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1. Introduction 

Cancer is a multifactorial genetic disease which is characterized by uncontrolled 
proliferation of the cells. Cells undergo mutational changes in a multistep process. Cancer 
developes from a tumor clone though the firstly mutated cell doesn’t present all the features 
of a cancer cell. Accumulation of the mutations lead cells to display the properties of the 
cancer. The proliferating cells which have the capacity to survive and invade result in 
hyperplasia followed by dysplasia and invasion and metastasis at the end [1].   
Breast cancer is the most common cancer type and one of the leading cause of cancer 
mortality in women. Various factors including estrogens and its signaling, EGFR signaling 
pathway, other oncogenes and tumor suppressor genes including chromatin remodeling 
factors contribute to development of breast cancer. 
At molecular level two major group of genes are responsible for cancer development. These 
genes,  proto- oncogenes and tumor suppressor genes (TSG) control cell growth together in 
cells at a balance. They are normally required for cell survival and have a direct role in 
carcinogenesis and cancer progression. When the balance is broken between oncogenes and 
TSGs due to activation of proto-oncogene or inactivation tumor suppressor genes, cancer 
develops (Figure 1, 2). 
In cellular functions proto-oncogenes serve as growth factors, growth factor receptors, 
transcription factors and signal transduction elements. The mutated proto-oncogenes are 
named as oncogenes.  An oncogene, when mutated or altered, contributes to conversion of a 
normal cell into a cancer cell. The activation of a proto-oncogene may occur during 
replication; by a translocation; by gene amplification or by the alterations in mRNA 
expression. TSGs are also normal cellular genes taking part in regulation of the cell cycle,  
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Fig. 1. In human cells proto-oncogenes and tumor suppressor genes are at a balance. There 
exists a controlled cell division and proliferation. 

 

 

Fig. 2. In a cancer cell, over expression of oncogenes (activation) or low expression of TSGs 
(inactivation) leads cells to uncontrolled proliferation. 
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apoptosis, differentiation, surveillance of genomic integrity and repair of DNA errors, 
chromatin remodeling, signal transduction, and cell adhesion. The activation of the oncogenes 
and the inactivation of tumor suppressor genes lead cells to proliferate in an uncontrolled 
manner. Usually one mutation is sufficient for the activation mechanism of oncogenes whereas 
two hits are necessary for the inactivation of tumor suppressor genes [2,3]. However, a new 
class of tumor suppressor gene, in which one of the alleles is lost while the rest allele is kept, 
has recently been defined. Such a tumor suppressor gene is called as haploinsufficient and 
supposed to be in a cancer-prone state [4-6]. These patients develop cancer when they are 
exposed to the various carcinogens such as smoking, x-ray and chemicals. 
In eukaryotic cells, genetic information encoded by DNA is packaged into chromatin and 
kept in the nucleus. Thus chromatin is composed of DNA and proteins. The primary 
proteins of chromatin are histones. A nucleosome, basic unit of chromatin, consists of 146 
base-pairs of duplex DNA wrapped around a histone octamer composed of two of each of 
the conventional histone proteins: H2A, H2B, H3 and H4. Another histon, H1, provides 
compaction of neighboring nucleosomes by linking them. These compact situation of 
chromatin reversibly changes in an open and closed situation by various molecules such as 
histon acetyl transferases (HAT), histon deacetyl transferases (HDAC) and chromatin 
remodeling molecules, which then influence on transcriptional regulation of gene 
expression through accesibility of transcription factors by these molecules. 
Transcription is an important step to control gene expression from the very early step of life 
to the end. To maintain transcription every human cell has to deal with the step of an access 
to DNA either through histone acetylases or chromating remodelling complexes. Many 
activator proteins of transcription use both of these mechanisms. Histone Acetyl 
Transferases (HATs) add acetyl groups to the tails of the histones that protrude out of 
nucleosomes which lead to the binding of the transcription factors. Chromatin remodeling 
complexes use ATP to open or close the chromatin (Figure 3). 
 

 

Fig. 3. The binding of chromatin remodeling complex changes conformationally closed 
chromatin to open chromatin that enables the transcription factors to bind and start 
transcription. 
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By cooperation of members of these two classes of complexes, the structure of chromatin is 
dynamically regulated and thus they play important roles in the control of gene expression. 
ATP-dependent chromatin remodelers are divided into families according to the subunit 
composition and biochemical activity such as SWI/SNF, ISWI, INO80, SWR1 and 
NURD/Mi2/CHD complexes. Of these in particular, some of the members SWI/SNF 
complexes are emerging tumor suppressors, as genetic and epigenetic inactivation events in 
several SWI/SNF subunits have been detected in various human cancers [7-10]. 

2. Function of SWI/SNF family members 

Transcription factor action and then the targeted gene expression are mainly regulated by 
SWI/SNF family of chromatin remodeling complexes. SWI/SNF complexes are large 2-MDa 
(1.14 MDa in yeast) multi-subunit conglomerates that are involved in either enhancement or 
suppression of the downstream genes [7-12]. SWI/SNF complex genes were identified 
through two screens in yeast Saccharomyces cerevisiae. The first identified gene that is 
required for the expression of SUC2 for sucrose metabolism (sucrose non-fermenting (SNF) 
mutants), and the second screen showed another gene required for the activation of HO for 
mating-type switching (switch (SWI) mutants [7, 13-15].  
SWI/SNF complex is composed of three groups of subunits; 1) enzymatic (ATPase), 2) core 
subunits, and 3) accessory subunits [8,11]. Though the exact mechanisms for modification of 
chromatin structure by SWI/SNF complexes remain incompletely understood, current 
knowledge suggests that ATPase-dependent disruption of histone-DNA association and 
resultant nucleosome “sliding” is the main mechanism [8,12]. The mammalian genome 
encodes 29 different SWI/SNF-like ATPases [12]. Accordingly, each SWI/SNF complex 
consists of only one of two ATPases, BRM (Brahma) or BRG1 (Brahma-Related Gene 1), 
which show 74% homology.  
SWI/SNF complexes are classified into two major classes as BAF (BRG1 or BRM-Associated 
Factor; also known as SWI/SNF-A) or PBAF (Polybromo-Associated BAF; also known as 
SWI/SNF-B) complexes (Figure 4). BAF complexes contain either BRG1 (also known as 
SMARCA4, SNF2b, BAF190) or BRM (also known as SMARCA2, SNF2a) and PBAF 
complexes include only BRG1 as ATPase subunit. Each ATPase is accompanied with 10 to 
12 proteins as core and accessory subunits. The core subunits include BAF155 (also known 
as SWI3, SRG3, SMARC1), BAF170 (also known as SMARCC2), and SNF5 (also known as 
SMARCB1, BAF47, INI1). Accessory subunits consist of BAF45 (a,b,c,d; encoded gene names 
PHF10, DPF1, DPF2, DPF3), BAF53 (a,b; encoded gene names ACTL6A, ACTL6B), BAF57 
(encoded gene name SMARCE1), BAF60 (a,b,c; encoded gene name SMARCD1, SMARCD2, 
SMARCD3), BAF180 (encoded gene name PBRM1), BAF200 (encoded gene name ARID2), 
BRD7 and BAF250 (a,b; a: also known as ARID1A, SMARCF1, OSA1; b: also known as 
ARID1B, OSA2) [7,8]. ARID1A (BAF250a) and ARID1B (BAF250b) subunits are mutually 
exclusive and exist only in BAF complexes. BAF180, BAF200 and BRD7 are exclusively 
present in PBAF complexes [7,8] [Figure 4]. 
SWI/SNF complexes were found to be based on their roles in the transcription activation. 
However, studies show that mammalian SWI/SNF complexes have function to both 
repression and activation of the targeted genes. For development of mammalian T 
lymphocyte, BRG1 and BAF57 are necessary both for silencing CD4 and activating CD8 
expression [7,16,17]. Specific combinations of individual SWI/SNF components were 
reported to generate sub-complexes with specialized functions that are involved in  
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Fig. 4. SWI/SNF complexes are classified into two major classes as BAF (SWI/SNF-A) or 
PBAF (SWI/SNF-B) complexes. BAF complexes contain either BRG1 or BRM and PBAF 
complexes include only BRG1 as ATPase subunit. The core subunits include BAF155, 
BAF170, and SNF5. Accessory subunits consist of BAF45, BAF53, BAF57, BAF60, BAF180, 
BAF200, BRD7 and BAF250. BAF250a and BAF250b subunits are mutually exclusive and 
exist only in BAF complexes. BAF180, BAF200 and BRD7 are exclusively present in PBAF 
complexes. 

sequential stages of muscle-gene activation--i.e., initial displacement of the nucleosome 

followed by the loading of the complete myogenic transcriptosome that promotes gene 

transcription [18]. Immunoprecipitation analysis of osteocalcin promoter showed that BRM- 

and BRG1-containing complexes have different roles on it. BRG1 complexes were associated 

with the promoter induction, while BRM-specific complexes were present only on the 

repressed promoter and were required for association of the co-repressor HDAC1 [19]. In 

embryonic stem (ES) cells, BRG1 was reported to act as a repressor to inhibit programmes 

that are associated with differentiation. On the other hand, it also facilitates the expression 

of core pluripotency programmes [20,21]. Loss of Snf5 in murine fibroblasts results in more 

genes being activated such as E2F targeted genes than repressed [22]. Another example of 

repression of gene expression is recruitment histone deacetylases (HDACs), which remove 

activating acetyl marks from histone tails, by SWI/SNF complexes. By this mechanism, 

SNF5 suppresses cyclin expression in an HDAC1-dependent manner [23]. In conclusion, 

mammalian SWI/SNF complexes are composed of dynamic units with essential roles in 

regulating both the activation and the repression of gene expression programmes. 

3. Roles of SWI/SNF proteins in cancer  

Findings of abnormalities at genetic, epigenetic as well as protein levels of SWI/SNF 
complexes in various cancers provide a link between chromatin remodelling and tumour 
suppression. Tumor suppressor role of SWI/SNF complexes was first demonstrated with 
loss of BRG1 and BRM expression in many cancer cell lines and arrest of growth or slower 
growth after introduction of BRG1 or hBRM [24]. Brg mutant mice die at early embryonic 
days due to growth arrest of the inner cell mass and trophoblast [25,26]. Mice with Brg 1 

www.intechopen.com



 
Breast Cancer – Carcinogenesis, Cell Growth and Signalling Pathways 

 

346 

heterozygosity develop mammary adenocarcinomas, suggesting an occurrence of cancer 
prone state due to haploinsufficiency of Brg1. On the other hand, the mouse with 
inactivation of BRM by homologous recombination (BRM-/- mice) is born alive and 
develops normally. Adult mutant mice were approximately 15% heavier than control 
littermates. This phenomenon was suggested to be caused by increased cell proliferation, 
because a higher mitotic index was detected in mutant livers and it was further supported 
by the observation that mutant embryonic fibroblasts were significantly deficient in their 
ability to arrest in the G0/G1 phase of the cell cycle in response to cell confluency or DNA 
damage. These studies suggested that BRM plays a role in the regulation of cell proliferation 
in adult mice and have some defects in control of cellular proliferation [27]. 
Chromosome transfer studies mapped tumor suppressor gene(s) at 19p13 chromosome 
locus [28,29]. Studies with microsatellite analysis and functional as well as cancer tissue 
examination for abnormalities of candidate tumor suppressor gene indicated that 
chromosome 19p13 locus includes at least two putative tumor suppressor genes namely 
STK11/LKB1 and BRG1 [30]. STK11 maps about 8.5 Mb distally from BRG1. Loss of 
heterozygosity of 19p13 was reported in various cancers including thyroid cancer, sex cord 
stromal tumors, breast cancer, oral carcinoma, prostate cancer, pancreas carcinoma, brain 
tumors, colorectal carcinoma, gynecological tumors, lung cancers and ovarian carcinoma 
[31-46]. Some of the studies included genetic analysis of STK11/LKB1 and showed mutation 
in a subset of tumors especially related with Peutz-Jeugher Syndrome such as breast, 
colorectal, lung, pancreatic, biliary and ovarian cancer [41-49]. On the other hand, quite a lot 
of studies reported mutations and/or loss or various alterations of BRG1 in human cancer 
lines and primary tumors [50-61]. Thus genes at this chromosomal locus may involve in 
various type cancer exclusively or in cooperation in some cancer types. It should be also 
noticed that some studies showed only LOH without alteration of either one of these genes. 
In this situation, each of them can still be involved in carcinogenesis due to 
haploinsufficiency. At least haploinsufficiency of BRG1 is recognized [25-27,62], while 
further studies are necessary whether such a role exists for STK11/LKB1 or not. Similar to 
BRG1, abnormalities of BRM in various cancers have been reported [58-61,63-69]. 
Though the early studies of cell lines and animal models strongly suggested subunits of 
SWI/SNF proteins as tumor suppressor, the first definitive evidence that members of these 
complexes function as tumor suppressive was shown by Versteege and colleagues. They 
demonstrated occurrence of LOH of BAF47 (SNF5) in almost all cases of pediatric rhabdoid 
sarcoma, in which the other allele was mutated or silenced by methylation [70]. Inactivation 
of SNF5 subunit of SWI/SNF is via biallelic mutations, including deletion, nonsense, mis-
sense and frameshift mutations was also shown by other studies, supporting SNF5 as a 
strong tumor suppressor gene at least in this kind of tumors [71-73]. 
SNF5 alterations have also been shown in other types of tumors though it is much rare as 
compared to malignant rhabdoid tumors. In a recent study, the effects of Ini1 
haploinsufficiency (loss of one allele) on cell growth and immortalization in mouse 
embryonic fibroblasts were examined. Their results revealed that heterozygosity for Ini1 up-
regulated cell growth and immortalization and that exogenous Ini1 down-regulated the 
growth of primary cells in a Rb-dependent manner. Furthermore, loss of Ini1 was redundant 
with loss of Rb function in the formation of pituitary tumors in Rb heterozygous mice and 
gave rise to the formation of large, atypical Rb(+/-) tumor cells lacking adrenocorticotropic 
hormone expression, confirming in vivo the relationship between Rb and Ini1 in tumor 
suppression [74]. Mutations and alterations of SNF5 were also reported in familial 
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schwannomatosis and other cancer types [75-84]. Germ line mutations of SNF5 were 
detected in brain tumors and rhabdoid tumors, suggesting its link with familial cancers [85-
88]. In some other tumors, no alteration of SNF was detected [89,90].  
Complete loss of Snf5 in genetically engineered mouse leads to early embryonic death. 
However, heterozygote mice with haploinsufficient Snf5 (snf5+/-) develop tumors similar to 
malignant rhabdoid tumors in about one third of the animals [91-93]. On the other hand, 
conditional biallelic inactivation of Snf5 (Snf5-/- mice) resulted in tumors including 
lymphomas and rhabdoid tumors in 100% of mice [94]. Onset of these tumors occurred in a 
median period of 11 weeks for a single gene inactivation. When compared to this period with 
most commonly mutated genes in human cancer i.e. p53 and RB1, p53 loss gave rise to 
lymphomas and sarcomas at 20 weeks and RB1 heterozygosity together with p53 deficiency 
resulted in similar tumors and other cancers at 16 weeks [95]. Thus shorter onset time for 
tumor occurrence in Snf5 inactivation as compared to other well-known tumor suppressors 
indicates strong tumor suppressor character of this gene. Tumor formation in the absence of 
SNF5 has been supposed to be due to loss of function of the SWI/SNF complex. However, this 
view has been challenged by several findings of a recent research. Using both human cell lines 
and mouse models, Wang et al. [96] showed that cancer formation in the absence of SNF5 does 
not result from SWI/SNF inactivation but rather that oncogenesis is dependent on continued 
presence of BRG1 activation than tumor suppressor loss. Thus Snf5 loss would lead to effects 
more frequently associated with oncogene activation than tumor suppressor loss. 
Other than BRG1 and SNF5, alterations of other member of SWI/SNF complexes have been 
reported in various cancer types. For example mutations of BAF180 (PBRM1) were identified 
in 41% of renal cell carcinomas, making this gene as the second most frequently mutated gene 
in these cancers after VHL50 [97]. The ARID1A subunit of SWI/SNF complexes was also 
recently shown to have mutation or loss of protein in primary human cancers including ovar-
ian clear cell carcinomas, low and high grade endometrioid carcinomas [98-101].ARID1A was 
also rarely mutated in medulloblastoma, breast and lung cancer [102,103]. 

4. Alterations and roles of SWI/SNF proteins in breast cancer  

Breast cancer is among the most common tumors affecting women. It is characterized by a 
number of genetic aberrations. Some 5-10% of cases are thought to be inherited. Estrogen 
plays an important role in normal physiology and malignancy of breast tissue. Biological 
functions of estrogen are mediated by estrogen receptor (ER). ER controls transcription of 
ER targeted genes by binding to estrogen responsive elements in their promoters. ATP-
dependent chromatin remodeling complexes also influence this signaling pathway by 
changing the chromatin open/close state. In this respect, heterozygous state of a SWI/SNF 
subunit, Brg1 in mice leads to mammary carcinomas, indicating roles of SWI/SNF proteins 
in breast cancer [25]. On the other hand, BRCA1 and BRCA2 genes are already known to 
have roles both in familial and sporadic breast cancers [104-106]. Breast tumors of patients 
with germ-line mutations in the BRCA1 and BRCA2 genes have more genetic defects than 
sporadic breast tumors.  
Bochar et al. [107] isolated a predominant form of a multiprotein BRCA1-containing 
complex from human cells displaying chromatin-remodeling activity using a combination of 
affinity- and conventional chromatographic techniques. Mass spectrometric sequencing of 
components of this complex proved that BRCA1 is associated with a SWI/SNF-related 
complex. They also demonstrated that BRCA1 directly interacts with the BRG1 subunit of 
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the SWI/SNF complex. Furthermore, p53-mediated stimulation of transcription by BRCA1 
was completely abrogated by either a dominant-negative mutant of BRG1 or the cancer-
causing deletion in exon 11 of BRCA1, revealing that BRCA1 has a direct function in 
transcriptional control through modulation of chromatin structure [107]. 
To investigate abnormalities SWI/SNF complex subunits in breast cancer, Decristofaro et al. 
[108] determined the protein status of the core subunits of BAF170, BAF155, BAF57, BAF53a, 
and BAF47 in 21 breast cancer cell lines. The authors also determined the protein status of 
the BRM, BRG1 as well as two other proteins found in human SWI/SNF complexes, BAF180 
and BAF250. A breast cancer cell line negative for the BAF57 protein was identified [108]. 
Deficiency of p270 protein (ARID1A) was shown in a subset of breast cancer. BAF180, a 
subunit of the PBAP type SWI/SNF chromatin remodeling complex maps to 3p21, in a 
region where frequent allele loss has been detected in various cancers. A study which used 
screening for tumor suppressor genes in breast cancer revealed multiple truncating 
mutations of PB1, which encodes the BAF180 subunit and the mutation was associated with 
loss of heterozygosity of the wild-type allele [109]. Functional studies showed binding of 
endogenous wild-type BAF180 to the p21 promoter, which was required for proper p21 
expression and G1 arrest after transforming growth factor-beta and gamma-radiation 
treatment, making BAF180 as a physiologic mediator of p21 expression [109]. 
In a study, Wang et al. [110] examined the role of BAF57 in breast cancer using the cell line, 
BT549, which is an invasive human breast carcinoma cell line that lacks expression of BAF57 
[111]. They prepared a BT549 stable cell line with expression of the full-length BAF57 
protein. The results showed that BT549 clones expressing BAF57 revealed remarkable 
phenotypic changes, slow growth kinetics, and restoration of contact inhibition. Moreover, 
microarray analysis showed that BAF57-mediated cell death was associated with up-
regulation of proapoptotic genes including the tumor suppressor familial cylindromatosis 
(CYLD). CYLD was found to be a direct target of BAF57 by chromatin immunoprecipitation 
analysis. Increased expression of CYLD in BT549 cells induced apoptosis, while its 
suppression by small interfering RNA inhibited cell death in BAF57 expressing BT549 cells, 
suggesting the crucial role of BAF57 in cell growth regulation and provided a novel link 
between hSWI/SNF chromatin remodeling factors and apoptosis [112]. P270 subunit of 
SWI/SNF complexes was found to be essential for normal cell cycle arrest, providing a 
direct biological basis to support the implication from tumor tissue screens that deficiency of 
p270 plays a causative role in carcinogenesis [113]. In a separate study, BAF57 was found to 
be an ER subtype-selective modulator that specifically regulates ERalpha-mediated 
transcription, linking ER with SWI/SNF proteins [114].  
Harte et al. [115] identified BRD7 as a novel binding partner of BRCA1 with a yeast two-
hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142. To determine the 
functional consequences of the BRCA1-BRD7 interaction, they examined the role of BRD7 in 
BRCA1-dependent transcription with microarray-based expression profiling. A variety of 
target genes such as ERalpha was found to be coordinately regulated by BRCA1 and BRD7 
complex [115]. In a recent study, two novel mutations were found in one out of 95 breast 
cancer samples by sequencing BAF57 gene [116]. 

5. Conclusion and future aspects  

Important function of subunits of SWI/SNF complexes arises from their roles in chromatin 
remodeling and trancription regulation. Mutation and other alterations of these proteins 
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lead to cancer development. Researches on roles of SWI/SNF subunits in development and 
cancer are increasingly performed yet much work is necessary for clarifying the exact 
functions of these genes to provide therapy for various human cancers. Promising results 
are noticed at the moment for usability of some of these genes as a therapeutic and 
diagnostic target. Thus progress on the knowledge of functions of subunits of SWI/SNF 
complexes as well as the relationship with other breast cancer-related molecules such as 
BRCA1-2 and p53 will clarify their roles in human cancer including breast cancer, which will 
result in their uses in cancer diagnostics as well as therapy in near future. 
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