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Multiscale, Generalised Stochastic Solute 
Transport Model in One Dimension 

 
6.1 Introduction 
In Chapter 3 and 4, we have developed a stochastic solute transport model in 1-D without 
rosorting to simplifying Fickian assumptions, but by using the idea that the fluctuations in 
velocity are influenced by the nature of porous medium. We model these fluctuations 
through the velocity covariance kernel. We have also estimated the dispersivity by taking 
the realisations of the solution of the SSTM and using them as the observations in the 
stochastic inverse method (SIM) based on the maximum likelihood estimation procedure for 
the stochastic partial differential equation obtained by adding a noise term to the advection-
dispersion equation. We have confined the estimation of dispersitivities to a flow length of 1 
m (i.e,  0,1x ) except in Chapter 3, section 3.10, where we have estimated the 
dispersitivities up to 10 km using the SIM by simplifying the SSTM. This approach was 
proven to be computationally expensive and the approximation of the SSTM we have 
developed was based on the spatial average of the variance of the fluctuation term over the 
flow length. Further, the solution is based on a specific kernel. This development in Chapter 
3 is inadequate to examine the scale dependence of the dispersitivity. Therefore, we set out 
to develop a dimensionless model for any given arbitrary flow length, L , in this Chapter 
for any given velocity kernel provided that we have the eigen functions in the form given by 
equation (4.2.3). Then we examine the dispersivities in relation to the flow lengths to 
understand the multi-scale behaviour of the SSTM. 

The starting point of the development of the multi-scale SSTM is the Langevin equation for 
the SSTM, which is interpreted locally. From equation (4.9.1), the Langevin equation can be 
written as, 

2

2( ) ( ( ), ( , ), ) ( ( ), , , ) ( )x x
x x x x x

C CdC t C t V x t x dt C t x dw t
x x

   
  

 
          (6.1.1)   

where the coefficients x  and x  are dependent on , ( )xx C t  and ( , )V x t ; and 
2

2( ), ,x x
x

C CC t
x x

 
 

 and x , respectively. ( )dw t  are the standard Wiener increments with 

zero-mean and dt  variance. As discussed in Chapter 4, equation (6.1.1) has to be 
interpreted carefully to understand it better. Equation (6.1.1) is a SDE and also an Ito 
diffusion with the coefficients depending on the functions of space variables. It gives us the 
time evolution of the concentration of solute at a given point x  which is denoted by 
subscript x . Obviously, the computation of xC  also depends on how the spatial 
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derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 

 
2

,0 ,1 ,22 .x x x x
x x

C CC t F F F
x x


            

                    (6.1.2) 

Where 

   2

,0 2

, ,
,

2
x

x
V x t V x thF
x x

 
 

 
                       (6.1.3) 

   
,1

,
, ,x x

V x t
F V x t h

x


 


                        (6.1.4) 

and, 

 ,3 , ;
2
x

x
hF V x t                            (6.1.5) 

 
1

2 2 2 2
0 1 2 ,x                                (6.1.6) 

where, 

 0 00 ,xC t a                               (6.1.7) 

1 11 ,
x

C a
x

     
                             (6.1.8) 

2

2 222 ,
x

C a
x


 

   
                             (6.1.9) 

and 

 2 2

1
, ,0,1,2 ,

m

ii j ij
j

a P i 


                        (6.1.10) 

In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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
            (6.1.12) 

and 

   2
2 0 1

2
.

2

j
kj kj

p
r x sx

j j j kj
k

hP x g g x g e 



      
    

              (6.1.13)  

Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 

           

       
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2

2

1 , , , ,

, , , ,

i i

i i

x x x x x i i i i
t t

x x i i i
t t

V VdC t C t C t C t V x t t t
x x

V VC t V x t d t
x x



 



                   
                

      (6.1.14) 

where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 
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derivatives of xC  are calculated. In that sense, equation (6.1.1) is a stochastic partial 
differential equation as the coefficients are functions of random quantities. But we avoid 
solving a SPDE by treating equation (6.1.1) as a SDE and interpreting it as an Ito integral 
which makes us to evaluate coefficients at the previous time point with respect to the 
current point of evaluation. 

For simplicity, we will denote the coefficients as x  and x . In Chapter 4, we have 
derived explicit function for x  and x : 
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where, 
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In equation (6.1.10), 2  is the variance of the covariance kernel, j  are eigen functions, 

and for the domain of  0,1x , 
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and 
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Equation (6.1.1) to (6.1.13) constitute the Langevin form of the SSTM. It should be noted that 
the functions ijP are only valid for  0,1x . If we normalize the spatial variable x  to 

remain with in  0,1 , then we can use the results in Chapter 4 to obtain ijP . We develop 
the dimensionless Langevin form of the SSTM in section 6.2. 

One should note that the Langevin equation for any system reflect the role of external noise 
to the system under consideration (van Kampen, 1992). Even though we have derived 
equation (6.1.1) starting from the mass conservation of solute particles, the fluctuations 
associate with hydrodynamics dispersion are a result of dissipation of energy of particles 
due to momentum changes associated near to the surfaces of porous medium. For a  
physical ensemble of solute particles, porous medium through which it flows act as an 
external source of noise. From this point of review, the Langevin type equation for solute 
concentration is justified. As a SDE, equation (6.1.1) is a Wiener process with stochastic, at 
best nonlinear, time-dependent coefficients, and it is also an Ito diffusion which should be 
interpreted locally, i.e., for a given x  and t , equation (6.1.1) is valid only for short time 
intervals beyond t . This naturally leads us to evaluate the associated spatial derivatives at 
the previous time, which is valid according to Ito’s interpretation of stochastic integral. In 
terms of discretized times, 0 1 1, ,..., , ,...,i it t t t   equation (6.1.1) can be written as, 
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      (6.1.14) 

where the drift coefficient, x , and the diffusion coefficient, x , are evaluated at time it . 
This restrictive nature of equation (6.1.14) in evaluating the coefficient has to be taken in to 
account in developing numerical algorithms to solve it. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 

x
L                                  (6.2.1) 

where L  is the total flow length. 

When  0, ,x L   0,1 .  

If 0C  is a constant concentration defined such a way that 0C maximum of  xC t  for all 

x  and t , then   0 xC C t  for any t  and x . We can define dimensional concentration 

 t  as, 

 
0

xCt
C

     .                            (6.2.2) 

From equation (6.2.1), 

1 ,Z
x L





                              (6.2.3a) 

 0 0 ,x CC Z C
x Z x L Z

   
  
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                      (6.2.3b) 
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                                   
          (6.2.3c) 

As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 
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Similarly, 
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and                       (6.2.5) 

 ,2 , .
2
hF V t

                              (6.2.6) 

   0 1,j jP P   and  2 jP   are obtained by simply replacing x  in    0 1,j jP x P x  and 

 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 

 

Similarly,  

     0 0 00C t a                             (6.2.7) 
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 and                      (6.2.8) 
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2 222 2
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Now we can write equation (6.1.1) in the following manner: 

       0 Zd C dt d t        ,                    (6.2.10) 

     
0 0

Z
d dt d t

C C
 

  
   .                     (6.2.11) 

where 
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          (6.2.13) 

Therefore, the Langevin form of the generalized SSTM is given by 

  , 0 1.d dt d t Z                             (6.2.14) 

where  
0

Z
Z C





  and  

0
Z

Z
C


  . 

Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.2 Partially Dimensionless SSTM with Flow Length L  
We start the derivation of partially dimensionless SSTM by defining the dimensionless 
distance, Z , as: 

x
L                                  (6.2.1) 

where L  is the total flow length. 

When  0, ,x L   0,1 .  

If 0C  is a constant concentration defined such a way that 0C maximum of  xC t  for all 

x  and t , then   0 xC C t  for any t  and x . We can define dimensional concentration 

 t  as, 

 
0

xCt
C

     .                            (6.2.2) 

From equation (6.2.1), 

1 ,Z
x L





                              (6.2.3a) 

 0 0 ,x CC Z C
x Z x L Z

   
  

   
                      (6.2.3b) 

2 2
0 0 0

2 2 2. .x xC C C C Z C
x x x x L Z Z L Z x L

                                   
          (6.2.3c) 

As the domain of x  is the generalized SSTM is from 0 to 1, we can replace x  with Z  in 
the dimensionless generalized SSTM. For example, ,0xF  becomes ,0ZF . 
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   0 1,j jP P   and  2 jP   are obtained by simply replacing x  in    0 1,j jP x P x  and 

 2 jP x  expressions by  , because these expressions are derived for  0,1  domain. 

 

Similarly,  

     0 0 00C t a                             (6.2.7) 

   0
1 11 ,C a

L
 

  


 and                      (6.2.8) 

   
2

0
2 222 2

C a
L

  
  


                         (6.2.9) 

Now we can write equation (6.1.1) in the following manner: 
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Therefore, the Langevin form of the generalized SSTM is given by 
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Using equation (6.2.14) we can compute the time course of the dimensionless concentration 
for any given L . 

The dimensionless/concentration,  , varies from 0 to 1.  ZC t  is proportioned to the 
number of solute moles within a unit volume of porous/water matrix, and 0C  is 
proportional to the maximum possible number of solute moles within the same matrix. 
Therefore,   0/ZC t C   can be interpreted as the likelihood (probability) of finding solute 
moles within the matrix. 

It should be noted that time, t , is not a dimensionless quantity and therefore, equation 
(6.2.14) is partially dimensionless equation. We will explore the dispersivity using equation 
(6.2.14) first before discussing a completely dimensionless equation. 
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6.3 Computational Exploration of the Langevin form of SSTM 
Equation (6.2.14) is not only an expression of how the solute disperses within a porous 
media but also an expression of nature of dispersion. Being a SDE, the drift coefficient 
 Z  portrays the dispersion due to the convective forces and the diffusive 

coefficient     shows the dynamical behaviour of hydrodynamic dispersion. As Z  has 

the range from 0 to 1 in equation (6.2.14), we can compute Z  and   values for a 
specific Z  value and examine how they change over time. (We use 0 1.0C   for 

computations, and therefore, Z Z   and    .) We have developed a finite 
difference algorithm to compute Z  and   adhering to the Ito integration as we have 
done before. Figure 6.1a and 6.1b show the time courses of Z  and   at 0.5Z  , 
respectively, for different 2  values when 1L m  (All times are given in days and 

0.1b  . At low 2  values, Z  behaves almost as a smooth deterministic function but 
at high 2  values it shows irregular behaviours. In these calculations, we have kept the 
mean velocity V  at a constant value (0.5), therefore only fluctuating component affecting 
Z  function is the solute concentration and its spatial derivatives. Further, Figure 6.1a 

and 6.1b only show a single realization for each 2  values. When we explore multiple 
realizations (not shown here), we see that randomness of Z  and   increases with 
higher 2 . One distinct feature of Figure 6.1b for Z  is that   is almost negligible for 
very small values of 2  but increases quite sharply for higher 2  values. Z  does not 
behave in this manner. However, we can not ignore the effect of 2  at low values in 
computing  Z  , which has a follow-on affect on subsequent calculation. In other 

words, the affects of porous media, which 2  and the covariance kernel signify, can not 
be ignored as they affect the flow velocities significantly in making them stochastic. 
Figure 6.2a and 6.2b show Z  and   realization at 0.5Z   when 5L m . The 
behaviours of  Z  and   realizations are similar to those shown in Figures 6.1a and 
6.1b. Figure 6.3a and Figure 6.3b show the similar trends for 10L m . It should be noted 
that as L  is increased, the time duration for the numerical solution of equation (6.2.14) 
should be increased. For example, when 10L m , the model was run for 25 days to 
obtain Figures 6.3a and 6.3b. However, the order of magnitude for Z  and Z  has not 
changed as we change L  in an order of magnitude. 

 

      
(a) 

    
(b) 

Figure 6.1. (a) Realizations of Z  at 0.5Z   when 1L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 1L m , 

0.1b   and 0.5 /V m day  for different 2  values. 
 

        
(a) 
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(b) 

Figure 6.1. (a) Realizations of Z  at 0.5Z   when 1L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 1L m , 

0.1b   and 0.5 /V m day  for different 2  values. 
 

        
(a) 

www.intechopen.com



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus184

 

 
(b) 

Figure 6.2. (a) Realizations of Z  at 0.5Z   when 5L m , 0.1b   and 

0.5 /V m day for different 2  values; (b) Realizations of Z  at 0.5Z   when 5L m , 

0.1b   and 0.5 /V m day  for different 2  values. 
 

 
(a) 

     
(b) 

Figure 6.3. (a) Realizations of Z  at 0.5Z   when L  10 m, b  = 0.1 and V =0.5 m/day 
for different 2  values; (b) Realizations of Z  at 0.5Z   when L  10 m, b  = 0.1 and 

V =0.5 m/day for different 2  values. 

 

     
(a) 

     
(b) 

       
(c) 

       
(d) 

Figure 6.4. Realizations of Z  at 0.5Z   when b  = 0.1, V =0.5 for (a) L  1, (b) L  5, 
(c) L  10 and (d) L  100 
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Figure 6.4a, 6.4b, 6.4c, and 6.4d show the realization of  Z  at 0.5Z   when 

1,5,10,L  and 100, respectively, for different values of 2 . (For all the calculations, we 
have used b = 0.1). When L  100 m, we computed  Z  values for 175 days and the 

affects of 2  on  Z  is quite dramatic, and this shows that equation (6.2.14) can display 

very complex behaviour patterns albeit its simplicity. It should be noted however that 2  
plays major role in delimiting the nature of realizations; 2  values high than 0.25 in these 
situations produces highly irregular concentration realizations which could occur in highly 
heterogeneous porous formations such as fractured formations. 
 

6.4 Dispersivities Based on the Langevin Form of SSTM for 10L  m 
One of the advantages of the partially dimensionless Langevin equation for the SSTM 
(equation 6.2.14) is that we can use it to compute the solute concentration profiles when the 

travel length  L is large. Equation (6.2.14) allows us to compute the dispersitivities using the 

stochastic inverse method (SIM) by estimating dispersivity for each realization of  Z . For 
the SIM, we need to modify the deterministic-advection and dispersion equation into a 
partially dimensionless one. We start with the deterministic advection-dispersion equation 
with additive Gaussian noise, 

 
2

2 , ,L x
C C CD V x t
t x x

  
  

  
                      (6.4.1) 

where LD  is the dispersion coefficient (dispersivity xV ). 

The partially dimensionless form of equation (6.4.1) is, 

 
2

2 2 , ,L xD V Z t
t L Z L Z

   
  

  
                     (6.4.2) 

where 2
LD
L

 is now estimated using SIM when xV  is known. Then the dispersivity value is 

(estimated 2
LD
L

) 2 / .xL V  

Figure 6.5 show the scatter plots of dispersivity values estimated using the SIM for 1,5,L   
and 10 m. Each plot in Figure 6.5 gives 30 estimates of the dispersivity for a given value 2 . 
 Z  realizations were computed at 0.5Z   and 0.1b   for all plots. Table 6.1 

summarizes the results giving the mean of each plot. We will compare these results with 
available data for dispersivities later in this chapter. 
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Figure 6.5. Dispersivities estimated from SSTM for 1,5,L  and 10. 
 

2  
Dispersivity 

L=1 L=5 L=10 
0.0001 0.050064 0.050112 0.0495545 
0.001 0.0501232 0.05082 0.0511587 
0.01 0.0520638 0.0604215 0.0778382 
0.1 0.0669766 0.0832735 0.11899 
0.25 0.0723413 0.111142 0.253195 
0.4 0.0783754 0.142422 0.354335 
0.6 0.0843219 0.170975 0.427603 
0.8 0.0962623 0.225344 0.549473 
1 0.110849 0.256348 0.609508 

Table 6.1. Mean dispersivities for the data in Figure 6.5. 

 

 

As mentioned previously, the partially dimensionless equation (6.2.14) still requires us to 
compute for a large number of days when L  is large. While the computational times are 
still manageable, we would like to develop a completely dimensionless Langevin equation 
for the SSTM. This could be especially useful and insightful when the mean velocity V  
could be considered as a constant. 
 

6.5 Dimensionless Time 
We introduce dimensionless time,  , as, 

 , . ,tV Z t
L

                               (6.5.1) 

where,  ,V Z t  is mean velocity when 0 1,Z   (m/day); L  is travel length, m; and t  
is time in days.  

Therefore, if 0.5V  , 100L   and 0 200,t   then, 0 1.0.   This allows us to 
compute  Z  realization for larger times. 

Equation (6.2.14) can be written as, 

   .Z zZ dt d t       

We can now change ,Ldt d
V

  and the variance of   Ld t t
V

     . 

Therefore, 

    ,Z
z

LZ d d t
V
   

                          (6.5.2) 

where  dw  ~ 0, L d
V

  
 

. 

The completely dimentionless Langevin form of the SSTM is therefore, 

   , ,Z zZ d d                                (6.5.3) 

where  d   are the Wiener increment with zero-mean and L d
V

  variance, and  

, .Z
Z

L
V
 

                                (6.5.4) 

To use equation (6.5.3), we need to choose   and the range of   appropriately. Ideally 

0.0001L d
V

   for the Ito integration to be accurate; therefore, we should have for maximum 

  as 0.0001V
L

. Suppose 0.5, 1000,V L   then 
410 0.5 ,

1000


 
   i.e, 85 10 .     
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compute  Z  realization for larger times. 

Equation (6.2.14) can be written as, 

   .Z zZ dt d t       

We can now change ,Ldt d
V

  and the variance of   Ld t t
V

     . 

Therefore, 

    ,Z
z

LZ d d t
V
   

                          (6.5.2) 

where  dw  ~ 0, L d
V

  
 

. 

The completely dimentionless Langevin form of the SSTM is therefore, 

   , ,Z zZ d d                                (6.5.3) 

where  d   are the Wiener increment with zero-mean and L d
V

  variance, and  

, .Z
Z

L
V
 

                                (6.5.4) 

To use equation (6.5.3), we need to choose   and the range of   appropriately. Ideally 

0.0001L d
V

   for the Ito integration to be accurate; therefore, we should have for maximum 

  as 0.0001V
L

. Suppose 0.5, 1000,V L   then 
410 0.5 ,

1000


 
   i.e, 85 10 .     
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As we can see we may not gain much computational advantage with a completely 
dimensionless Langevin form of the SSTM. 
 

6.6 Estimation of Field Scale Dispersivities 
We have estimated the longitudinal dispersivities using SSTM for two different boundary 
conditions: 

(A) 1Z   at 0Z  and for 0;t   and 

(B) 1Z   at 0Z  and for 0 ,Rt t   ; and 0Z  at Z=0 for Rt t . 

Rt is taken to be 1/3 of the total time (T) of the computational experiment. Table 6.1 and 6.2 
show the dispersivity values for the boundary conditions A and B, respectively, when 
L  10 m based on 100 realisations for each of the boundary condition. 

 

2  
Dispersivity 

L=1 L=5 L=10 
0.0001 0.050013 0.050013 0.049828 
0.001 0.050035 0.050223 0.050226 
0.01 0.050646 0.055152 0.06112 
0.1 0.055176 0.079403 0.136904 
0.25 0.068846 0.108899 0.257902 
0.4 0.083342 0.16346 0.333472 
0.6 0.093185 0.191919 0.334818 
0.8 0.109335 0.251033 0.54346 
1 0.129395 0.331389 0.613823 

Table 6.2. Longitudinal dispersivities (mean) for the boundary condition A. 

The values in Table 6.1 and 6.2 are similar for the similar values of 2 and L  showing that 
(1) the SSTM procedure is robust in evaluating the dispersivities, and (2) the computed 
mean dispersivities do not depend on the boundary conditions, A and B. In these 
calculations, we have 0.5ZV  m/day. 

We have also computed the dispersivities for larger scales up to 10,000 m, and Table 6.3   
gives the mean values for the range of L  from 1 m to 410 m under the boundary condition 
A, and Table 6.4 gives the mean values for the range of L from 1 m to 810 m for the 
boundary condition B. All mean values are calculated based on different sets of 100 
realisations for each boundary condition. Except for the smallest  2  values (0.0001 and 
0.001), the dispersivities have similar mean values for both boundary conditions, A and B. 
Therefore, it is quite reasonable to compute the dispersivities only for the boundary 
condition A for larger values of L. We can also hypothesise that the dispersivities are 
independent of the boundary conditions used to solve the SSTM. We have tested the SSTM 
for different values of Rt > (1/3) T when L>10 m. Figure 6.6 depicts the dispersivity plotted 
against 2  and L in Log10 scale, and Log10 (Dispersivity) is a linear function of Log10(L) 

 

and Log10( 2 ) for the most parts of the Log10 (Dispersivity) surface. Figure 6.7 shows the 
linear relationship of Log10 (Dispersivity) vs Log10 (L) for different values of 2 , and 
Figure 6.8 shows the same for Log10 (Dispersivity) vs Log10( 2 ) for different values of L. 
The gradient of the graphs are the same except for lower values of 2  (0.0001) and lower 
values of L (1 and 5). Therefore, we develop the following statistical nonlinear regression 
models for these significant relationships: 

  12
1

m

sD C  , and                           (6.6.1) 

   2

2

m
sD C L ,                            (6.6.2) 

where sD is the dispersivity, and 1C and 2C  are given in Tables 6.5 and 6.6 , respectively, 
along with m1 and m2 values. R-square values for equations (6.6.1) and (6.6.2) are 0.96 and 
0.94, respectively. 

σ2 
Dispersivity 

L=1 L=5 L=10 L=50 L=100 L=500 

0.0001 0.0498 0.0500 0.0497 0.0498 0.0507 0.0686 

0.001 0.0498 0.0499 0.0495 0.0477 0.0639 0.4982 

0.01 0.0492 0.0510 0.0511 0.1642 0.5073 4.0672 

0.1 0.0449 0.0592 0.1372 0.9309 2.9601 28.6151 

0.25 0.0451 0.1123 0.2391 2.5441 6.1225 40.5301 

0.4 0.0573 0.1340 0.3413 3.4365 8.1834 48.7567 

0.6 0.0784 0.1824 0.4619 4.9440 10.9837 64.7589 

0.8 0.0958 0.1987 0.7057 6.6800 14.9122 82.4423 

1 0.1247 0.2159 0.8102 8.9878 19.9003 112.5246 
 L=1000 L=2000 L=4000 L=6000 L=8000 L=10000 

0.0001 0.2697 0.7964 2.0630 4.1138 5.9939 8.1065 

0.001 2.5154 7.2616 20.5460 32.6517 45.9978 69.0446 

0.01 12.6500 30.0361 81.0270 155.2103 231.3154 324.3036 

0.1 70.0564 156.8923 333.6665 523.4295 708.0212 903.6889 

0.25 87.8303 185.7131 381.1019 569.9892 766.8287 978.5914 

0.4 101.1441 203.0552 425.5467 625.6709 866.0189 1061.9651 

0.6 131.0882 259.4990 528.0956 828.7496 1079.0040 1355.8468 

0.8 173.1833 344.9935 691.7747 1070.9582 1399.5126 1771.3449 

1 227.3204 453.3977 925.0844 1396.8663 1864.1378 2337.5588 

Table 6.3. Longitudinal dispersivities (mean) for the range of L  from 1 m to 410 m under 
the boundary condition A 
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(1) the SSTM procedure is robust in evaluating the dispersivities, and (2) the computed 
mean dispersivities do not depend on the boundary conditions, A and B. In these 
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A, and Table 6.4 gives the mean values for the range of L from 1 m to 810 m for the 
boundary condition B. All mean values are calculated based on different sets of 100 
realisations for each boundary condition. Except for the smallest  2  values (0.0001 and 
0.001), the dispersivities have similar mean values for both boundary conditions, A and B. 
Therefore, it is quite reasonable to compute the dispersivities only for the boundary 
condition A for larger values of L. We can also hypothesise that the dispersivities are 
independent of the boundary conditions used to solve the SSTM. We have tested the SSTM 
for different values of Rt > (1/3) T when L>10 m. Figure 6.6 depicts the dispersivity plotted 
against 2  and L in Log10 scale, and Log10 (Dispersivity) is a linear function of Log10(L) 

 

and Log10( 2 ) for the most parts of the Log10 (Dispersivity) surface. Figure 6.7 shows the 
linear relationship of Log10 (Dispersivity) vs Log10 (L) for different values of 2 , and 
Figure 6.8 shows the same for Log10 (Dispersivity) vs Log10( 2 ) for different values of L. 
The gradient of the graphs are the same except for lower values of 2  (0.0001) and lower 
values of L (1 and 5). Therefore, we develop the following statistical nonlinear regression 
models for these significant relationships: 

  12
1

m

sD C  , and                           (6.6.1) 

   2

2

m
sD C L ,                            (6.6.2) 

where sD is the dispersivity, and 1C and 2C  are given in Tables 6.5 and 6.6 , respectively, 
along with m1 and m2 values. R-square values for equations (6.6.1) and (6.6.2) are 0.96 and 
0.94, respectively. 

σ2 
Dispersivity 

L=1 L=5 L=10 L=50 L=100 L=500 

0.0001 0.0498 0.0500 0.0497 0.0498 0.0507 0.0686 

0.001 0.0498 0.0499 0.0495 0.0477 0.0639 0.4982 

0.01 0.0492 0.0510 0.0511 0.1642 0.5073 4.0672 

0.1 0.0449 0.0592 0.1372 0.9309 2.9601 28.6151 

0.25 0.0451 0.1123 0.2391 2.5441 6.1225 40.5301 

0.4 0.0573 0.1340 0.3413 3.4365 8.1834 48.7567 

0.6 0.0784 0.1824 0.4619 4.9440 10.9837 64.7589 

0.8 0.0958 0.1987 0.7057 6.6800 14.9122 82.4423 

1 0.1247 0.2159 0.8102 8.9878 19.9003 112.5246 
 L=1000 L=2000 L=4000 L=6000 L=8000 L=10000 

0.0001 0.2697 0.7964 2.0630 4.1138 5.9939 8.1065 

0.001 2.5154 7.2616 20.5460 32.6517 45.9978 69.0446 

0.01 12.6500 30.0361 81.0270 155.2103 231.3154 324.3036 

0.1 70.0564 156.8923 333.6665 523.4295 708.0212 903.6889 

0.25 87.8303 185.7131 381.1019 569.9892 766.8287 978.5914 

0.4 101.1441 203.0552 425.5467 625.6709 866.0189 1061.9651 

0.6 131.0882 259.4990 528.0956 828.7496 1079.0040 1355.8468 

0.8 173.1833 344.9935 691.7747 1070.9582 1399.5126 1771.3449 

1 227.3204 453.3977 925.0844 1396.8663 1864.1378 2337.5588 

Table 6.3. Longitudinal dispersivities (mean) for the range of L  from 1 m to 410 m under 
the boundary condition A 
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σ2 
Dispersivity 

L=1 L=5 L=10 L=50 L=100 L=500 L=1000 

0.0001 0.0498 0.0500 0.0497 0.0498 0.0507 0.0686 0.1426 

0.001 0.0498 0.0499 0.0495 0.0477 0.0639 0.4982 1.4690 

0.01 0.0492 0.0510 0.0511 0.1642 0.5073 4.0672 12.0999 

0.1 0.0449 0.0592 0.1372 0.9309 2.9601 28.6151 69.2489 

0.25 0.0451 0.1123 0.2391 2.5441 6.1225 40.5301 87.0760 

0.4 0.0573 0.1340 0.3413 3.4365 8.1834 48.7567 100.6075 

0.6 0.0784 0.1824 0.4619 4.9440 10.9837 64.7589 132.1320 

0.8 0.0958 0.1987 0.7057 6.6800 14.9122 82.4423 173.1823 

1 0.1247 0.2159 0.8102 8.9878 19.9003 112.5246 221.6737 

Table 6.4. Longitudinal dispersivities (mean) for the range of L  from 1 m to 810 m under 
the boundary condition B 
 

 

Figure 6.6. The linear relationship of Log10 (Dispersivity) vs Log10 ( 2 ) for different values of L. 

 

 
Figure 6.7. The linear relationship of Log10 (Dispersivity) vs Log10 (L) for different values of 2 . 
 

 
Figure 6.8. The plot of Log10 (Dispersivity) vs Log10 ( 2 ) and Log10 (L) 
 

L (m) 1 5 10 50 100 500 
m1 0.039 0.125 0.311 0.605 0.677 0.704 
C1 0.063 0.124 0.468 6.275 16.23 109.6 

L (m) 1000 2000 4000 6000 8000 10000 
m1 0.690 0.642 0.605 0.578 0.567 0.552 
C1 229.5 451.3 912.4 1368.7 1823.1 2281.4 

Table 6.5. m1 and 1C values for different L for equation (6.6.1). 
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2  0.0001 0.001 0.01 0.1 0.25 0.4 0.6 0.8 1.0 
m2 0.589 0.897 1.067 1.150 1.148 1.148 1.148 1.148 1.144 

2C  0.0122 0.0078 0.0103 0.0168 0.0242 0.0311 0.0409 0.0535 0.0725 
Table 6.6. m2 and 2C values for different  2  for equation (6.6.2). 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 

 

7 
 

The Stochastic Solute Transport  
Model in 2-Dimensions 

 
7.1 Introduction 
In Chapter 6, we developed the generalised Stochastic Solute Transport Model (SSTM) in 1-
dimension and showed that it can model the hydrodynamic dispersion in porous media for 
the flow lengths ranging from 1 to 10000 m. For computational efficiency, we have 
employed one of the fastest converging kernels tested in Chapter 6 for illustrative purposes, 
but, in principle, the SSTM should provide scale independent behaviour for any other 
velocity covariance kernel. If the kernel is developed based on the field data, then the SSTM 
based on that particular kernel should give realistic outputs from the model for that 
particular porous medium. In the development of the SSTM, we assumed that the 
hydrodynamic dispersion is one dimensional but by its very nature, the dispersion lateral to 
the flow direction occurs. We intend to explore this aspect in this chapter. 

First, we solve the integral equation with the covariance kernel in two dimensions, and use 
the eigen values and functions thus obtained in developing the two dimensional stochastic 
solute transport model (SSTM2d). Then we solve the SSTM2d numerically using a finite 
difference scheme. In the last section of the chapter, we illustrate the behaviours of the 
SSTM2d graphically to show the robustness of the solution. 
 

7.2 Solving the Integral Equation 
We consider the flow direction to be x and the coordinate perpendicular to x to be y in the 2 
dimensional flow with in the porous matrix saturated with water. Then the distance 

between the points 1 1( , )x y and 2 2( , )x y , r, is given by 
1/22 2

1 2 1 2( ) ( )x x y y     . We can 

then define a velocity covariance kernel as follows: 

2
2

1 1 2 2( , , , ) exp rq x y x y
b


 

  
 

,                (7.2.1) 

where 2  is a constant. 2  is the variance at a given point, i.e., when 1 2x x  and 

1 2y y . The covariance can be written as, 

2 2
1 2 1 22

1 1 2 2

2 2
2 1 2 1 2

( ) ( )
( , , , ) exp ,

( ) ( )exp exp .

x x y y
q x y x y

b

x x y y
b b





       
  
    

     
   

             (7.2.2) 
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