through a 
medium like solid, liquid, gas, or plasma in a periodic wave pattern transmitting energy 
from one point to another in the medium [1-2]. It transmits sound by vibrating organs in the 
ear that produce the sensation of hearing and hence, it is also called acoustic signal. This is 
well-known that air is a fluid. Mechanical waves in air can only be longitudinal in nature; 
and therefore, all sound waves traveling through air must be longitudinal waves originating 
in the transmission form of compression and rarefaction from vibrating matter in the medium. 
The propagation of sound in absence of any material medium is always impossible. Therefore, 
sound does not travel through the vacuum of outer space, since there is nothing to carry the 
vibrations from a source to a receiver. The nature of the molecules making up a substance 
determines how well or how rapidly the substance will carry sound waves. The two 
characteristic variables affecting the propagation of acoustic waves are (1) the inertia of the 
constituent molecules and (2) the strength of molecular interaction. Thus, hydrogen gas, 
with the least massive molecules, will carry a sound wave at 1,284.00 ms-1 when the gas 
temperature is 00 C [1]. More massive helium gas molecules have more inertia and carry a 
sound wave at only 965.00 ms-1 at the same temperature. A solid, however, has molecules 
that are strongly attached, so acoustic vibrations are passed rapidly from molecule to 
molecule. Steel, for an instant example, is highly elastic, and sound will move rapidly 
through a steel rail at 5,940.00 ms-1 at the same temperature. The temperature of a medium 
influences the phase speed of sound through it. The gas molecules in warmer air thus have a 
greater kinetic energy than those of cooler air. The molecules of warmer air therefore 
transmit an acoustic impulse from molecule to molecule more rapidly. More precisely, the 
speed of a sound wave increases by 0.60 ms-1 for each Celcius degree rise in temperature 
above 00 C.  
Acoustic waves, or sound waves, are defined generally and specified mainly by three 
characteristics: wavelength, frequency, and amplitude. The wavelength is the distance from 
the top of one wave’s crest to the next (or, from the top of one trough to the next). The 
frequency of a sound wave is the number of waves that pass a point each second [1]. Sound 
waves with higher frequencies have higher pitches than sound waves with lower 
frequencies and vice versa. Amplitude is the measure of energy in a sound wave and affects 
volume. The greater the amplitude of an acoustic wave, the louder the sound and vice versa. 
An acoustic wave is what makes humans and other animals able to hear. A person’s ear 
perceives the vibrations of an acoustic wave and interprets it as sound [1]. The outer ear, the 
visible part, is shaped like a funnel that collects sound waves and sends them into the ear 
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canal where they hit the ear drum, which is a tightly stretched piece of skin that vibrates in 
time with the wave. The ear drum starts a chain reaction and sends the vibration through 
three little bones in the middle ear that amplify sound. Those bones are called the hammer, 
the anvil, and the stirrup.  
Furthermore, acoustic waves from a purely hydrodynamic point of view are small-
amplitude disturbances that propagate in a compressible medium (like a fluid) through the 
interplay between fluid inertia, and the restoring force of fluid pressure. The propagation of 
small-amplitude disturbances in homogeneous medium is observed as acoustic waves such 
as water waves, and in self-gravitationally stratified medium like stellar atmosphere [36-37, 
41-44], acoustic-gravity waves such as p-modes, g-modes, f-modes, etc., as found by helio- 
and astero-seismological studies. Acoustic waves propagating through a dispersive medium 
may get dynamically converted into solitons or shocks depending on the physical 
mechanisms responsible for their saturation. When fluid nonlinearity (convective effect) is 
balanced by dispersion (geometrical effect), solitons usually result [4]. Conversely, shocks 
are formed if fluid nonlinearity is balanced by dissipation (damping effect). The nonlinear 
hydrodynamic equations of various forms (like KdV equation, Burger equation, NLS 
equation, BO equation, etc.) in the context of the generation, structure, propagation, self-
organization and dissipation of solitons or shocks have long been developed applying the 
hydrodynamic views of the usual conservation laws of flux, momentum and energy [4]. 
Similar outlook is needed to understand the formation of other nonlinear localized 
structures of low frequency acoustic waves like double layers, vortices, etc. They are 
important in a wide variety of space, astrophysical and laboratory problems for the 
investigation of dynamical stability against perturbation [3-4]. In addition, these equations 
have wide applications to study a nonlinear, radial, energetic, and steady-flow problem that 
provides a first rough approximation to the physics of stellar winds and associated acoustic 
wave kinetics, which are responsible for stellar mass-loss phenomena via supersonic flow 
into interstellar space [2]. 
Acoustic mode in plasmas of all types [2-44], similarly, is actually a pressure driven 
longitudinal wave like the ordinary sound mode in neutral gas. In normal two-component 
plasmas, the electron thermal pressure drives the collective ion oscillations to propagate as 
the ion sound (acoustic) wave. Here the electron thermal pressure provides the restoring 
force to allow the collective ion dynamics in the form of ionic compression and rarefaction 
to propagate in the plasma background and ionic mass provides the corresponding inertial 
force. Thermal plasma species (like electrons) are free to carry out thermal screening of the 
electrostatic potential. In absence of any dissipative mechanism, the ion sound wave moves 
with constant amplitude. For mathematical description of the ion sound kinetics, the plasma 
electrons are normally treated as inertialess species and the plasma ions, with full inertial 
dynamics. However, recent finding of ion sound wave excitation in transonic plasma 
condition of hydrodynamic equilibrium offers a new physical scope of acoustic turbulence 
due to weak but finite electron inertial delay effect [5-12]. Qualitative and quantitative 
modifications are introduced into its nonlinear counterpart as well, under the same 
transonic plasma equilibrium configuration [12]. The transonic transition of the plasma flow 
motion quite naturally occurs in the neighborhood of boundary wall surface of laboratory 
plasmas, self-similar expansion of plasmas into vacuum, in solar wind plasmas and different 
astrophysical plasmas, etc. The self-similar plasma expansion model predicts supersonic 
motion of plasma flow into vacuum. This model is widely used to describe the motion of 
intense ion plasma jets produced by short time pulse laser interaction with solid target [17-
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23]. Recently, the self-similar plasma expansion into vacuum is modeled by an appropriate 
consideration of space charge separation effect on the expanding front [13].  
According to the recently proposed inertia-induced ion acoustic excitation theory [5-8], the 
large-scale plasma flow motion feeds the energy to the short scale fluctuations near the pre-
sheath termination at sonic point. This is a kind of energy transfer process from large-scale 
flow energy to wave energy through short scale instability of cascading type. In order to 
maintain the turbulence type of hydrodynamic equilibrium, there must be some source to 
feed large-scale flow and sink to arrest the infinite growth of the excited short waves. The 
growing wave energy could be used to re-modify the global transonic equilibrium such that 
the transonic transition becomes a natural equilibrium with smooth change in flow motion 
from subsonic to supersonic regime. Of course, this is a quite involved problem to handle 
the self-consistent turbulence theory of transonic plasma in terms of anomalous transport 
[5]. Now one may ask how to produce such boundary layer with sufficient size of the 
transonic plasma layer for laboratory experimentations?  
This, in fact, is an experimental challenge to design and set up such experiments to produce 

extended length of the transonic zone to sufficient extent to resolve the desired unstable 

wave spectral components. Creation of a thick boundary layer of transonic flow dynamics 

is, no doubt, an important task. This zone lies between subsonic and supersonic domains, 

and is naturally bounded by low supersonic and high subsonic speeds. It should be 

mentioned here that the sonic velocity corresponds to the phase velocity of the bulk 

plasma mode of the dispersionless ion acoustic wave. In case of sheath edge boundary, 

transonic layer could be probed by high-resolving diagnosis of the Debye length order. 

The desired experiments of spectral analysis of the unstable ion acoustic waves in 

transonic plasma condition may be quite useful to resolve the mystery of sheath edge 

singularity. Using de-Lavel nozzle mechanism of hydrodynamic flow motion, experiments 

could be designed to produce transonic transition layer of desired length and 

characteristics [6-8].   

Study of the ambient acoustic spectrum associated with plasma flow motion can be termed 

as the acoustic spectroscopy of equilibrium homogeneous plasma flows [6, 26]. This may be 

useful for expanding background plasmas [13], solar wind plasmas and also in space 

plasmas through which the space vehicles’ motion and aerodynamic motion occur [3, 25, 

28]. Basic principles of the acoustic spectroscopy have concern to the linear and non-linear 

ion acoustic wave turbulence theory and properties of the transonic plasma equilibrium [5-

12, 26]. These properties may be used to develop the required diagnostic tools to study and 

describe the hydrodynamic equilibrium states of plasma flows by suitable observations and 

analysis of the waves and instabilities they exhibit. In fact, the ambient turbulence-driven 

plasma flow is quite natural to occur in toroidal and poloidal directions of the magnetic 

confinement of tokamak device. Similar physical mechanism is supposed to be operative in 

the transonic transition behavior of equilibrium plasma flow motion [5-12]. Thorough 

investigations of acoustic wave turbulence theory in transonic plasma condition will be 

needed to explore transonic flow dynamics on a concrete footing.   

Recently, there has been an outburst of interest in plasma states where the assumption of 

static equilibrium practically is violated [28-30]. Great deals of research activities are now 

going on in transonic and supersonic magnetohydrodynamic (MHD) flows in laboratory 

and astrophysical plasmas. Similar activities are also important for understanding the 

designing of supersonic aerodynamics having relevance in spacecraft-based laboratory 
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experimentations of space plasma research as well [8, 30]. This is also argued that future 

tokamak reactors need the consideration of rotation of fusion plasma with high speeds that do 

not permit the assumption of static equilibrium to hold good. This may be brought about due 

to neutral beam heating and pumped divertor action for the extraction of heat and exhaust.  
In astrophysics [3, 28-32, 35-44], the primary importance of plasma flows is revealed in such 
diverse situations as coronal flux tubes, stellar winds, rotating accretion disks, torsional 
modes, and jets emitted from radio galaxies. This is to argue that the basic understanding of 
the acoustic wave dynamics in transonic plasma system constitutes an important subject of 
future interdisciplinary research [5-12, 26-30]. This may be useful for development of the 
appropriate diagnostics for acoustic spectroscopy to measure and characterize the 
hydrodynamic equilibrium of flowing transonic plasmas [8-10]. Such concepts of acoustic 
wave dynamics in a wider horizon may also applied to understand some helio- and astero-
seismic observations in astrophysical contexts. 
Most of the plasma devices of industrial applications like dense plasma focus machine, 
plasma torches, etc. depend on the plasma flows that violate the static equilibrium [26-30]. 
In fusion plasmas of future generation too, the static approximation of the equilibrium 
plasma description may not be suitable to describe the acoustic wave behavior. In future 
course of fusion research, rotational motions of fusion plasmas in poloidal and toroidal 
directions may decide the equilibrium. This is important to state that in toroidal plasmas, 
the geodesic acoustic mode becomes of fundamental importance in comparison to the 
ordinary sound modes [30]. This may be more important when these rotational motions are 
in the defined range of the transonic limit. Simplicity is correlated to the local mode 
approximation of the acoustic wave description in transonic limit of uniform and 
unidirectional plasma flow motion without magnetic field.  
The lowest order nonlinear wave theory of the ion acoustic wave dynamics predicts that the 
usual KdV equation is not suitable to describe the kinetics of the nonlinear traveling ion 
acoustic waves in transonic plasma condition [8-9, 12, 26]. A self-consistent linear source 
driven KdV equation, termed as d-KdV equation, is prescribed as a more suitable nonlinear 
differential equation to describe the nonlinear traveling ion acoustic wave dynamics in 
transonic plasma condition. By mathematical structure of the derived d-KdV equation, it 
looks analytically non-integrable and physically non-conservative dynamical system [8-9]. 
Due to linear source term, an additional class of nonlinear traveling wave solution of 
oscillatory shock-like nature is obtained. This is more prominent in the shorter scale domain 
of the unstable ion acoustic wave spectrum, but within the validity limit of weak 
nonlinearity and weak dispersion.  
If there is multispecies ionic composition in a plasma system, varieties of plasma sound 
waves are likely to exist depending on, in principle, the number of inertial ionic species. In 
plasmas containing two varieties of dust or fine suspended particles, two distinct kinds of 
natural plasma sound modes are possible [15-16]. Such plasmas, termed as the colloidal 
plasmas [16], have become the subject of intensive study in various fields of physics and 
engineering such as in space, astrophysics, plasma physics, plasma-aided manufacturing 
technique, and lastly, fusion technology [14-23]. The dust grains or the solid fine particles 
suspended in low temperature gaseous plasmas are usually negatively charged. It is also 
observed that plasmas including micro scale-sized and nano scale-sized suspended particles 
exist in many natural conditions of technological values. Such plasmas have been generated 
in laboratories with a view to investigate the dust grain charging physics, plasma wave 
physics as well as some acoustic instability phenomena.  
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The two distinct sound modes, however, in bi-ion colloidal plasma are well-separated in 
space and time scales due to wide range variations of mass scaling of the normal ions and 
the charged dust grains and free electrons’ populations. The charged dust grains are termed 
as the Dust Grain Like Impurity Ions (DGLIIs) [15] to distinguish from the normal impurity 
ions. The present contributory chapter, additionally, applies the inertia-induced acoustic 
excitation theory to nonlinear description of plasma sound modes in colloidal plasma [15-
16] under different configurations. Two separate cases of ion flow motion and dust grain 
motions are considered. It is indeed found that the modified Ion Acoustic Wave (m-IAW) or 
Dust Ion Acoustic (DIA) wave and the so-called (Ion) Acoustic Wave (s-IAW) or Dust Acoustic 
(DA) wave both become nonlinearly unstable due to an active role of weak but finite inertial 
correction of the respective plasma thermal species [15, 26]. Proper mass domain scaling of 
the dust grains for acoustic instability to occur is estimated to be equal to that of the 
asymptotic mass ratio of plasma electron to ion as the lowest order inertial correction of 
background plasma thermal species. This contributory chapter is thus a review organized to 
aim at some illustrative examples of linear and nonlinear acoustic wave propagation 
dynamics through transonic plasma fluid, particularly, under the light of current scenario. 
Some important reported findings on nonlinear acoustic modes found in space and 
astrophysical situation [31-44], like in solar plasma system [10-11, 31-44], will also be 
presented in concise to understand space phenomena. Incipient future scopes of the 
presented contribution on transonic flow dynamics in different astrophysical situations will 
also be briefly pointed out.   

2. Physical model description 

A simple two-component non-isothermal, field-free and collisionless plasma system under 
fluid limit approximation is assumed. The plasma ions are supposed to be drifting with 
uniform velocity at around the sonic phase speed under field-free approximation. Global 
plasma equilibrium flow motion over transonic plasma scale length at hydrodynamic 
equilibrium is assumed to satisfy the global quasi-neutrality. Such situations are realizable 
in the transonic region of the plasma sheath system as well as in solar and other stellar wind 
plasmas [3, 10-11, 35-41]. Its importance has previously been discussed [1, 5-12], where the 
ion-beam driven wave phenomena are supposed to be involved in Q-machine or in 
unipolar/ bipolar ion rich sheath formed around an electrode wall or grid in Double Plasma 
Device (DPD) experiments of plasma sheath driven low frequency instabilities of relaxation 
type [5]. The unstable situation is equally likely to occur on both the sides of the sheath 
structures with plasma ion streamers [12]. 

3. Linear normal acoustic mode analyses 

3.1 Basic governing equations 
The basic set of governing dynamical evolution equations for the linear normal mode 
behavior of fluid acoustic wave consist of electron continuity equation, electron momentum 
equation, ion continuity equation, and ion momentum equation [5-6]. The set is closed by 
coupling the plasma thermal electron dynamics with that of plasma inertial ion dynamics 
through a single Poisson’s equation for electrostatic potential distribution due to localized 
ambipolar effects. Applying Fourier’s wave analysis for linear normal mode behavior of ion 
acoustic wave over the basic set of governing dynamical evolution equations [5-6], the linear 
dispersion relation is derived as follows 
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Ω + = Ω − Ω

Ω
        (1)         

All the notations in the equation (1) are usual and conventional. Here Ω  is the Doppler-

shifted frequency of the ion acoustic wave, aΩ  is the ion acoustic wave frequency in 

laboratory frame of reference, k is the angular wave number of the ion acoustic wave such 

that kλDe is a measure of the acoustic wave dispersion scaling and vte is the electron thermal 

velocity. Now the kinematics of any mode can be analyzed in two different ways: one in lab-

frame and the other, in Doppler-shifted frame of reference. This is to note that the obtained 

dispersion relation differs from those of the other known normal modes of low frequency 

relaxation type of instability, ion plasma oscillations and waves. This is due to the weak but 

finite electron inertial delay effect in the dispersion relation of the wave fluctuations. This is 

mathematically incorporated by a weak inertial perturbation over electron inertial dynamics 

over the leading order solution obtained by virtue of electron fluid equations neglecting 

electron inertial term.  

It is thus obvious from the mathematical construct of equation (1) that the LHS is a non-

resonant term whereas RHS is a resonant term. The RHS gets artificially transformed into a 

resonant term if and only if ik v 0. 0< . Now, it can be inferred that equation (1) represents a 

resonantly unstable situation at Doppler shifted resonance frequency of ak v0.Ω ≈ ≥ Ω , if 

and only if k v0. <0. This means that only the mode counter moving with respect to the 

plasma beam mode gets resonantly unstable. The resonance growth rate for this resonant 

instability [5-6] is found to be of the following form 

 ( ) ( )i
a De

e

m
k k v

m

1
2 2 2

02 1 . .γ λ= Ω + Ω −            (2) 

This is important to add that the resonance condition required by equation (1) dictates the 
propagation direction of the unstable ion acoustic wave (counter moving with respect to 
plasma ion streams) at reduced frequencies. It is clear from equation (2) that there is the 
physical appearance of two distinct classes of eigen mode frequencies of the resonantly 
coupled mode-mode system of linearly growing ion acoustic oscillations in lab-frame: near-
zero frequency (standing mode pattern) and non-zero frequency (propagating mode 
pattern). These two distinct eigen modes are generated by the process of repeated Doppler-
shifting of the ion acoustic wave frequency under the unique mathematical compulsion of 
the hydrodynamic tailoring of the electron fluid density perturbation over ion acoustic time 
scale. The unstable condition decides the resonant acoustic excitation threshold value for the 
onset of the instability in terms of normalized value of the eigen mode frequency of the 
acoustic fluctuations. 

3.2 Graphical analysis 

It is well-known that the graphical method is a more informative, simple and quick tool for 
analyzing the stability behavior of a plasma-beam system even without solving dispersion 
relation. To depict the clear-cut picture of the poles, relation (1) is rewritten as, 

 ( )
( ) ( ) ( )

a
te

De

F k k v
k k v k v

2
2 2

2 22 2 2
0 0

1 1
, .

1 . .λ

 Ω
Ω = = − 

+ Ω Ω + Ω +  
            (3) 
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It is clear from the equation (3) that two poles are possible to exist in Ω -space at 0Ω =  and 

k v0.Ω =  for k v0. 0< . According to graphical method, the beam-plasma system will exhibit 

instability only when the curve of ( )F k,Ω  versus Ω  has multiple singular values in Ω -

space having finite minima in between the two successive singularities, which do not 

intersect with the line ( ) ( )DeF k k2 2, 1 1 λΩ = + . The required condition for minimization of 

( )F k,Ω  in Ω -space can be obtained by equating dF d 0Ω = . Now this condition, when 

applied to equation (3), results into the following equality to derive the value of Ω  where 

dispersion function is supposed to be minimum 

 ( ) ( )a ak v2 2 2
0. 0.Ω Ω + + Ω Ω − Ω =            (4) 

In principle, equation (4) is to be solved to determine the value of Ω . This is obvious to note 

that this equality is satisfied at resonance value of ak v0~ . ~Ω Ω  for k v0. 0< . Now to 

indemnify the complex nature of Ω , the functional value of ( ) ( )DeF k k2 2, 1 1 λΩ > + . This can, 

however, be further simplified to yield the following inequality to determine the threshold 

value for the onset of the inertia-induced instability 

 ( ) ( ) ( )te a Dek v k v k
22 2 2 2 2 2

0. 1 .λΩ − Ω > Ω − +              (5) 

The threshold condition for the instability is satisfied for equality sign at resonance 

frequency ak v0~ . ~Ω Ω  that characterizes the case of a marginal instability. A few typical 

plots of the function ( )F k,Ω  in Ω -space for shorter and longer acoustic wavelengths 

(perturbation scale lengths) are represented in Fig. 1.  

3.3 Numerical analysis 

Numerical techniques for solving polynomials over years have developed to a vast extent 

for solving polynomials even with complex coefficients and complex variables. For the 

present case, the Laguerre's algebraic root-finding method [6] to solve the normalized form 

of polynomial equation has been used. The polynomial ( )P 'Ω  in the normalized form of the 

dispersion relation (1) in ion-beam frame is given below 

 ( )P a a a a a' ' '2 '3 '4
0 1 2 3 4 0.Ω = + Ω + Ω + Ω + Ω =              (6) 

Here all the normalized notations used are usual, generic and defined by 

pi a a pi De te te s i ek k v v c m m' ' ', , 'ω ω λΩ = Ω Ω = Ω = = =  and sM v c0= . The expressions for 

the various coefficients in the polynomial ( )P 'Ω  are defined as follows 

( )( )te aa k k v'2 '2 '2 '2
0 1= − + Ω , 

a1 0= , 

( ) ( )( )tea k M k k v
2 2 2 2

2 '. 1 ' ' '= + + , 

a k M3 2 '.= − , and 
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a4 1= . 

It is found that out of four possible roots of ( )P 'Ω , only two roots are complex and these are 

the complex conjugates as a pair. For all the complex conjugated roots, only the complex 

root with positive imaginary part is useful, since this determines the growth rate of the 

instability. Real and imaginary parts of the corresponding complex roots are then plotted as 

shown in Figs. 2 and 3, respectively. Numerical characterization of the unstable mode of the 

instability clearly depicts the resonant character of the electron inertia-induced resonant 

acoustic instability [5].  

3.4 Evaluation of wave energy 

This is important to evaluate the wave energy in order to have a more complete picture of 

the basic source mechanism of the discussed instability. In presence of the beam, it is 

expected that one of the modes involved, has positive energy and the other has negative 

energy. The dispersion relation (1) can be put in the laboratory frame for a more clear 

identification and characterization of the positive and negative energy modes in the form of 

dispersion function ( )k,ε ω  as follows 

 ( )
( )

pe pi

De te

k
k k v k v

2 2

22 2 2 2

0

1
, 1 1 0.

.

ω ω
ε ω

λ ω

 
= + + − =   − 

            (7) 

The average electric field energy stored in a propagating electrostatic (created by ambipolar 
effect) wave in a medium is given by the following relation [6] 

 ( ) ( ) ( )W k E k k
2

0

1
, , ,

2
ω ω ε δ ω ωε ω

ω

∂
=   ∂

.             (8) 

 

Here 0ε  is the dielectric constant of free space, ( )E k,δ ω  is the electric field amplitude of the 

ion acoustic fluctuations and ( )EW E k
2

1 2 ,δ ω=  is the corresponding counterpart of electric 

energy of the acoustic fluctuations through free space. Applying the equations (7) and (8), 

the following can explicitly be derived 

 
( )

( )
pi

E De te

kW

W k k v k v

22

32 2 2 2

0

2, 2
.

.

ω
ωωε ω ω

ω
ω λ ω
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= = + 

∂ −  
         (9) 

Now, clearly, it is evident that the second term of equation (9) contributes negative energy 
value to the defined wave-plasma system. This occurs as because the sign of this term 

becomes negative for the values of k v0.ω < , which is the case for the reported instability. 

From a few typical plots in Fig.4, one can notice that the total wave energy suffers a sharp 
transition from negative to positive values at resonance frequency point of zero energy 
value. The resonance point lies in the domain of near-zero and non-zero frequencies in lab-
frame. According to conventional definition and understanding, the wave energy 
expression in equation (9) classifies the near-zero frequency mode as the negative energy 
mode. Then immediately the non-zero frequency mode may be classified as the positive 
energy mode. 
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This is important to clarify that the theoretical concept of near-zero frequency mode is an 
outcome of the mathematical construct of weak but finite electron inertial response to the 
ion acoustic wave fluctuations. The blowing up character, as shown in Fig. 4, of the total 
wave energy in opposite directions suggests referring the discussed instability to as an 
'explosive instability' in accordance with the law of conservation of energy. It signifies the 
transonic plasma condition with the resonant mode-mode coupling of the positive and 
negative energy modes. The time average of the hydrodynamic and wave potential energies 
of the considered wave-plasma system over the growth time scale is conserved during the 
energy exchange process between the unstable resonant eigen modes and the main source of 
ion flow dynamics. These two modes are clearly identified from equation (9) as the natural 
resonant modes of the defined plasma system that undergo linear resonant mode-mode 
coupling to produce the defined wave instability.  

3.5 Estimation of quenching time 

Under the cold ion approximation, even the small electrostatic potential will be able to 

distort the ion particle motion and associated trajectories, affecting the driving source flow 

velocity of the resonant instability under consideration. In wave frame, the streaming ion 

energy ( )iE  can be expressed by the following relation 

 i iE m v
k

2

0

1

2

ω 
= − 

 
.      (10) 

For  ( )o sv k c v0~ω>> − , which is a valid case for the considered instability [5], the 

condition for ion orbit distortion becomes of the following form, 

 w iW m n v2
0 0

1

2
≥ .        (11) 

From this condition, the quenching time is estimated under the assumption that the wave 
amplitude grows sufficiently from thermal noise level to physically measurable level such that 

 ( ) t
E iW t W eγ= .           (12) 

Here iW  is the initial energy of the acoustic wave amplitude, which is of the order of the 

thermal fluctuations, i.e., i e DeW T 3~ λ  and is the unnormalized linear growth rate. Using the 

resonance values of sk c v0ω = −  and sk v kc0. ~ω − as derived in [5] for long wavelength case 

of resonant mode, equation (12) for the quenching time τ  with the help of (9) can be 

rewritten as follows 

 ( ) ( )( )e
De De

i De

m M
M n k

m k M

2
1 2 3 2 2

0

1 1
1 ln

2 4 1
τ λ λ

λ

−  
= −  

−  
.   (13) 

For some typical plasma parameters in hydrogen plasma, ( )Den 3
0ln ~ 15 30λ − . For 

Dek ~ 0.3, 0.1, 0.05λ  near resonant M as in Figs. 2 and 3, equation (13) gives 1τ > , i.e., q piτ τ>
. This physically means that the resonant growth time scale is greater than that of the plasma 

ion oscillation time scale. Thus the resonant nature of the instability is observable in the 

present analysis.  

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

88

3.6 Physical consequences 

Wave energy analyses are carried out to depict the graphical appearance of poles (Fig. 1), 
nature of real parts of the roots (Fig. 2), nature of imaginary parts of roots (Fig. 3) and 
positive-negative energy modes (Fig. 4). 
 

  

Fig. 1. Graphical appearance of resonance poles as a variation of the dispersion function 

( )F k,Ω  with normalized Doppler-shifted frequency for dispersion scaling (a) Dek 0.3λ = , (b) 

Dek 0.1λ = , and (c) Dek 0.01λ =  

 

 

Fig. 2. Variation of the real part of the normalized Doppler shifted eigen mode frequency 

( )′Ω  with respect to Mach number ( )M  for different values of 0.30,0.10,0.05Dekλ =      

It is found that the instability arises out of linear resonance mode-mode intermixed coupling 
between the negative and positive energy modes. The total energy of the coupled mode-
mode system comprising of hydrodynamical potential energy and wave kinetic energy, 
however, is in accordance with the law of conservation of energy in the observation time 
scale on the order of ion acoustic wave time scale. Identification and characterization of the 
resonance nature of the said instability through transonic plasma is presented in order to 
explore the acoustic richness in terms of collective waves, oscillations and fluctuations. This 
is an important point to be mentioned here that the same type of instability features are 
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expected to happen in plasma-wall interaction process and sheath-induced instability 
phenomena in other similar situations as well. 
There are different sorts of analytical and numerical tools for studying the linear instabilities 

in a given plasma system. Energy method, based on energy minimization principle and the 

normal mode analysis, based on equilibrium perturbations are the two basic mathematical 

tools for analyzing the stability behavior of the given plasma systems. However, the latter is 

most popular and simple for common use in analyzing the threshold conditions of the 

instabilities and their growth rates. In the normal mode analysis, a linear dispersion relation 

is derived which can be put in the form of a polynomial with real or imaginary coefficients. 

The limitation of the analytical method depends upon the degree of the polynomial.  

Computational technique broadly takes into account two ways of investigating instability. 

First, an unstable mode can be deduced by the derived dispersion relation. The obtained 

polynomial is then solved to delineate the complex roots having concern to the desired 

instability. Second, a more comprehensive computational method involves solving for the 

time dependent solution. Simulation technique used to solve the basic set of equations is 

supposed to give more complete picture of the space and time evolution of the wave 

phenomena. However, there is another very informative and simple method for analyzing 

the derived dispersion relation to predict for the unstable behavior of the plasma system 

under consideration. This is the graphical method in which the dispersion relation is 

graphically represented for different values of resonance characterization parameters. 

Source perturbation scale length ( )Dekλ  and deviation from sonic point ( )M1 −  are the 

characterization parameters for the defined acoustic resonance. 

 

 

Fig. 3. Variation of the normalized growth rate of the electron inertia-induced resonant 

acoustic instability with Mach number for (a) 0.3Dekλ = , (b) 0.1Dekλ =  and (c) 0.05Dekλ =  

showing that transonic plasma is rich in wide range acoustic spectral components and 

hence, an unstable zone 

This is quite natural and interesting to argue that the transonic plasma condition offers a 
unique example where the physical situation of localized hydrodynamic equilibrium of 
quasi-neutral plasma flow dynamics exists. Previous publication reports that the transonic 
plasma layer, assumed to have finite extension, can be considered as a good physical 
situation to study the acoustic instability, wave and turbulence driven by electron inertia-
induced ion acoustic excitation physics. 
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Fig. 4. Explosive nature of the electron inertia-induced ion acoustic wave instability as an 

outcome of an interplay for the linear resonant mode-mode coupling of positive and 

negative energy eigen modes. It shows how the normalized wave energy varies with 

normalized frequency under a set of fixed values of Mand Dekλ  as (a) 0.85, 0.30DeM kλ= = ; 

(b)  0.842, 0.100DeM kλ= = ; and (c) 1.79, 0.01DeM kλ= =  

In the present sections of the chapter, many features about the electron inertia-induced ion 
acoustic wave instability are observed. For example, we physically identify and demonstrate 
the following features of the instability obtained by theoretical and numerical means of 
analysis of the desired dispersion relation: 
1. The transonic plasma layer is an unstable zone of hydrodynamic equilibrium of 

quasineutral plasma gas flow motion, 
2. The instability is an outcome of the linear resonant mode-mode coupling of positive 

and negative energy modes,  
3. The quenching time of the instability is estimated for some typical values of plasma and 

wave parameters as mentioned in the previous section. It is found to moderately exceed 
the ion plasma oscillation time scale, and   

4. Lastly, this indicates that in lab frame observation the unstable mode of ion acoustic 
wave fluctuations at reduced frequencies may look like a purely growing mode. This is 
very likely to occur for almost entire unstable frequency domain of the frequency 
transformed ion acoustic waves.  
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In fact, the electron inertial responses naturally appear only at electron oscillation frequency. 
However, the transonic plasma condition creates a natural physical situation for the same to 
occur even at the ion acoustic wave frequency of the transformed reduced values. The linear 
process of resonant mode-mode coupling produces this and makes the coupled system of 
wave modes unstable. 
We have identified and demonstrated the following features of the instability obtained by 
theoretical and numerical analysis of the dispersion relation: (i) The transonic plasma layer 
is indeed an unstable zone of hydrodynamic equilibrium of quasi-neutral plasma gas flow 
motion. (ii) The instability is an outcome of linear resonant mode-mode coupling of positive 
and negative energy modes. (iii) The normalized values of Doppler-shifted resonant 
frequencies of the unstable ion acoustic wave fluctuations in ion beam frame come out to be 
almost equal to 0.5. (iv) The estimated quenching time of the instability exceeds the ion 
plasma oscillation time scale moderately and hence, (v) In the lab-frame, the unstable modes 
of ion acoustic wave fluctuations at reduced frequencies may look physically like a purely 
growing mode. 
This is further argued that the physical insights as listed above can be useful as theoretical, 
graphical and numerical recipes to (1) formulate and solve the problems of saturation 
mechanisms of the unstable ion acoustic wave fluctuations, (2) formulate and solve the 
problems of the ion acoustic wave turbulence, and (3) design and setup experiments to 
study the basic physics of linear and nonlinear ion acoustic wave activities in unique 
transonic plasma system. These investigations may be useful to improve the existing 
conceptual framework of physical and mathematical methods of two-scale theory of plasma 
sheath research to resolve the long-term mystery of the sheath edge singularity. These, in 
brief, are added to judge the didactic vis-à-vis the scientific qualities of the current research 
work too much specialized in the subject of ion acoustic wave physics. 

3.7 Comments 

The main conclusive comment here is that the graphical method successfully explains the 
unstable behavior of the fluid acoustic mode of the ion acoustic wave fluctuations in drifting 
plasmas with cold ions and hot electrons. A more vivid picture of linear resonant mode-
mode coupling of positive and negative energy waves is obtained. This is important to note 
that simple formulae for wave energy and quenching time calculations [6] are used. This 
calculation further confirms the earlier results of stability analysis of drifting plasmas 
against the acoustic wave perturbations [5]. It is, therefore, reasonable to think of logical 
hypothesis of wave turbulence model approach to solve the sheath edge singularity problem 
[1, 4]. Actually, the local normal mode theory of the discussed instability implies that the 
entire transonic plasma zone should be rich in wide frequency range spectrum of the ion 
acoustic wave fluctuations. This leads to develop the conceptual framework of situational 
definition of the Debye sheath edge to behave as a turbulent zone with finite extension [12]. 
This hypothetical scenario of the transonic plasma condition can be examined by 
appropriate experiments of measuring wide range spectral components of the ion acoustic 
wave fluctuations. 
This is a nontrivial problem to explicitly characterize the turbulent properties of the 
transonic region. The more realistic problem of wave turbulence analysis demands the self-
consistent consideration of flow induced quasi-neutral plasma with inhomogeneity in 
equilibrium plasma background. Similar situations are likely to occur in stellar wind 
plasmas, where, the transonic behavior is brought about by deLaval nozzle mechanism [6-10] 
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of gas flow through a tube of varying cross section. Recent experimental observation [12] in 
double plasma device (DPD) reports an instability even in a condition of symmetric 
bipotential ion-rich sheath case. Its frequency falls within zero frequency range and its 
source is believed to lie in presheath.  
Finally, in a nutshell, it is concluded that the graphical method of analyzing the dispersion 
relation of the inertia-induced instability offers a simple and more informative method of 
practical importance in transonic plasma equilibrium. Moreover, the plasma environment of 
Debye sheath edge locality offers a realistic situation for self-excitation of the ion acoustic 
wave turbulence through resonant ion acoustic wave instability. This is induced by 
hydrodynamic tailoring of the ion acoustic wave-induced electron density fluctuations. Of 
course, no experimental observation of instability in transonic plasma has yet been reported 
to directly compare with the theoretical results. However it cannot be undermined in 
understanding wave turbulence phenomenon of flowing plasmas. This is informative to add 
that the frequency and amplitude transformation of the normal ion acoustic wave into 
unstable ion plasma wave at higher frequency is reported in high intense laser–plasma 
interaction processes [6-7] through the nonlinear ponderomotive action. This leads to the 
formation of soliton, double layers, etc. through the saturation mechanism of strong laser-
plasma interaction processes due to non-zero average value of the spatially varying electric 
field associated with laser pulse. 

4. Nonlinear normal acoustic mode analyses 

4.1 Basic governing equations 

A large amount of literature of theoretical and experimental investigations has been 
produced on the solitary wave propagation in plasmas since the theoretical discovery of ion 
acoustic soliton [4, 11-12, their references]. Varieties of physical situations of drifting ions of 
high energy with [5-12] and without [13-33] electron inertial correction have been 
considered in the ion acoustic wave dynamics. It is shown that the electron inertial motion 
becomes more important than the ion relativistic effect. Such situations exist in Earth's 
magnetosphere, stellar atmosphere and in Van Allen radiation belts [3]. Similar studies have 
been carried out in plasmas with additional ion beam fluid with full electron inertial 
response in motion [12 and references].  
A number of experiments were performed in the unstable condition of beam plasma system 
in laboratory in order to observe soliton amplification [12]. There are many theoretical 
calculations and experiments on linear [7-8] and nonlinear [9-11] wave propagation 
properties of acoustic waves to see their behavior near the transonic point. For an assumed 
transonic region, it has been theoretically shown that the small amplitude acoustic wave 
fluctuations exhibit linear resonant growth of relaxation type under the consideration of 
weak but finite electron inertial delay effect [12-13]. In contrast to earlier claim [3] that the 
complex nature of coefficients in KdV equation prevents the soliton formation, we argue 
that their interpretation seems to be physically inappropriate. Instead, by global phase 
modification technique [12], we show that the usual soliton solution exists (even under the 
unstable condition), but only for infinitely long wavelength source perturbations. 
Otherwise, oscillatory shock-like solutions are more likely to exist. 
Under fluid approximation, the self-consistently closed set of basic dynamical equations 
for transonic plasma system with all usual notations in normalized form is given as 
follows 
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Electron continuity equation: 

 e
e

v
v

t x x
. 0

φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂
, and                      (14) 

Electron momentum equation: 

 e e e e
e

i e

m v v n
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m t x x n x

1
.

φ∂ ∂ ∂ ∂ 
+ = − 

∂ ∂ ∂ ∂ 
.        (15) 

This is to remind the readers that equation (15) is obtained by substituting zero-order 

solution of Boltzmann electron density distribution into the normal electron continuity 

equation.  In fact, in the asymptotic limit of e im m 0→ , electron continuity equation as such 

is redundant as because the left hand side (electron inertial effect) of (15) is ignorable. 

Equation (14) basically offers a scope to introduce the weak but finite role of electron to ion 

inertial mass ratio on the normal mode behavior of acoustic wave.  
Ion continuity equation: 

 ( )i
i i

n
n v

t x
0,

∂ ∂
+ =

∂ ∂
      (16) 

Ion momentum equation: 

 i i
i

v v
v

t x x

φ∂ ∂ ∂
+ = −

∂ ∂ ∂
, and                    (17) 

Poisson equation: 

 e in n
x

2

2

φ∂
= −

∂
.            (18) 

Following form of the derived d-KdV equation obtained from the above equations by the 

standard methodology of reductive perturbation [12] describes the nonlinear ion acoustic 

wave dynamics under transient limit (~soliton transit time scale) in a new space defined by 

the stretched coordinates ( ),ξ τ . This is to mention that ( ) ( )x t e, , γτφ φ ξ τ −=  and 0γτ →  

under the transient time action of the propagating ion acoustic soliton through transonic 

plasma 

 K M K
t x x

3

0 0 03

1

2

φ φ φ
φ γ φ

∂ ∂ ∂
+ + =

∂ ∂ ∂
.           (19) 

Here the notations K0 and M0 termed as complex response coefficients [11-12, 26] and the linear 

resonant growth rate (γ) of the ion acoustic wave with complex Doppler-shifted Mach 

number D Dr DiM M iM= +  and lab-frame Mach number r iM M iM= +  in transonic 

equilibrium appearing in equation (19) are as follows, 

K A B
1 22 2

0
 = +   where, 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

94

( )
r Dr Dr i

m Dr i

M M M M
A

M M

3 2

32 2

3

ε

 
− = +

 + 

, and 

( )
i i Dr i

m Dr i

M M M M
B

M M

3 2

32 2

3

ε

 
− = +

 + 

, 

M C D
1 22 2

0
 = +  where, 

( ){ }
( )

( )Dr i Dr i r i r i

mDr i

M M M M M M M M
C

M M

22 2 2 2 22 2 2 2

4 22 2

3 4 41
1

2 ε

 − − − − 
= − − 

+ 
 

, and  

( )
( )

( )Dr i Dr i r i r i

mDr i

M M M M M M M M
D

M M

2 2 2 2

4 22 2

12 41

2 ε

 − − 
= − + 

+  

, 

( )i
De i

e

m
k v

m

1 2

02 1γ λ
 

= − 
 

. 

The notations are usual and generic as discussed earlier [12]. In the system, plasma ions are 
self consistently drifting or streaming through a negative neutralizing background of hot 
electrons having relatively zero inertia. The time response of the electron fluid here is 
normally ignored. As a result, the unique role of weak but finite electron inertia to 
destabilize the plasma ion sound wave in transonic plasma equilibrium even within fluid 
model approach of normal mode description is masked.  

4.2 Physical consequences 

Now equation (19) after being transformed into an equivalent stationary ODE form by the 

Galilean transformations is numerically solved as an initial value problem. Some very small 

simultaneous values of φ , φ ξ∂ ∂  and 2 2φ ξ∂ ∂ are required for the numerical programme 

to proceed. A few numerical plots for the desired nonlinear evolutions are shown in Figs. 5-

6. This is to note that the calculated amplitudes (as shown in Figs. 5a-6a) are the solutions of 

the present d-KdV equation (19) with bounded and unbounded phase potraits (as shown in 

Figs. 5b-6b). Now, the actual amplitudes of the resulting solutions can be deduced by 

multiplying the numerically obtained values with ( )DEk
2 2~ 10ε λ −≈ [12]. In principle, the 

parameter ε  is an arbitrary smallness parameter proportional to the dispersion strength or 

the amplitude of the weakly dispersive and weakly nonlinear plasma wave. 
The unique motivation here is to characterize the possible nonlinear normal mode structure 
of ion acoustic fluctuations under unstable condition of the ion drifts [8-9,12]. By this very 
specific example, we show that the complex nature of the coefficients of the derived KdV 
equation in the unstable zone of transonic plasma doesn't prevent the existence of localized 
nonlinear solutions including usual soliton solution, too. The concept of global phase 
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modification technique (DPMT) [11-12, 26] results into a d-KdV equation [8-9, 12] with 
variable nonlinear and dispersion coefficients. 
Two distinct classes of solutions are obtained: soliton and oscillatory shock-like structures. 

Amplification and damping of the driven KdV soliton over the usual KdV soliton is noted 

for extremely large wavelength (dc) acoustic driving in source term as shown in Figs. 5-6. 

The amplification near resonance is associated with considerable reduction in nonlinear 

coefficient than unity as confirmed by numerical calculation. In other cases of shorter 

acoustic driving in source term as shown in Figs. 5-6, nonlinear solutions of oscillatory 

shock-like nature are obtained depending on the small deviation from resonant values. It is 

clearly seen that the peaks of oscillatory shock-like solutions are of either sinusoidal or non-

sinusoidal nature with continuous elevation of the initial values of the successive peaks 

beyond the main nonlinear acoustic peak. 

Most of the experimental results in Double Plasma Device (DPD) are reported to show that 

the obtained theoretical results may have practical relevance to understand the basic physics 

of ion acoustic wave activities in the transonic region [12] as in Fig. 7. The experiment is 

performed in a DPD of 90 cm in length and 50 cm in diameter equipped with multi-dipole 

magnets for surface plasma confinement [12]. The chamber is divided into source and target 

by a mesh grid of 85% transparency kept electrically floating. It is evacuated down to a 

pressure of ( ) 55 6 10−− ×  Pa with a turbomolecular pump backed by a rotary pump. Ar-gas 

is bled into the system at a pressure ( ) 23 5 10−− × Pa under continuous pumping condition. 

The source and target plasmas are produced by dc discharge between the tungsten filament 

of 0.1 mm diameter and magnetic cages. 
 

 
(a)                                                                      (b) 

Fig. 5. Profile of (a) ion acoustic potential ( )φ  with normalized space variable ( )ξ , and (b) 

phase space geometry of ion acoustic potential in a phase space described by φ  and ( )ξ
φ  

with 82.5 10Dekλ −= ×  (fixed) for Case (1): 71.0 10 ,δ −= ×  Case (2): 72.5 10 ,δ −= ×  Case (3): 
75.0 10 ,δ −= ×  and Case (4): 77.5 10δ −= ×  

The plasma parameters are measured with the help of a plane Langmuir probe of 5 mm 

diameter and Retarding Potential Analyzer (RPA) of 2.2 cm in diameter. The probe and the 

analyzer are movable axially by a motor driving system so as to take data at any desired 
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position. The plasma parameters are: electron density n cm8 9 3
0 10 10= − , electron 

temperature eT eV1.0 1.5= −  and ion temperature iT eV0.1= . An ion-acoustic wave is 

excited with a positive ramp voltage of which the rise time is controllable and is applied to 

the source anode of the system. Propagating signals are detected by an axially movable 

Langmuir probe which is biased to V4+  with respect to the plasma potential in order to 

detect the perturbation in the electron current saturation region. The current is then 

converted into voltage by a resistance of 100Ω  and the resultant signals are fed to the 

oscilloscope. The probe surface is repeatedly cleaned with ion bombardment by applying 

V100−  to it for a short time scale. 
 

 
(a)                                                                      (b) 

Fig. 6. Same as Fig. 5 but with 11.0 10Dekλ −= ×  (fixed) for Case (1): 51.0 10 ,δ −= ×  Case (2): 
52.0 10 ,δ −= ×  Case (3): 53.0 10 ,δ −= ×  and Case (4): 55.0 10δ −= ×  

. 

 

Fig. 7. Experimental profiles of variation of plasma density perturbation ( )nδ  against time 

( )t  at different position of the probe from the grid is shown. Along the x-axis, each division 

represents 10 sµ  and along the y-axis, the density perturbation scale is given as 0.09en nδ =
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It is also seen that the value of DrM1δ = −  where resonance occurs remains invariant to 

spectral variation in source term even by orders of 1 101.0 10 1.0 10− −× − × . The nonlinear and 

dispersive coefficients exhibit very sensitive role on even slight variation of δ  from its 

resonance. It is noted that as the value of 0δ = , the usual KdV soliton is recovered, 

irrespective of any wave number value in the source term. The source term plays an 

effective role only when finite Dekλ  and δ -values are assigned simultaneously 

4.3 Comments 
As per experimental observations, oscillatory shocks are reported to emerge from the 
transonic zone in the target plasma as shown in Fig. 7. One can qualitatively argue that as 
soon as the solitary wave passes through the unstable transonic zone, it may experience the 
transient phase modifications leading thereby to the formation of oscillatory shock. The 
observed damping of the oscillatory shock may be correlated to the non-resonant type of 
dissipation through phase incoherence among ion acoustic spectral components of the usual 
solitary wave. It seems to be more plausible to argue that the input energy to the usual 
soliton due to transonic plasma equilibrium may be shared among different spectral 
components through adiabatic energy exchange processes. This is concluded here that the 
complex coefficients of the KdV equation should, in principle, not become the criterion for 
the non-existence of localized nonlinear solutions including usual solilton, too. But the usual 
soliton solution exists only for infinitely long wavelength source perturbation. This 
conclusion is derived subject to the validity condition of our arguments of global temporal 
phase modification of usual soliton amplitude under unstable condition of the plasma 
medium. The unstable condition of the medium may cause structural deformation of the 
non-driven KdV solution. Such deformations may result into sinusoidal (linear) or non-
sinusoidal (nonlinear) peaks of oscillatory shock-like solution depending on the wavelength 
of the source perturbations [8-9, 12].  
Applying the wave packet model for a moving soliton leaving behind an acoustic tail of 
dispersive waves known as precursor or acoustic wind (in soliton frame), the asymmetry 
can be associated with elevation of the bottom potential by a finite dc value superposed with 
periodic repetition of linear or nonlinear peaks. The amplification or suppression of a single 
soliton can be possible only for infinitely long wavelength (dc) source. For shorter 
wavelength source driving, the transition from usual soliton solution to oscillatory shock-
like solutions is more likely to occur. It is, in brief, concluded that the present mathematical 
study of d-KdV equation offers a significant contribution of analytical supports to our 
numerical prediction of structural transformation of the traveling nonlinear ion acoustic waves 
in transonic plasma equilibrium of desired quality. It clearly shows that the actual solution of 
d-KdV equation is a resultant of linear mixing (superposition) of soliton and shock both.   
Dominating features of the individual nonlinear modes is decided by an appropriate choice 
of the specific values of unstable wave number (or wavelength) for a given value of the ion 
flow Mach number. It is obvious to note that in zero growth limit of d-KdV equation, the 
shock-term disappears and only soliton remains. This limit is correlated with dc range of the 
chosen unstable wave number of quite weaker dispersion strength. As the dispersion 
strength becomes significant to influence the original soliton strength of weak nonlineariy 
and weak dispersion in the defined transonic plasma of finite extension, structural 
modification of the usual KdV soliton profile occurs.                       
We further argue that the linear and nonlinear normal mode behaviors of the ion acoustic 
waves in transonic plasma condition differ qualitatively from those derived for static and 
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dynamic equilibriums without electron inertial correction. The finite but weak hydrodynamic 
tailoring of the electron fluid motion on ion acoustic space and time scales brings about this 
difference. It is then argued that the plasma flows in transonic equilibrium should exhibit rich 
spectrum of linear and nonlinear ion acoustic waves and oscillations. Of course, under 
Vlasov model the hot electrons with streaming velocity comparable to the phase speed of 
the ion sound wave may destabilize the ion sound mode through wave-particle resonance 
effect [8 and references] too. However, our excitation mechanism of ion sound wave differs 
from the other known mechanisms [8] to excite the same ion sound wave on many grounds 
[8]. This kind of theoretical scenario of transonic plasmas offers a unique scope of acoustic 
spectroscopy to describe the internal state of transonic equilibrium of plasma flows [28].  
These calculations have potential applications [26] extensively to understand plasma 
acoustic dynamics in colloidal plasmas too, but under transonic equilibrium configuration. 
A generalized statement thereby is reported that all possible sound modes in multi-species 
colloidal plasmas with drift motions (of inertial ionic species) could be destabilized by the 
inertial delay effect of the corresponding plasma thermal species that carry out thermal 
screening of acoustic potential developed due to respective inertial ionic species. Of course, 
threshold values may differ depending on the choice of the plasma sound mode under 
consideration. In technological application point of view, one may argue that the proposed 
theoretical model for inertia-induced acoustic instability mechanism may be utilized to 
make a plasma-based micro device for acoustic amplifier [26]. The amplified acoustic signals 
(developed due to respective inertial ionic species) from the amplifier could be detected, 
received and analyzed for the diagnosis and characterization of hydrodynamic flow of 
plasmas with embedded inertial dust contaminations. These analyses may have potential 
applications in different ion acoustic wave turbulence-related situations like aerodynamics, 
solar wind and space plasmas, fusion plasmas, industrial plasmas and plasma flows in 
astrophysical context, etc. 

5. Astrophysical normal acoustics 

A plasma-based Gravito-Electorstatic Sheath (GES) model is proposed to discuss the 
fundamental issues of the solar interior plasma (SIP) and solar wind plasma (SWP). Basic 
concepts of plasma-wall interaction physics are invoked. Here the wall is defined by a 
continuous variation of gravity associated with the SIP mass. The neutral gas approximation 
of the inertially confined SIP is relaxed, and as such the scope of quasi-neutral plasma 
sheath formation is allowed to arise near the self-consistently defined solar surface 
boundary (SSB). Analytical and numerical results are obtained to define the SSB and discuss 
the physics of the surface properties of the Sun, and hence, those of the SWP. 

5.1 Physical model description 

The SIP system can be idealized as a self-gravitationally bounded quasi-neutral plasma with 
a spherically symmetric surface boundary of nonrigid and nonphysical nature. The self-
gravitational potential barrier of the solar plasma mass distribution acts as an enclosure to 
confine this quasi-neutral plasma. An estimated typical value ~10-20 of the ratio of the solar 
plasma Debye length and Jeans length of the total solar mass justifies the quasi-neutral 
behavior of the solar plasma on both the bounded and unbounded scales. Here the zeroth-
order boundary surface can be defined by the exact hydrostatic condition of gravito-
electrostatic force balancing of the enclosed plasma mass at some arbitrary radial position 
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from the center of the mean solar gravitational mass. With this much background in mind, 
let us now formulate the problem of the physical and mathematical descriptions GES 
formation around the SSB. For simplicity, we consider spherical symmetry of the inertially 
confined SIP mass, which helps to reduce the three dimensional problem of describing the 
GES into a simplified one dimensional problem in the radial direction. Thus, only a single 
radial degree of freedom is required for description of the dynamical behavior of the SWP 
under the assumed spherically symmetric self-gravitating solar plasma mass distribution. 

The idea of the GES formation can be appreciated with quantitative estimates of the gravito-

thermal coupling constants for the SIP electrons and hydrogen ions. Henceforth, “ions” and 

“hydrogen ions” will be used in the sense of the same ionic species. These parameters [10] 

can be defined and estimated as follows: The gravitothermal coupling constant for electrons 

can be estimated as e B e ek T m g R 10Θ ΘΓ = ≈ , for a mean electron temperature of eT 5~ 10  K 

and as e 800Γ ≈  for mean eT 610=  K. The notation Bk  (=1.3806×10-23 JK-1) denotes the 

Boltzmann constant. Similarly, the gravito-thermal coupling constant for ions can be 

estimated as ( )i i e e i eT m T m 1Γ = Γ <<  for mean eT 5~ 10  K, and i 1Γ ≈  for mean eT K6~ 10 . 

Here g GM R2
Θ Θ Θ=  denotes the value of the solar surface gravity. The values of the other 

constant quantities are taken to be G 86.6726 10−= ×  dyn cm2 g -2, M 331.90 10Θ = ×  g, and 

R 106.97 10Θ = ×  cm.  

These estimates are based on the condition of an isothermal SIP, where Te and Ti respectively 

denote the electron and ion temperatures. It is now easy to see that the electrons can very 

well overcome the gravitational potential barrier at the SSB in the standard solar model, 

whereas the ions cannot. This is the reason why a surface polarization-induced space charge 

(electrostatic) field is likely to appear, due to thermal leakage of the electrons from the SSB 

in the radially outward direction. Moreover, the neutral gas approximation for the SIP may 

not be a good one for describing the properties of the SSB. Similar realizations have already 

occurred to previous authors [5, 9, 11, 14] for the SWP as well. We take the SIP to be an ideal 

nonisothermal plasma gas with relatively cold ions. The mean electron temperature eT 610>  

K for the SIP emerges as a more suitable choice for our theoretical consideration. 

According to our GES-model analyses, the GES divides into two scales: one bounded, and 

the other unbounded. The former includes the steady state equilibrium description of the 

SIP dynamics bounded by the solar self-gravity. This extends from the solar center to the 

self-consistently defined and specified SSB. The unbounded scale encompasses the SWP 

dynamics extending from the SSB to infinity. The SIP electrons can easily escape from the 

defined SSB. On the other hand, the SIP ions cannot cross the gravitational potential barrier 

of the solar mass on their thermal energy alone. However, surface leakage of the SIP 

electrons is bound to produce an electrostatic field by virtue of surface charge polarization. 

This, in turn, provides an additional source to act on the SIP ions to further energize and 

encourage them cross over the solar self-gravitational potential barrier.  

5.2 Basic governing equations 

In order to describe the plasma-based GES physics of our model system, we adopt a 

collisionless unmagnetized plasma fluid for simplicity in mathematical development to 

obtain some physical insight into the solar wind physics. The role of magnetic field is also 

ignored (just for mathematical simplicity) in discussing the collisionless SIP and SWP 

www.intechopen.com



  
Acoustic Waves – From Microdevices to Helioseismology 

 

100 

dynamics. Applying the spherical capacitor charging model [3], the coulomb charge on the 

SSB comes out to be SSBQ C~ 120 . The mean rotational frequency of the SSB about the centre 

of the SIP system is is determined to be SSBf Hz12~ 1.59 10−×  [42]. Applying the electrical 

model [42] of the Sun, the mean value of the strength of the solar magnetic field at the SSB in 

our model analysis is estimated as SSB SSB SSBB Q f T2 114 ~ 7.53 10π −= × , which is negligibly 

small for producing any significant effects on the dynamics of the solar plasma  particles. 

Thus the effects of the magnetic field are not realized by the solar plasma particles due to the 

weak Lorentz force, which is now estimated to be ( )LF e v B N333.61 10−= × ≈ ×  corresponding 

to a subsonic flow speed v cm s 1~ 3.00 −  with the input data available [2, 42] with us and 

hence, neglected. Therefore our unmagnetized plasma approximation is well justified in our 

model configuration. In addition, the effects of solar rotation, viscosity, non-thermal energy. 

For further simplification, the electrons are assumed to obey a Maxwellian velocity 

distribution. Although these approximations may not be realistic, but they may be 

considered working hypotheses to begin with an ideal situation. Deviations indeed exist 

from a Maxwellian velocity distribution. We however use it as a working hypothesis for our 

model considerations. As a result, the usual form of the Boltzmann density distribution for 

plasma thermal electrons with all usual notations is given as 

 eN e .θ=             (20) 

Here e eN n n0=  denotes the normalized electron density. The generic notation ee Tθ φ=  

denotes the normalized value of the plasma potential associated with the GES on the 

bounded scale and with the SWP on unbounded scale. The general notation en  stands for 

the nonnormalized electron density and in m0 ρΘ= defines the average bulk density of the 

equilibrium SIP. The notation 1.43ρΘ =  g cm-3 stands for the average but constant solar 

plasma mass density and im 241.67 10−= ×  g for the ionic (protonic) mass. Again e  

represents the electronic charge unit and φ , the nonnormalized plasma potential associated 

with both the GES and SWP.  
The hydrogen ions are described by their full inertial response dynamics. This includes the 
ion momentum equation as well as the ion continuity equation. The first describes the 
change in ion momentum under the action of central gravito-electrostatic fields of potential 
gradient and forces induced by thermal gas pressure gradients. The latter equation is 
considered a gas dynamic analog of plasma flowing through a spherical chamber of radially 
varying surface area. In normalized forms, the ion momentum equation is  

 i
T

i

dM d dN d
M

d d N d d

1θ η
ε

ξ ξ ξ ξ
= − − − .               (21) 

Here the minus sign in the gravitational potential term indicates the radially inward 
direction of the solar self-gravity. The deviation from the conventional neutral gas treatment 
of the SIP is introduced through the electric space charge-induced force (first term on right-
hand side) effect. The normalized expression for conservation of ion flux density is  

 i

i

dN dM

N d M d

1 1 2
0.

ξ ξ ξ
+ + =               (22)  
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The normalizations are defined as follows:  

e

e

T
,

φ
θ =  

sC 2
,

ψ
η =  e

e

n
N

n0

,=  i
i

n
N

n0

,=   

i

s

v
M

c
,=  

J

r
,ξ

λ
=  s

J

J

c
,λ

ω
=  e

s

i

T
c

m

1 2

,
 

=  
 

 

( )J G
1 2

4 ,ω πρΘ= i
T

e

T

T
.ε =  

The notations φ  and ψ  respectively stand for the dimensional (unnormalized) values of the 

plasma electrostatic potential and the self-solar gravitational potential as variables 

associated with the GES. The dimensional values of the electron and ion population density 

variables are respectively denoted by en  and in . Likewise, the dimensional ion fluid 

velocity variable is represented by the symbol iv . The notation η  stands for the normalized 

variable of the self-solar gravitation potential. The notation iN denotes the normalized 

value of the ion particle population density variable. Notation M  stands for the ion flow 

Mach number.  

The notations r  and ξ  stand for the nonnormalized and normalized radial distance 

respectively from the heliocenter in spherical co-ordinates. The other notations J ,λ  sc  and 

Jω  defined as above stand for the Jeans length, sound speed and Jeans frequency 

respectively. Finally, the notation Tε  as defined above stands for the ratio of ion to electron 

temperature.  The ion flux density conservation (eq. 22) contains a term that includes the 

effect of geometry on the ion flow dynamics of the SIP mass, self-gravitationally confined in 

a spherical region, whose size is to be determined from our own model calculations. 

Equations (21) and (22) can be combined to yield a single expression representing the well-

known steady state hydrodynamic flow, 

 ( )T T

dM d d
M

M d d d
2 1 2

.
θ η

ε ε
ξ ξ ξ ξ

− = − + −            (23)                

There is an obvious difference in the above equation from the corresponding momentum 
equation under the neutral gas approximation for the SIP. The difference appears, as 
discussed above, in the form of a space charge effect originating from the Coulomb force on 
a collective scale (first term on the right-hand side of eq. (21)). 
The gravito-electrostatic Poisson equations complement the steady dynamical equation (23) 
for a complete description of the gravito-electrostatic sheath structure, which is formed 
inside the non-rigid SSB. This is important to emphasize that in the case of a real physical 
boundary, the plasma sheath is always formed both inside and outside the boundary 
surface in its close vicinity [12]. The normalized forms of the gravitational and electrostatic 
Poisson equations for the SWP description are respectively given by  

 i

d d
N

d d

2

2

2η η

ξ ξ ξ
+ = , and         (24) 
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 De
e i

J

d d
N N

d d

2
2

2

2λ θ θ

λ ξ ξ ξ

   
+ = −       

.               (25)  

Here ( )De eT n e
1 22

04λ π=  denotes the plasma electron Debye length of the defined SIP 

system. The other quantities are as defined above as usual. Equations (21)–(25) constitute a 

completely closed set of basic governing equations with which to discuss the basic physics 

of the GES-potential distribution on the bounded scale. Of course, the discussion also 

includes the associated ambipolar radial flow variation of the SIP towards an unknown SSB 

which we have to determine self-consistently in this problem with GES-based theory. For a 

typical value eT 610=  K, one can estimate that De J
2010λ λ −≈  which implies that the Debye 

length is quite a bit smaller than the Jeans scale length of the solar plasma mass. Thus, on 

the typical gravitational scale length of the inertially bounded plasma, the limit De J 0λ λ →  

represents a realistic (physical) approximation. By virtue of this limiting condition, the 

entire SIP extending up to the solar boundary and beyond obeys the plasma approximation. 

Thus, the quasi-neutrality condition as given below holds good 

 e iN N N e .θ= = =             (26) 

This is to note that equation (26) does not mean that the plasma ions are Boltzmannian in 
thermal character, but inertial species. Equation (26) can be differentiated once in space and 
further rewritten as,  

 
dN d

N d d

1
.

θ

ξ ξ
=          (27) 

By virtue of the plasma approximation, one can justify that the GES of the SIP origin should 
behave as a quasi-neutral space charge sheath on the Jeans scale size order. The formation 
mechanism of the defined GES, however, is the same as in the case of plasma-wall 
interaction process in laboratory confined plasmas. From equations (26)-(27), it is clear that 
for the electrostatic potential and its gradient being negative, causes the exponential 
decrease of the plasma density. Finally, the reduced form of the basic set of autonomous 
closed system of coupled nonlinear dynamical evolution equations under quasi-neutral 
plasma approximation is enlisted as follows 

  ( )T T

dM d d
M

M d d d
2 1 2

,
θ η

ε ε
ξ ξ ξ ξ

− = − + −         (28) 

 
d dM

d M d

1 2
0,

θ

ξ ξ ξ
+ + =  and       (29) 

 
d d

e
d d

2

2

2
.θη η

ξ ξ ξ
+ =              (30)     

This set of differential evolution equations constitutes a closed dynamical system of 

governing hydrodynamic equations that will be used to determine the existence of a 

bounded GES structure on the order of the Jeans scale length ( )Jλ  in our GES-model of the 
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subsonic origin of the SWP of current interest. Thus the solar parameters  ( )M ,ξ  ( )sg ξ  and 

( )θ ξ  representing the equilibrium Mach number, solar self-gravity and electrostatic 

potential, respectively, will characterize the gravito-electrostatic acoustics in our approach. 

5.3 Theoretical analysis of solar surface boundary 
5.3.1 Analytical calculations 

We first wish to specify the overall condition for the existence of the SSB. Such existence 

demands the possibility of a self-consistent bounded solution for the solar self-gravity. The 

boundary will correspond to a maximum value of the solar self-gravity at some radial 

distance from the heliocenter. This defines a self-consistent location of the SSB. Before we 

proceed further, let us argue that the radially outward pulling bulk force effect of the GES-

associated potential term in equation (28) demands a negative electrostatic potential 

gradient, that is, d d 0θ ξ < . This makes some physical sense because the ion fluid has to 

overcome the gravitational barrier to create a global-scale flow of the SIP in a quasi-

hydrostatic way.  

Now, if we invoke the concept of exact hydrostatic formation under gravito-electrostatic 

force balancing ( )d d d dθ ξ η ξ≈ , the surface potential can be solved to get θ θ η ηΘ Θ− ≈ − . 

Here the unknown boundary values of θ θΘ= , η ηΘ=  and SSBM M=  are to be self-

consistently specified numerically. The notation ( )SSBM  stands for the Mach value 

associated with the SIP flow at the SSB. Now, by the exact hydrostatic equilibrium condition 

in the set of equations (28)-(30), one can get the following set of equations for the SSB 

description: 

 ( )T T

dM
M

M d
2 1 2

ε ε
ξ ξ

− = ,         (31) 

 
d dM

d M d

1 2
0

η

ξ ξ ξ
− + + = , and            (32) 

 
d d

e
d d

2

2

2 θη η

ξ ξ ξ
+ = .  (33)  

For purpose of the GES analysis, we define the solar self-gravitational acceleration as 

sg d dη ξ= . Equation (34) thus reads 

 s
s

dg
g e

d

2 θ

ξ ξ
+ = .          (34)  

Finally, the SIP and hence, the SSB are described and specified in terms of the relevant solar 

plasma parameters  ( )M ,ξ  ( )sg ξ  and ( )θ ξ  representing respectively the equilibrium 

Mach number, solar self-gravity and electrostatic potential as a coupled dynamical system 

of the closed set of equations recast as the following 
Solar self-gravity equation: 

 s
s

dg
g e

d

2
,θ

ξ ξ
+ =                      (34a)   
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Ion continuity equation: 

 
d dM

d M d

1 2
0,

θ

ξ ξ ξ
+ + =  and           (34b) 

Ion momentum equation: 

 ( ) s

dM
M g

M d
2 1 2

,α α
ξ ξ

− = −            (34c)  

where ( )T i eT T1 1α = +∈ = + , eT  is the electron temperature and iT  is the inertial ion 

temperature for the bounded solar plasma on the SIP-scale as already mentioned. 

Let us now denote the maximum value ( )gΘ  of solar gravity at some radial position ξ ξΘ=

where θ θΘ=  and apply the necessary condition for the maximization of sg  at a spatial 

coordinate ξ ξΘ= . This condition ( )sdg d 0
ξ ξ

ξ
Θ=

=  when used in equation (34) yields 

g e2 θξ Θ−
Θ Θ= . However, it is not sufficient to justify the occurrence of the maximum value of 

sg  until and unless the second derivative of sg  is shown to have negative value. To derive 

the sufficient condition for the maximum value of sg  at ξ ξΘ= , let us once spatially 

differentiate equation (34) to yield 

 s s
s

d g dg d
g e

d d d

2

2 2

2 2
.θ θ

ξ ξ ξ ξ ξ
− + =           (35) 

Now the condition for the maximization of sg  at the location ξ ξΘ=  can be discussed by 

considering d d 0θ ξ <  in equation (35) under the exact hydrostatic equilibrium 

approximation ( )d d d d gθ ξ η ξ Θ≈ =  near the solar surface to yield the following 

inequality 

 sd g
g e g g e

d

2

2 2 2

2 2
0.θ θ

ξ ξ
ξ ξ ξ

Θ Θ

Θ

Θ Θ Θ

Θ Θ=

 
= − = − < 

 
  (36) 

From these analytical arguments one can infer that the maximization of gs indeed occurs 

at some arbitrary radial position that satisfies the inequality: e 22 ( 2.33)θξ Θ−
Θ > =  for 

~ 1θΘ −  (Figs. 8b, 9b, and 10b).  Numerically the location of the SSB is found to lie at 

~ 3.5ξΘ  that matches with g e2 θξ Θ−
Θ Θ=  for 1.07θΘ =  and g 0.6Θ = . It satisfies the 

analytically derived inequality (36) too. Now the other two equations (32)-(33) can be 

simultaneously satisfied in the SSB only for a subsonic solar plasma ion flow speed if 

Mach number gradient acquires some appropriate negative minimum near zero 

( )( )M dM d 6~ ~ 10ξ − .  

It is indeed seen numerically that near the maximum solar self-gravity of the SIP mass, the 

first and third terms in equation (32) are almost equal and hence the Mach number gradient 

term, which is negative in the close vicinity of the SSB, should be smaller than the other two 

terms so as to satisfy equations (31) and (32), simultaneously. Actually, the three equations 

(31)-(32) and (34) are solved numerically to describe the SSB of the maximum self-

gravitational potential barrier properly where sg  associated with the self SIP mass is 

maximized. 
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5.3.2 Numerical calculations 

Determination of the autonomous set of the initial values of the defined physical variables is 

a prerequisite to solve the nonlinear dynamical evolution equations (34a)-(34c) in general as 

an initial value problem. The initial values of the physical variables like ( ) ( )sM g,ξ ξ  and 

( )θ ξ  are defined inside the solar interior and are determined on the basis of extreme 

condition of the nonlinear stability analysis [4]. The self-consistent choice of the initial values 

is obtained by putting i

i
dM d e 2θ

ξ
ξ = − , 

i
sdg d 0

ξ
ξ =  and 

i
d d 0

ξ
θ ξ =  in these three 

equations (34a)-(34c). But the realistic SWP model demands that 
i

d d 0.
ξ

θ ξ ≠  Finally, we 

determine the expressions for a physically valid set of the initial values of the given physical 

variables as follows,  

 i
i iM e 21

2
θξ=             (37) 

 i
si ig e

1

2
θξ=              (38) 

This is to note that the initial values of iθ  and iξ  are chosen arbitrarily. As discussed later, 

we find that the SSB acquires a negative potential bias ( s ~ 1θ − ) of about -1 kV. It also 

acquires the maximum value of solar interior gravity ( g ~0.6Θ ) and minimum value of non-

zero SIP flow speed ( SSBM 7~ 10− ) at the SSB. The value of the electrostatic potential gradient 

at the surface comes out to be ~ –0.6.  This means that the strength of the GES-associated 

solar surface gravity and electrostatic potential gradient is almost equal. As a result the SSB 

is defined by some constant values of the physical variables ( sg M, ,θ ). The SSB values of 

these parameters are determined through spatial evolution of the coupled system of 

equations (34a)-(34c) from the given initial values (37)-(38) inside the SIP zone. 

We have used the well-known fourth-order Runge-Kutta method (RK 4) for numerical 

solutions of equations (34a)-(34c). By numerical analysis (Figs 8-11), we find that the solar 

radius is equal to thrice of the Jeans length ( )Jλ  for mean solar mass density 

( )g cm 31.41 .ρ −
Θ = . From this observation one can easily estimate that j R /3.5λ Θ= . Now 

comparing our own theoretical value of the solar mass self-gravity with that of the standard 

value, we arrive at the following relationship between the solar plasma sound speed ( )sc  

and the Jeans length ( )Jλ   

 ( )s Jc2 40.6 2.74 10λ = × cm/sec2.                   (39) 

By substituting the value of the Jeans length expressed in terms of the solar radius, one can 

determine and specify the mean value of the electron temperature, which is eT ~ 107 K. The 

sound speed in the SIP under the cold ion model approximation is thus obtained as 

sc 7~ 3 10×  cm s-1. Note that the SWP speed at 1 AU is fixed by the sound speed of the SWP 

medium, which is determined and specified by the requirement that a transonic transition 

solution occurs on the unbounded scale of the SWP dynamics description.  

The gravito-acoustic coupling coefficient could be estimated as g a i em g R T ~ 2.0− Θ ΘΓ = . In 

absence of the gravitational force, the bulk SIP ion fluid will acquire the flow speed 

corresponding to M ~ 1.41  for a negative potential drop of the order of ( )eT e−  over a 
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distance equal to that of the solar radius. If one estimates the value of gravito-acoustic 

coupling coefficient at this velocity defined by M ~ 1.41 , it comes out to be unity. Thus the 

quasi-hydrostatic type of equilibrium gravitational surface confinement of the SIP is 

ensured.  The GES-potential induced outward flow of the SIP is also ensured. Due to 

comparable strength of the solar surface gravitational effect of deceleration, the net SIP ion 

fluid flow is highly suppressed to some minimum value (~1.0-3.0 cm/sec) corresponding to 

M 7~ 10−  at the SSB.  
An interesting point to note here is that near the defined SSB, the electrostatic potential 
gradient terminates into an almost linear type of profile. The value of its gradient value will 
provide an estimate of the second order derivative’s contribution into the electrostatic 
potential which measures the level of local charge imbalance near the solar surface. From 
our computational plots (Figs. 8b, 9b and 10b), this local charge imbalance comes out to be 
of the  order –0.17, which is equivalent to 17% ion excess charge distributed over a region of 
size on the order of the plasma Debye sheath scale length. However, the same level of the 
electrostatic local charge imbalance on the Jeans scale length does not require the inclusion 
of the role of the Poisson term for the evolution of the electrostatic potential’s profile under 
the GES-model. Hence, in this sense the GES is practically equivalent to a quasi-neutral 
plasma sheath with its potential profile tailored and shaped by the potential barrier of the 
self-gravity of the SIP mass distribution. 

5.3.3 Properties of solar surface boundary  

Table I lists the defined initial values of the physical variables ( sg , θ , M )  as already 

discussed and their corresponding boundary values numerically obtained for the 

description of the desired SSB. The initial values of sg , θ , and M  are associated with the 

normalized mean SIP mass density, enclosed within a tiny spherical globule having 

normalized radius equal to an arbitrarily chosen value of iξ . 
 

Parameter At the Initial 

Radial Point ( )iξ  

At the Solar Surface 

Boundary ( )ξΘ  

Initial Values 

Potential θ  d

d
0

θ

ξ
=  

d

d
~ 0.62

θ

ξ
− , ~ 1.00θΘ −  iθ , arbitrarily chosen  

Gravity sg  sdg

d
0

ξ
=  sdg

d
0

ξ
= , g ~ 0.60Θ  i

si ig e
1

2
θξ= , derived 

Mach 

number M  
i

dM
e

d
2θ

ξ
= −  

dM

d
0

ξ
= , SWPM 7~ 10−  i

i iM e 21

2
θξ= , derived 

Table 1. Initial and Boundary Values of Relevant Solar Parameters 

From the numerical plots shown in Figs. 8-10, we find that the minimum Mach number 

( )SSBM  at the specifically defined SSB comes out to be of order 10-7. For this value of Mach 

number, equation (31) can be simplified to show that near the boundary, 

dM d M 83 10 ~ 0ξ ξ −
Θ≈ − = − × . This corresponds to a quasi-hydrostatic type of the SSB 

equilibrium. It arises from gravito-electrostatic balancing with an outward flow of the SIP 

having a minimum speed of about 1-3 cm s-1. With these inferences one can argue that the 
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SWP originates by virtue of the interaction of the SIP with the SSB. Hence an interconnection 

between the Sun and the SWP can be observed by applying the GES model. Here the 

boundary is not sharp but distributed over the entire region of the solar interior volume. 

The basic principles of the GES coupling govern the solar surface emission process of the 

subsonic SWP.     

As depicted in table I, the time-independent solar sg -profile associated with the SIP mass 

distribution terminates into a diffuse surface boundary. This is characterized and defined by 

the quasi-hydrostatic equilibrium sg g d d~ θ ξΘ= , which occurs at about ~ 3.5ξ ξΘ=  (see 

Figs. 8-10). As such, the basic physics of the subsonic origin of the SWP from the SSB is 

correlated with the bulk SIP dynamics. We note that the precise definition of the SSB 

influences the SWP velocity at 1 AU. Other models report similar observations too [3, 31-41]. 

The dependence on the ion to electron temperature ratio is quite visible in Fig. 11a. Let us 

now discuss the numerical results in the figures individually. 

Figure 8 depicts the time-independent profiles of ( sg , θ , M ) and their variations with the 

ion-to-electron temperature ratio tε  for fixed values of the initial point ( i 0.01ξ = ) and 

plasma sheath potential ( i 0.001θ = − ). As shown in Fig. 8a, the location of the SSB remains 

the same but its maximum value changes, and a most suitable choice of tε = 0.4 is identified 

for which the quasi-hydrostatic condition is fulfilled. The E-field profile is invariant for all 

chosen values tε  =0-0.5. Again, as shown in Fig. 8b, the electrostatic potential corresponding 

to tε ~ 0.4 comes out to be ~ 1θ θΘ= −  (i.e. ~1 kV). Similarly, Fig. 8c depicts the minimum 

Mach value of SSBM ~10-7  for tε  ~0.4  varying by a factor of 2 for other values of tε .  

Figure 9 depicts the time-independent profiles of sg , θ , and M and their variations with 

initial position for fixed values of tε  =0-0.4 and  i 0.001θ = − . It can be seen that the most 

suitable choice of the initial position for our fixed values iθ  and Tε  comes out to be 

i ~ 0.01ξ , which is consistent with the earlier value shown in Fig. 8a. Moreover, the 

minimum value of M~10-7 (Fig. 9c) is also consistent with the earlier value shown in Fig. 8c.    

Figure 10 depicts the time-independent profiles of sg , θ , and M  and their variations with 

electrostatic potential for fixed values of i 0.01ξ =  and T 0.4ε = .  It is observed fascinatingly 

that the most suitable choice of the initial value of the normalized electrostatic potential for 

our fixed values of iξ and Tε  comes out to be i 0.001θ = − .  

It is notable that high initial drop of M-profile occurs as shown in Fig.8c, Fig. 9c and Fig. 10c. 

This indicates the over dominance of the solar interior gravity up to about ~ 1.5ξ , and 

thereafter, the E-field becomes comparable, balancing at about ~ 3.5ξ . Thus the normalized 

width of the gravito-electrostatic sheath could be estimated and denoted by G E ~ 2ξ − . This is a 

quasi-neutral space charge region with positive charge (ion) excess near the defined SSB 

wall.  Thus a self-consistent bounded solution of nonlinearly coupled gravito-electrostatic 

potential profiles exists. It forms a quasi-hydrostatic equilibrium at the SSB for the choice of the 

appropriate set of the initial parameter values i i0.001 & 0.01θ ξ= − =  for T 0.4ε = . This is not a 

rigid boundary at all. As a result the SSB is capable to exhibit many kinds of global oscillation 

dynamics governed by the nonlinear coupling of the gravito-electrostatic sheath potentials. 

For a laboratory hydrogen plasma, the normalized floating potential can be estimated as 

f 3.76θ = −  under the flat surface approximation. Now, if we consider the numerically 

calculated minimum value of M for our solar surface characterization, the estimated value of 
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fθ  is about 20−  using the flat surface approximation. This is a crude estimate because the 

solar surface potential drop occurs over a distance of the order of the Jeans scale where the 

effect of curvature should not be ignored. The numerically obtained solar surface potential 

is quite a bit smaller than the floating potential. Simply put, this means that the defined SSB 

of the GES-model draws a finite amount of electron-dominated electric current that flows 

toward the heliocenter.  
Let us invoke a generalized concept of the plasma sheath, which is traditionally associated 
with a localized electrostatic potential only in the plasma physics community. We argue that 
any localized nonneutral space charge layer (in our case, on the order of the Jeans length) is 
the result of a self-consistent nonlinear coupling of gravito-electrostatic force field 
variations. This is what we mean by the GES, which of course, obeys the global quasi-

neutrality condition because of the smallness of the ratio De Jλ λ  for the SIP parameters. 

5.4 Acceleration of solar interior plasma 
5.4.1 Basic equations for SWP descriptions 

We have already argued that the subsonic origin of the SWP from the SSB is an outcome of 
the condition of quasi-hydrostatic equilibrium at the boundary. This is a result of the 
comparable, but competiting strengths of the gravitational deceleration and the electrostatic 
acceleration of the SIP near the SSB. Now we will try to look at the problem of solar wind 
acceleration from subsonic to supersonic speed. This is referred to as the transonic transition 
behavior of the outward-moving SIP in the form of the SWP. Let us now argue that the 
radial variation of Mach number and electrostatic potential beyond the defined SSB should 
be described by the following autonomous set of coupled nonlinear differential equations 

 ( )T T

s J

dM d GM
M

M d d C
2

2 2

1 2 1θ
ε ε

ξ ξ ξ ξ λ
Θ− = − + − , and            (40) 

 
d dM

d M d

1 2
0

θ

ξ ξ ξ
+ + = .        (41) 

Let us note that the constant SIP mass acts as an external object to offer a source of gravity 
for tailoring and monitoring the outgoing SIP flow with the initially subsonic speed 
specified at the defined SSB. The Poisson equation for gravity is now redundant. It is 
important to comment that the electrostatic force field is not imposed from outside to 
control the solar wind’s motion. In fact, the required electric field for the SWP acceleration is 
of internal origin. Equations (40) and (41) can be combined to yield a single coupled form as 
given below  

 

( ) ( )T T

s J

dM GM
M

M d C
2

2 2

1 2 1
1 1 .ε ε

ξ ξ ξ λ
Θ − + = + − 

          (42)         

The quantity s Ja GM c2
0 λΘ= (normalization coefficient) is treated as a free parameter, which 

eventually provides a way to estimate the SWP electron temperature. The value of this 

parameter is determined by the condition that a transonic solution for the SWP exists for a 

given set of initial values of the required physical variables. The above equation can now be 

rewritten as 

www.intechopen.com



 
Accoustic Wave 

 

109 

 ( ) ( )T T

dM a
M

M d
2 0

2

1 2
1 1 .ε ε

ξ ξ ξ
 − + = + −                  (43) 

5.4.2 Numerical results 

Equations (41) and (43) can be solved by numerical methods (by Runge-Kutta IV method) to 

determine the time independent M −  and θ − profiles associated with the SWP for some 

arbitrary values of a0. However, we choose the minimum value of a0 that yields transonic 

transition solutions. It is obvious from equation (43) that the critical distance will exist at 

c Ta0 2(1 )ξ ξ ε= = + . This critical distance corresponds to R~14 Θ from the defined solar 

surface. As shown in Fig. 10, the critical point for transonic transition, indeed, exists for a0 = 

95 for narrow range variation of T 0.0 0.1ε = − , for the already derived solar surface values of 

SSBM 710 & 1.0θ−
Θ= = −  as a set of initial values.  The M-values at a distance of 1AU from the 

defined SSB, i.e., at ~ 750ξ  are about 3.3  and 3.5 for T 0.0 & 0.1ε = , respectively, as shown 

in Fig. 11a. The corresponding values of the electrostatic potential at the same distance are 

found to be 31& 30θ = − −  for T 0.0& 0.1ε = , respectively as shown in Fig. 11b. This is to 

note that for higher values of Tε , solar breeze solutions are obtained. 

Substitution of J R 3.5λ Θ=  in the defined expression of a0 = 95, we can estimate cs ~100 

km/sec and Te ~100 eV for the SWP. The critical distance for transition behavior to occur for 

MSSB ~10-7 (Fig. 11a) as an initial value for Mach number exists at about R14 Θ  distance apart 

from the defined solar surface. This is to note that if we consider MSSB ~10-6 as an initial 

value for the numerical solution of equations (41) and (43), the transonic transition occurs 

for a0 = 71 that yields almost the same values of cs ~100 km/sec and Te ~100 eV for the SWP. 

But the critical transition location point exists at about R10 Θ distance apart from the defined 

solar surface. This implies the initial value of MSSB plays an important role in the proper 

fixation of a0 that determines the exact location of transonic transition point and the SWP-

property. Accordingly, the speed of the SWP at 1 AU comes out to be 330-350 km s -1, as 

shown in Fig. 11a (dotted vertical line). 

Let us now look at Fig. 11b which the electrostatic potential’s profile for a predetermined set 

of initial values of SSBM 710−= , and ~ 1θΘ −  at the SSB, as in the case of Fig. 11a. It can be 

seen that the normalized value of the SWP-associated electrostatic potential at 1 AU is about 

-30 to -31 for  T 0.0 0.1ε = − . With some simple calculations, as illustrated in the next 

subsection, we can argue that beyond the transonic transition, the SWP seems to obey the 

zero-electric current approximation, but not before. This is inferred from the floating surface 

condition, which is defined by the equalization of escaping flux of the SWP particles in 

accordance with the law of conservation of particle flux.  

5.4.3 Theoretical estimation of floating potential 

In absence of any particle source and/or sink of a stellar origin under spherical geometry 

approximation, we get an expression for the steady state mass conservation of the SWP 
flow 

 iT i SSB SSBr n v r n v2 2
0 .=                         (44) 

In normalized form the above expression (44) for Ni=ni /n0=1, can be written as  
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 ( )SSB SSBM M2 2 .ξ ξ=     (45) 

Now using normal practice for floating potential estimation under net zero-electric current 
approximation, i.e. Je=Ji,, one gets 

 ( ) ( )f

i e SSB SSBe m m M M2 2 .
θ

ξ ξ= =              (46) 

Now, from equation (47) the normalized floating potential at any normalized radial position 
from the SSB can be expressed as 

 e SSB
f SSB

i

m
M

m

2

log .
ξ

θ
ξ

  
=   

   
           (47) 

By simple calculations, one can generate the following comparative data of theoretical 
estimation of the SWP floating potential (using above expression (47)) at different distances 

from the obtained SSB as follows. 
 

   ξ      fθ  

3.50 (at ξΘ ) -19.57 

47.50 (at cξ ) -24.78 

100 -26.27 

200 -27.66 

300 -28.47 

400 -29.04 

500 -29.49 

600 -29.86 

700 -30.16 

750 (1 AU) -30.30 

Table 2. Values of the Floating Potential 

It looks as if the SSB was in non-floating condition as because it does not acquire floating 
potential during evolution of the GES-potential distribution of the SIP. However, beyond 
the critical distance and up to a distance of 1 AU, the calculated values of the floating 

potential almost match with those of the SWP obtained numerically (Fig. 11b). This 
implies that a finite divergence-free electric current exists at the SSB up to the transonic 
transition region! Beyond the transonic point, zero electric current approximation seems 

to hold good.  
It is commented that the zero-electric current approximation at the SSB assumed in previous 
model calculations [3, 11, 31-41] for the qualitative description of the SWP properties seems 
to be physically unjustified. Furthermore, our model calculation does not require outside 

imposition of the electric field to ensure the validity of the zero-electric current 
approximation at the SSB. Probably the imposition of the zero-electric current 
approximation is not suitable for proper description of the SWP properties. Now the natural 

question may arise, “What happens to the SWP current after the transonic transition?”  It 
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seems the current dissipates mainly through a channel of inertial resistance of the plasma 
ions due to solar gravity.  

5.5 Physical consequences 
5.5.1 Description of numerical results 

The proposed GES-model predicts that the GES formation (of the SIP origin) drives the 

subsonic SWP at the solar surface. The quasi-hydrostatic equilibrium defines the solar 

boundary and ensures the GES formation. Numerically ~ 1θΘ − , MSSB ~10-7,  and 

g d d ~ 0.60θ ξΘ ≈  prescribe the defined solar boundary (Table I). It requires specific initial 

values i i0.001& 0.01θ ξ= − =  in the solar interior for T 0.4ε = . 
 

 
 (a) (b) 
 

 
(c) 

Fig. 8. Variation of normalized values of (a) solar interior gravity d dη ξ  (upper group of 

curves) and electric field d dθ ξ  (lower curve), (b) electrostatic potential θ , and (c) speed M

associated with solar interior plasma flow dynamics with normalized position ( )ξ  from the 

heliocenter ( )0ξ = . The values of initial position 0.01iξ =  and initial electrostatic potential 

0.001iθ = −  are held fixed. The lines correspond to the cases Tε = 0.0 (graph 1), 0.1 (graph 2), 

0.2 (graph 3), 0.3 (graph 4), 0.4 (graph 5), and 0.5 (graph 6) respectively. The defined solar 

surface boundary lies at a radial position ~ 3.5ξΘ  (implying ~ 3.5 JR λΘ ) with circled points 

corresponding to the solar surface values 
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Item Parker’s model GES Model 

1. Deals with an unbounded solution of 
steady state hydrodynamic equilibrium 
of the solar wind (SW) 
 

Deals with bounded (SIP) 
and unbounded (SWP) 
solutions of a continuum 
steady state hydrodynamic 
equilibrium 

2. Considers a single neutral fluid (gas) 
model approximation for the SW gas 
flow dynamics 

Considers a two-fluid ideal 
plasma (gas) model for the 
SIP and SWP gas flow 

3. Predicts an unbounded solution of 
supersonic expansion of the SW 
provided that a sub-sonic flow pre-
exists at the SSB 

Predicts a bounded solution 
of the SIP mass distribution 
with its subsonic outflow at 
the SSB 

4. Genesis of the subsonic solar surface 
origin of the SW is not precisely known: 
discusses the acceleration of the SW by 
analogy with the de Laval nozzle 
 

Discusses the genesis of the 
subsonic SSB origin of the SIP 
in terms of the basic 
principles of the GES 
acceleration of ions: the 
transonic acceleration 
mechanism of the SWP is the 
same as Parker’s 

5. Does not specify precisely the SW-base 
definition and prescription for the self-
consistent SSB 

Offers a precise definition of 
and prescription for a self-
consistent SSB 

6. Standard solar surface is electrically 
uncharged and unbiased 

SSB acquires a negative 
electrostatic potential (~1 kV) 
at the cost of thermal loss of 
the electrons 

7. Does not consider plasma-boundary 
wall interaction, plasma sheath 
formation and spontaneous thermal 
leakage through squeezing mechanism 

Considers it  

8. Concept of floating surface (at which no 
net electric current) is not involved 

It is involved 

9. Considers one-scale (SW) theoretical 
description 

Considers two-scale (SIP and 
SWP) theoretical description 

10. Extensive research has already been 
done on the SW acceleration and 
heating 
 

Opens a new chapter of the 
GES-based theory for interior 
(bounded) and exterior 
(unbounded) solar plasma 
flow dynamics 

Table 3. Parker versus GES Model 
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The GES-formation occurs due to solar surface leakage of the thermal electrons of solar 
interior plasma outgoing radially outwards. It causes an appreciable space charge 
polarization effect near the boundary. The depth of the electrostatic potential well for the 
plasma ions, so formed, is such as to allow the incoming ions from the solar interior bulk 
plasma to acquire the kinetic energy of ion motion to overcome the maximum gravitational 
potential barrier height near the boundary. The SIP ions come out of the solar gravitational 
barrier with a minimum speed MSSB ~10-7. From the floating potential calculation with no 
net current flow, we infer that the solar surface boundary drives out some finite electric 
current in the outward flow. That is, it seems a finite electric current loss of the SIP occurs 
through its leakage process near the SSB!  It can be shown that the total surface charge in the 
boundary, however, comes out to be about 1020 times the electronic charge. Table III gives a 
glimpse of distinction between Parker’s model and GES-model of the subsonic SWP origin 
and its acceleration from subsonic to supersonic flow speed. 
 

 
 (a) (b) 

 
(c) 

Fig. 9. Same as Fig. 8 but with the ion-to-electron temperature ratio 0.40Tε =  and 

electrostatic potential 0.001iθ = −  held fixed. The lines correspond to the cases with initial 

positions iξ = 10-4 (graph 1), 10-3 (graph 2), 10-2 (graph 3), 10-1 (graph 4), 0.2 (graph 5), 0.5 

(graph 6), and 1.0 (graph 7), respectively. The circled points indicate the most suitable choice 

of the solar surface values 
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This is to clarify that the GES-model is a quite simplified one in the sense that it does not 
include any role of magnetic forces, interplanetary medium or any other complications like 
rotations, viscosity, etc. It opens a new chapter for further study on the coupled system of 
the solar interior and exterior plasma flow dynamics. 
According to GES-model, the normal acoustic modes of the global solar surface oscillations 
can be analyzed in terms of the local and global gravito-electrostatic plasma sheath 
oscillations governed by the basic principles of linear and nonlinear nonlocal theory of the 
Jeans collapse model [24-25] of charged dust clouds in plasma environment. 
The magnified view of the Mach number variation in transonic transition zone of the SWP 
(Fig. 11c) indicates the existence of an extended region having almost uniform sonic flow 
speed. It can be deduced from Fig. 11c that the transonic point does not always coincide 
with the critical point. We define the critical point as a radial point (away from that defined 
solar surface) where the net force on the SWP ions, due to GES-induced E-field and external 
gravity due to total solar interior plasma mass, becomes almost zero.  
 

 
 (a) (b) 
 

 

 
(c) 

Fig. 10. Same as Fig. 8 but with the initial position 0.01iξ =  and ion-to-electron temperatue 

ratio 0.40Tε =  held fixed. The lines correspond to the cases of iθ = 0.0 (graph 1), -0.001 

(graph 2), -0.01 (graph 3), -0.1 (graph 4), -0.5 (graph 5), -0.6 (graph 6), and –1.0 (graph 7), 

respectively. The circled points indicate the most suitable choice of the solar surface values 
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Numerical solution in the GES-model reproduces the Parker model values of the SWP speed 

at 1 AU (Fig. 11a) for the numerically predetermined set of initial values of MSSB ~10-7 and 

SWP ion-to-electron temperature ratio T 0.0 0.1ε = − . The estimated critical point for the 

transonic transition to occur ( )cr R~ 14 Θ  differs from that ( )cr R~ 10 Θ  in Parker’s model. We 

find that the latter can be obtained with a choice of MSSB ~10-6 (or larger than this by orders 

of magnitude) as an initial Mach value at the solar surface. 
 

 
 (a) (b) 

 

 
(c) 

Fig. 11. Variation of normalized values of (a) speed M , (b) electrostatic potential θ , and (c) 

speed M in the transonic transition zone associated with SWP flow dynamics with respect to 

normalized position ( )ξ  from the solar surface boundary ( )3.5ξΘ =  in magnified form. The 

predetermined solar surface boundary parameter values of 7~ 10SSBM − , ~ 1.0θΘ −  and 
2

0 95s Ja GM c λΘ= =  are considered as the set of initial values. The lines correspond to the 

cases of Tε = 0.0 (graph 1), 0.1 (graph 2), 0.2 (graph 3), 0.3 (graph 4), and 0.4 (graph 5), 

respectively. The critical distance lies at 47.5cξ ≅ ,  which corresponds to a radial position of 

~ 14r RΘ  from the solar surface boundary 

This is to clarify that the GES-model is a quite simplified one in the sense that it does not 
include any role of magnetic forces, interplanetary medium or any other complications like 
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rotations, viscosity, etc. It opens a new chapter for further study on the coupled system of 
the solar interior and exterior plasma flow dynamics.  
According to GES-model, the normal acoustic modes of the global solar surface oscillations 

can be analyzed in terms of the local and global gravito-electrostatic plasma sheath 
oscillations governed by the basic principles of linear and nonlinear nonlocal theory of the 
Jeans collapse model [24-25] of charged dust clouds in plasma environment. 

The magnified view of the Mach number variation in transonic transition zone of the SWP 
(Fig. 11c) indicates the existence of an extended region having almost uniform sonic flow 
speed. It can be deduced from Fig. 11c that the transonic point does not always coincide 
with the critical point. We define the critical point as a radial point (away from that defined 

solar surface) where the net force on the SWP ions, due to GES-induced E-field and external 
gravity due to the total SIP mass, becomes almost zero.  
 

 

Fig. 12. Variation of net normalized GES force per unit mass associated with solar interior 

plasma flow dynamics with respect to normalized position ( )ξ  from the heliocentre ( )0ξ = . 

The initial position 0.01iξ =  and initial electrostatic potential 0.001iθ = −  are held fixed. The 

lines correspond to the cases of Tε = 0.5 (graph 1), 0.4 (graph 2), 0.3 (graph 3), 0.2 (graph 4), 

0.1 (graph 5), and 0.0 (graph 6), respectively. The defined solar surface boundary is found to 

lie at a radial position ~ 3.5ξΘ  for a more suitable choice of Tε = 0.4-0.5 variations 

Now, one can see that the sonic point for Tε = 0.0 (graph 1 in Fig. 11c) falls around 10ξ ≅  

whereas the transonic point for the same value of Tε = 0.0 falls around the critical point 

c 47.5ξ ≅ . Similarly, one can see that the sonic point for Tε = 0.1 (graph 2 in Fig. 11c) falls 

around 15ξ ≅  whereas the transonic point for the same value of Tε = 0.1 falls around the 

non-critical point 50ξ ≅ . From these numerical observations of the transonic transition 

region, one can clearly notice that an extended zone of about 40λJ  exists having almost a 

uniform sonic flow speed of the SWP between sonic and transonic points. 
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In this region, the inertia-induced acoustic excitation theory [5-12] may have potential 
applications provided it is improved with a proper inclusion of the solar gravity under 
nonlocal normal-mode analysis. Similar situations are likely to arise in laboratory plasmas of 
gravitationally sensitive multi-ion colloidal plasma systems [14-15, 24-25].  
This is to point out that the intense acoustic fluctuations appearing in the Mach-profile (Fig. 
11c) are merely the results of a numerical instability arising due to the mathematically 
indeterminate situations localized mainly near the sonic speed. These fluctuations, however, 
are found to disappear beyond the critical distance. Physically, however, the physical 
appearance of such indeterminate structures in the graphical plots is because of some 
chaotic interference and intermittency of acoustic background fluctuations in the emitted 
SWP. It may produce some dissipative effects in course of the electrodynamical process of 
the electrodynamical interaction of the SWP particles with background particles of ambient 
stellar atmosphere.   

5.6 Comparison with exospheric model 

Exospheric model [38-39] is a simple kinetic model for the solar coronal plasma expansion. 
This model assumes that beyond a given altitude termed as the ‘exobase’ from the SSB, 
binary collisions between the SWP-particles are negligible. The coronal plasma expansion is 
believed to occur due to thermal evaporation of the hot protons that have velocity exceeding 
the escape velocity so as to cross over the barrier of the external solar gravitational field. The 
generalized model [19-23] considers the non-Maxwellian velocity distribution function for 
the coronal plasma electrons.  
Of course, this model has succeeded to explain the observation of the high speed SWP. This 
model indeed explains the high speed SWP without requiring any additional source to heat 
the coronal plasma electrons. In this model, the exobase is defined by the condition that the 
density scale length equals the mean free path of the SWP particles. Due to the complexities 
of coronal based physics and multiplicities of plasma species different exobases are likely to 
coexist. Moreover, the appropriate electrostatic potential is determined by applying the 
approximations of both local quasi-neutrality and zero current. Of course, this model has 
succeeded in explaining the observation of the high-speed SWP. But according to our model 
calculations, the zero-current approximation of the exospheric model seems to be valid only 
on large scales but not near and above the SSB.  

By our GES-model analyses, a finite electron-dominated [10-11] current with a positive finite 

divergence exists on the solar interior scale for d d 0θ ξ < . Immediately after the SSB, i.e., on 

the unbounded scale of the SWP, a divergence-free current exists. This seems to exhibit a 

discontinuous behavior. How to resolve this? In reality electron temperature has variable 

profiles on both the bounded and unbounded scales. Probably a self-consistent profile of 

two distinct electron temperatures on two regions of bounded and unbounded scales 

separately may resolve the interfacial transition problem of the proposed two-scale theory of 

the GES-associated solar plasma current system.  
According to our GES theory and model calculations, the zero-electric current 
approximation of exospheric model calculations [38-39] requires further review. The 
appropriate electrostatic potential estimate from numerical analysis emphasizes that the 
zero electric current approximation is an outcome of the GES model on the large scale of the 
SWP. Now the question may naturally arise, “What happens to the SWP current after the 
transonic transition?” It seems that the electron-dominated electric current dissipates mainly 
through a channel of inertial resistance of the plasma ions due to solar gravity as a barrier. 
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The other dissipation channels of the electric current may be through the SWP heating 
generation of fluctuations in thermal noise level, etc. The uniform flow region of the SWP is, 
in addition, found to have a large number of conservation rules [11] under the lowest order 
inertial correction of the thermal electrons in the solar plasma system approximately from 
applied mathematical point of view. The details of the associated physical mechanism and 
fluctuations will be communicated to somewhere else.    

5.7 Comments 

Before we conclude with any physical comment, we must admit that the neglect of 
collisional dissipation and deviation from a Maxwellian velocity distribution of the plasma 
particles is not quite realistic. But our GES model under these simple approximations may 
provide quite interesting results. For example, it provides deep physical insight into the 
interconnection between the Sun and the SWP. The violation of the zero-current 
approximation is indeed noted in the neighborhood of the SSB and above. Of course, the 
zero current approximation seems to be satisfied beyond the transonic region. This 
conclusion is based on the well-known condition of the floating surface boundary in basic 
plasma sheath physics.  

An estimated value De J
20~ 10λ λ − of the ratio of the solar plasma Debye length and the Jeans 

length of the total solar mass justifies the quasi-neutral behavior of the solar plasma on both 

the bounded and unbounded scales. 

Applying the spherical capacitor charging model, the coulomb charge on the SWP at a 

distance of ~ 1 AU comes out to be . For rotation frequency of the solar plasma system 

corresponding to the mean angular frequency about the centre of the system  (Gunn 1931), 

the mean value of the strength of the solar magnetic field associated with the SWP in our 

model analysis is estimated as SWP SWP SWPB Q f T2 114 ~ 3.01 10π= × . This is obviously 

considerably higher for producing any significant effects on the dynamics of the SWP 

particles. Thus the effects of the magnetic field are not ignorable for the SWP particles due to 

the significantly strong Lorentz force, which is now estimated to be 

( )L SWPF e v B N2
0 1.64 10−= × ≈ ×  corresponding to a supersonic flow speed v km s 1

0 ~ 340.00 − . 

Thus the Lorentz force may have some remarkable effect on the SWP particles and hence, 

may not justifiably neglected for the unbounded scale description. It justifies the convective 

and circulation dynamics to be considered in that context. Therefore our unmagnetized 

plasma approximation may not prove well justified in our GES model configuration for the 

SWP flow dynamics description. Although collision processes are dominant in the realistic 

solar interior [2, 39-44], collisionless models [2, 39] are also equally useful for the solar 

plasma description. Thus our collisionless model approximation for mathematical simplicity 

may be justified here. In our GES model, the calculated values of the mean free paths for the 

solar plasma electrons, e m198~ 1.50 10λ ×  and for ions, i m132~ 3.05 10λ ×  justify the 

collisionless model approximation. This approximation holds good justifiably under the 

fulfillment of the validity condition e i J, .λ λ λ>>   

One can note that the SIP electron temperature, specified by eT 1 , differs from (exceeds) the 

SWP electron temperature specified eT 2  by one order of magnitude. This is discussed 

already discussed above. It simply means the SWP has been relatively cooled. It is quite 

natural for expanding plasma gas to be cool. This is to further comment that these two 

different electron temperatures are considered constant over their respective scales. 
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Actually, a discontinuity exists at the interface of the bounded and unbounded scales. This 

is an open problem to resolve.  
Let us clarify once again that equalizing the maximum value of the numerically determined 
solar self-gravity with the standard value specifies the SIP electron temperature. Similarly, 

the appropriate choice of the defined constant a0  specifies the SWP electron temperature, 

which ensures that a transonic solution of the SWP dynamics exists. Now, with this 
simplified treatment our theoretical model calculations yield the following conclusions. 

1. Contrary to the general belief that the SWP emerges from the SSB, our theory provokes 

us to argue that the genesis of the subsonic origin of the SWP at the SSB in fact lies in 

the SIP dynamics. It is governed by the basic principles of the GES formation near the 

SSB and beyond. The surface boundary is located at a radial distance defined by ~ 3.5ξ  

(Figs. 8–10) from the heliocentric origin. This specific location in the plots (Figs. 8a, 9a, 

and 10a) is marked by a vertical line with small circles.  

2. Thereafter, the outward moving SIP forms the SWP with a highly subsonic speed at the 

SSB. Initially the outward acceleration of the SWP is quite rapid allowing a transonic 

transition solution to exist for a specific choice of T 0.0 0.1ε = −  (Fig. 11a). This occurs as 

a consequence of the predominantly self-consistent electric field associated with the 

SWP (Fig. 11b). It produces a transonic transition region of sufficient length scale with the 

critical point lying at about R14 Θ  (Fig. 11c) from the SSB. 
3. It is noted that initially the gravitational potential barrier decelerates the SIP dynamics 

rapidly. As soon as the E-field of the SIP origin gathers sufficient strength, an outward 
flow occurs with a reduced minimum speed of MSSB ~10-7 (Figs. 8c, 9c, 10c) at the SSB 
defined by the quasi-hydrostatic equilibrium condition at a point of the maximum solar 
gravity, as clearly depicted in Fig. 12. This figure clearly shows the strong solar self-
gravity up to the solar boundary and relatively weaker strength of the solar external 
gravity beyond the boundary.    

4. According to our model calculations, the SSB behaves as a negatively biased grid with a 
bias potential of about 1 kV. The surface draws a finite current dominated by the 
thermal electrons and flows towards the surface. As a result, the solar surface 
oscillations may naturally be attributed to the resulting consequences of the GES 
oscillations. Under the neutral ideal gas approximation of the SIP, this property cannot 
be deduced.  

5. We therefore conclude that our GES-based model may be useful to study the properties 
of the SSB and the properties of the slow speed SWP. Of course, the properties of the 
high speed SWP description under our model will require a kinetic treatment as already 
reported by previous workers in the case of the exospheric model.  

A few more reminders are in order: 
1.  The exact location of the SSB and that of 1 AU distance as specified in Figs. 8-12 on the 

normalized scale are estimated for the normalization factor, which is, decided by the 
SIP parameters.  

2. In the absence of magnetic field in our model approach, the Lorenz force term is absent, 
but it will be needed for further improvements under the fluid and/or kinetic regime to 
see the realistic dynamics of the solar plasma system. However, the estimated mean 
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value of the solar magnetic field SIPB T11~ 7.53 10−×  in the SIP justifies and supports 

our unmagnetized plasma approximation in the present context.  
3. The GES-model is a useful theoretical construct with which to study SWP dynamics in 

terms of solar interior dynamical behavior (generator of the SWP) through active 
dynamical coupling processes of solar exterior regions in the light of localized electric 
space charge effects.  

Finally, it is important to comment that the further improvements and modifications to the 
model will be needed to make it more realistic for actual SWP conditions. These form the 
basic problems of future research on the GES model. The genesis of the SWP is now found 
to be associated with the coupling of the SIP potential and self-gravitational potential of the 
SIP mass. We finally argue that the lines of communications should be kept open between 
theorists and observers and solar and stellar physicists, and more importantly also between 
the solar and plasma physics communities, in order to further the study of stellar wind 
plasmas. Ours is a first step, albeit very simplified and external-field free and ideal, in this 
particular direction. We have tried to provide an integrated theoretical outlook on the SIP 
dynamics on the bounded scale, and SWP on the unbounded scale. This model could further 
be useful to study the properties of the helio-seismic dynamics of the Sun and other stars 
[36-37] too.    

5.8 Overall summary 

The presented chapter reviews the latest findings of normal acoustic mode analyses through 
different types of transonic plasma equilibrium models [5-12] under the lowest order inertial 
correction of plasma thermal species. Different types of acoustic resonances are observed in 
transonic plasma equilibria depending on different plasma inertial ions. The linear analyses 
show the graphical nature of the associated resonance poles. This implies that transonic 
plasma is an unstable zone, which is rich in wide range spectra of acoustic wave 
fluctuations. The acoustic wave kinetics in the nonlinear normal mode analyses in different 
types of plasmas [8-9, 12, 26] is describable by a linear source driven KdV (d-KdV) equation. 
After integration, it shows two distinct classes of soluations, i. e., solitons and oscillatory 
shocks. The fundamental condition to observe inertia-induced (ion) acoustic wave resonant 
excitation is that the ion flow speed must be uniform. Accordingly, the same applies to the 
solar wind dynamics [10-11, 35-41] in self-gravitating plasma systems as well. A large number 
of conservation laws of applied mathematical significance associated with the d-KdV flow 
dynamics are also pointed out [9] in transonic plasma domain in different situations including 
solar plasma. Of course, convective and circulation dynamics which are the primary sources of 
magnetic field [41], are neglected throughout for simplicity. Similar observations of acoustic 
kinetics of the formation of soliton-type structures are also found in self-gravitating dust 
molecular clouds in presence of partially ionized dust grains through the active mechanism of 
gravito-acoustic coupling processes [27]. Some future scopes including realistic sources of 
acoustic perturbation of the presented analyses are also pointed out in brief.  
Very similar to Geoseismology dealing with the Earth’s interior through the various seismic 
(acoustic) waves produced during the earthquakes, Helioseismology is the study of the 
various linear and nonlinear surface waves and oscillations of solar origin (like p-mode, and 
f-mode) to measure the internal structure and dynamics of the Sun [36-44]. The acoustic 
dynamics in the Sun (or Star) is understandable by considering it to have a resonant cavity 
like an organ pipe in which acoustic waves are trapped (by reflections or refractions) [41]. 
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One of the earliest studies of solar oscillations and fluctuations established that the power 
spectrum of the Sun’s full disk contained a multitude of Doppler shift peaks between 2.5 
mHz - 4.5 mHz [36-37 and references therein]. The Global Oscillation Network Group 
(GONG), Stellar Observations Network Group (SONG), Helio- and Asteroseismology 
(HELAS) Network, and Birmingham Solar Oscillations Network (BiSON) are examples of 
recent studies being undertaken to measure these surface oscillations through space and  
ground based remote-sensing observations [36-37, 44]. Michelson Doppler Imager (MDI) 
onboard Solar and Heliospheric Observatory (SOHO) and recently, Helioseismic Magnetic 
Imager (HMI) onboard Solar Dynamics Observatory (SDO) also measure these oscillations 
from space [36-37, 41, 44]. Significant power has been observed at frequencies ranging from 
1.4 mHz to 5.6 mHz, corresponding to periods of 3 to 12 minutes. They are called ‘5 minute 
oscillations’ due to their dominant mean period [44]. Besides, the behavior of the solar 
intermediate-degree modes (during extended minimum) is also investigated to explore the 
time-varying solar interior dynamics with the help of contemporaneous helioseismic GONG 
and MDI data [44]. The basic physics behind these helioseismic and helioacoustic observations 
(in situ) reported in the literature, however, needs to be more clearly understood in a broader 
horizon. Moreover, there are many more experimental observations [3, 35-44] on seismic 
activities that will require self-gravitating plasma wave theory for further development of our 
stability analyses and seismic diagnostics. In conclusion, we strongly believe that the 
presented mathematical strategies and techniques of linear and nonlinear acoustic mode 
analyses amidst more realistic plasma-boundary interaction processes may have some 
potential applications in such future helio- and astero-seismic directions.    
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