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1. Introduction 

Breast cancer is the most common malignancy of women in many countries including 

United States and many European countries. Chemotherapy plays a major role in the 

treatment of advanced breast cancer, either as an adjuvant to primary therapy or as 

palliation therapy to improve symptoms and prolong survival. The previous 50 years have 

seen numerous advances in the properties of chemotherapeutic agents. However, a 

significant proportion of cancers are inherently unaffected by the administration of 

anticancer drugs. Furthermore, another considerable proportion of patients undergoing 

chemotherapy display an initial reduction in tumor size and then relapse with a marked 

insensitivity to a variety of drugs. Both phenomena are brought about by a resistant 

phenotype, which presents perhaps the single greatest barrier to successful chemotherapy. 

Biological mechanisms contributing to drug resistance may be present de novo or arise after 

exposure to anticancer drugs. At present, drug resistance is considered as a multifactorial 

phenomenon involving several major mechanisms (1, 2). In general, two main groups of 

factors contribute to the development of drug resistance. The first group includes 

pharmacological and physiological factors such as drug metabolism and excretion, 

inadequate access of the drug to the tumor, inadequate infusion rate and inadequate route 

of delivery. The second group includes cell- or tissue-specific factors. For example, increased 

repair of DNA damage, reduced apoptotic cell death, altered metabolism of drugs, increased 

energy-dependent efflux (e.g. ATP-binding cassette transporters) of chemotherapeutic drugs 

and microRNAs are known factors correlated with the development of anticancer drug 

resistance (1). In recent years, both clinical observations and experimental studies suggested 

that steroid hormones and their receptors might also affect the therapeutic efficacy of 

antineoplastic drugs (3-8). 
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Traditionally, steroid hormones can be grouped into five groups by the receptors to which 
they bind: glucocorticoids, mineralocorticoids, androgens, estrogens and progestagens (9-
11). Previous studies from our laboratory showed that glucocorticoids, such as 
dexamethasone, could significantly interfere with the antitumor activities of paclitaxel in 
vitro and in vivo (3, 4, 12). Further studies suggest that paclitaxel may induce apoptotic cell 

death through activation of the NF-B/IB signaling pathway, whereas glucocorticoids 

inhibit paclitaxel-induced apoptosis through induction of IB synthesis, which antagonizes 

paclitaxel-mediated activation of NF-B and subsequently results in inhibition of paclitaxel-

induced apoptosis (4，13, 14). Considering that cancer patients are routinely pretreated with 
glucocorticoids (such as dexamethasone) before receiving taxanes (e.g. paclitaxel, docetaxel) 
to prevent taxane-related hypersensitivity reactions or other adverse effects, the finding of 
glucocorticoid-mediated inhibition of paclitaxel-induced apoptosis raises a clinically 
relevant question as to whether pretreatment of glucocorticoids might actually interfere 
with the therapeutic efficacy of paclitaxel. We have recently reviewed the influence and 
impact of glucocorticoids on drug-induced apoptosis (4). The cuurent article is largely 
focused on the role of estrogen and estrogen receptors on the resistance to chemotherapy 
and the potential strategies to reverse the resistance or sensitize ER+ breast tumors to 
chemotherapy.  

2. Estrogen and estrogen receptors in the development and treatment of 
breast cancer 

Estrogens, such as 17- estradiol (E2) in human, are steroidal sex hormones that are 
synthesized from cholesterol and primarily secreted by the ovaries. They play a major role 
in the development and maintenance of the reproductive tract as well as in the development 
of the mammary glands. Estrogens also maintain bone density and reduce cardiovascular 
system by regulating cholesterol levels and influence some brain structures (15, 16). 
However, besides their physiological functions, estrogens are also involved in the 
development and progression of breast and the uterus cancers and can maintain tumor cell 
proliferation (15, 16). 

Estrogen action is primarily mediated by two types of estrogen receptors (ERs), i.e.  ERand 

ER. ERs are members of the superfamily of nuclear receptors (17, 18). ERs in the cell 
nucleus mediate the effects of the ligand E2 by functioning as transcriptional regulators that 
access various target gene promoters either by directly binding to specific estrogen response 
elements (EREs) within the promoter or indirectly by interacting with other transcriptional 
regulators bound to the promoter. Further, several cases of ligand-independent activation of 

ER mediated by its phosphorylation by various signaling pathways have been reported 

(19). In addition, ER localized in the extra-nuclear compartment (such as the plasma 
membrane or cytoplasm ER) of target cells, can also mediate several nongenomic effects of 
estrogen. These non-genomic actions are associated with the activation of a kinase cascade, 
such as growth factor receptor kinases (e.g. epidermal growth factor receptor). By these 

means, E2 and ERfacilitate pathways involved in the promotion of cell proliferation, 
inhibition of apoptosis, stimulation of metastasis, and angiogenesis. Although there is 

growing evidence that the ERmay inhibit the action of ERby heterodimerizing with it, 

the overall role of ER in breast cancer remains to be better clarified. A number of reviews 
have recently been published on the biological roles of estrogens and molecular activities of 

ERs (15-20). Unless otherwise specified, ER refers to ERwithin this review. 
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Cumulative analysis of tumor biopsies has shown that ERs present in ~65% of human breast 

tumors (21, 22). This is consistent with the crucial role of the ERsubtype in breast cancer 
etiology and progression, and with the role played by estrogens as tumor promoters. It has 

long been known that breast tumors that express the ER protein (ER+) behave in a 
fundamentally different fashion than ER-negative (ER-) tumors with regard to their 
response to hormonal therapies, given that outcomes are often favorable in ER-positive 
breast tumors treated by adjuvant endocrine therapy alone (23, 24). Neoadjuvant 
chemotherapy has a well-established role in the management of early-stage, operable breast 
cancer, and remains the gold standard downstaging systemic therapy in many centers, 
regardless of ER status. However, the data from other clinical trials or retrospective analyses 
suggest that ER status might also affect the efficacy of chemotherapy (5-8). Specifically, it 
has been observed that some chemotherapeutic agents may be less effective in patients with 
ER+ tumors than those with ER- tumors.  
 

 

Fig. 1. Hypothesized pathways of estrogen/ER-mediated chemoresistance using paclitaxel 

as an example.  and  represent inhibitory or antagonistic action. MDR, multidrug 
resistance. There are possible cross-talks between indicated pathways. 

3. Current understnding of ER-mediated chemoresistance 

More than one decade ago, Lippman ME et al first determined the relation between ER and 
the response rate to cytotoxic chemotherapy in 70 breast cancer patients (6). They found that 
34 of 45 patients with low or absent ER values (<10 fmol/mg of cytoplasmic protein) had 
objective responses to chemotherapy, whereas only 3 of 25 patients with higher ER values 
(>10 fmol/mg of cytoplasmic protein) responded (p<0.0001). There were no statistically 
significant differences between the two groups in age, menopausal status, disease-free 
interval, Karnofsky index or prior therapy. Moreover, differences in sites of involvement or 
type of combination chemotherapy did not account for the increased response rate in ER- 
patients. This is the first report suggesting that ER status might be an important predictor of  
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response to cytotoxic chemotherapy in breast tumors. Since then, evidence from clinical 
trials or retrospective analyses is accumulating that improvements in chemotherapy 
disproportionately benefit breast cancer patients with ER- tumors, in which multiple 
chemotherapeutic regimens have been tested in these studies (6, 25-33), such as taxanes-, 
anthracycline- and navelbine-containing regimens. More recently, in a retrospective clinical 
study conducted by us and our collaborators, we found that primary breast cancer patienhts 
with ER+ tumors achieved significant lower pathologic response than those with ER- breast 
tumors when treated with preoperative chemotherapeutic regimens including DEC 
(docetaxel+epirubicin+cyclophosphamide), VFC (vinorelbine/vincristine+5-fluorouracil+ 
cyclophosphamide) and EFC (epirubicin+5-fluorouracil+cyclophosphamide) (34).  
The involvement of ER in chemoresistance has also been confirmed in a number of in vitro 
studies (5, 7, 8, 35-40). For example, ER- breast cancer tissue was found chemosensitive in 
vitro compared with ER+ tissue against six antitumor drugs including carboquone, 
adriamycin, mitomycin C, aclacinomycin A, cisplatin and 5-fluorouracil (5). When subjected 
ER+ human breast cancer MCF-7 and ZR-75–1 cells to paclitaxel or to UV irradiation, 
marked increases in cell apoptosis were induced. However, these responses were 
significantly reversed by incubation with E2, which was probably mediated through the 
plasma membrane estrogen receptor (40). Recently, we established several isogenic ER+ cell 

lines by stable transfection of ERexpression vectors into ER- breast cancer BCap37 cells to 
investigate the possible influence of ER on the therapeutic efficacy of paclitaxel and vinca 

alkaloids (7, 8). We found that 17- estradiol significantly reduced the overall cytotoxicity of 

these antimicrotubule drugs in ER-expressing BCap37 but had no influence on the ER- 

parental cells or ER- MDA-MB-468 cells. Further analyses indicate that expression of ERin 
BCap37 cells mainly interferes with the apoptotic cell death but not mitotic arrest induced 
by these drugs. Moreover, we found that the addition of ICI 182,780 (fulvestrant), a selective 
ER down-regulator, could completely reverse the above resistance observed in ER+ BCap37 
cells, and sensitize MCF-7 and T47D cell lines to the treatment of the above drugs (see Fig. 

2). These findings further confirmed the correlation between ER and drug resistance in 
ER+ tumor cells. 

4. Possible mechanisms of ER-mediaed chemoresistance 

Estrogens and ERs are well-known for their critical roles in the development and 
progression of breast tumors, through genomic or non-genomic pathways as described 
above. Plentiful data also indicate that estrogens and ER are involved in or interact with a 
number of apoptosis- or proliferation-related signal pathways existed in tumor cells. 
Therefore, it is believed that through interaction with and/or regulation on specific or 
various co-regulators or downstream molecules, estrogen/ER induce chemoresistance in 
tumor cells by promoting tumor growth and/or inhibiting the antitumor effect of 
chemotherapeutic drugs. Several mechanisms that may contribute to ER-mediated drug 
resistance are discussed below. It appears that the underlying mechanisms of ER-mediated 
chemoresistance are quite complicated and specifically related with the tumor models and 
chemotherapeutic drugs studied.  

4.1 Role of apoptosis-related molecules in ER-mediated chemoresistance 

Reduced apoptotic cell death or enhanced tumor cell proliferation are major factors involved 
in drug resistance. Whereas it is not completely understood how estrogen and ER regulate  
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Fig. 2. ER expression attenuates the anticancer activity of paclitaxel (7). A, protein extracts 

of BCap37 cells transfected with empty vector (BC-V) or ERwere analyzed by Western 

blot. T47D and MCF-7 cells were used as positive controls of ER expression. B, cells were 

treated with 1 nmol/L 17- estradiol, 50 nmol/L paclitaxel, or the combination treatment in 

which cells were preincubated with 17- estradiol for 12 h before paclitaxel treatment. Cell 
viability was evaluated by MTT assays after both 48 and 72 h of paclitaxel treatment. BC-ER, 

pooled transfectants of BCap37 transfected with ER, BC-ER1–7, single clones 1 to 7 of 

BCap37 transfected with ER; CTL, control; EST, 17- estradiol; PTX, paclitaxel. #, P < 0.05, 
when compared with the group treated with paclitaxel alone in the same cell line; *, P < 
0.001, when compared with the group treated with paclitaxel alone in the same cell line. C, 

cells treated with 1 nmol/L 17- estradiol, 50 nmol/L paclitaxel, or their combination for 
indicated time points were harvested, and DNA content stained with propidium iodide for 
flow cytometric analysis. Peaks corresponding to G1, G2-M, and S phases of the cell cycle 
and apoptotic cells (AP). 

the growth of tumor cells, it is known that hormonal induction of growth factors/receptors 

such as transforming growth factor  epidermal growth factor, Her-2 contributes to the 
proliferative actions of E2 (41-44). Recent studies indicate that several apoptosis-related 
moleculars or signal pathways, such as bcl-2 and p53, might be involved in E2/ER-mediated 
resistance to chemotherapy. 
Expression of the bcl-2 protein prevents apoptotic cell death induced by a variety of stimuli 
including most chemotherapeutic agents (45-47). Teixeira C et al demonstrated that 
depletion of estrogen from the medium results in loss of expression of the bcl-2 in MCF-7 
cells, whereas reexposure to estrogen markedly induces the bcl-2 expression (48). Moreover, 
estrogen depletion, the simultaneous treatment of ICI 164,384, or the transfection of bcl-2 
antisense significantly sensitized MCF-7 cells to adriamycin, consistent with a decrease in 
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the bcl-2 levels. Their data suggest that estrogen can promote resistance of ER+ breast cancer 
cells to chemotherapeutic drugs through a mechanism that involves regulation of the bcl-2, 
which supports the recent report that bcl-2 expression usually occurs in ER+ breast tumors, 
whereas ER- breast cancer biopsies tend to lack this protein (48). Another study conducted 
by Razandi M et al showed that in ER+ human breast cancer cells, the apoptosis, activation 
of c-JNK, phosphorylation of Bcl-2 and Bcl-xl, activation of caspase induced by paclitaxel or 
UV radiation were significantly reversed by incubation with E2. E2 also independently 
activated extracellular signal-regulated protein kinase activity, which contributed to the 
antiapoptotic effects. In addition, our recent studies also demonstrated that E2 significantly 
inhibited paclitaxel or vinca alkaloids-induced phosphorylations of bcl-2 and c-raf-1, as well 

as the degradation of IB in BCap37 cells transfected with ER, which was accompanied 
with decreased sensitivity of BC-ER cells to the above anticancer drugs (7, 8). 
In response to various extracellular and intracellular signals, p53 mediates cellular 
processes, such as apoptosis, cell cycle arrest, and senescence, depending on the signal and 
the cellular context (49-51). A body of accumulating evidence suggests the possibility of a 

cross-talk between pathways mediated by ER and p53. Das GM et al demonstrated the 

direct binding of ER to p53 both in vitro and in vivo to endogenous p53 target gene 
promoters, which subsequently resulted in inhibition of transcriptional activation by p53 

(52). They further showed that ER bound to p53 on endogenous Survivin and MDR1 gene 
promoters, leading to inhibition of p53-mediated transcriptional repression of these genes. 
Further, alleviating p53-mediated transcriptional repression of Survivin contributes to the 

ability of ER to inhibit apoptosis in human breast cancer cells. RNA interference-mediated 
knockdown of ER resulted in reduced survivin expression and enhanced the propensity of 
MCF-7 cells to undergo apoptosis in response to staurosporine treatment. These data 
indicate that countering p53-mediated transcriptional repression of Survivin is at least one of 

the important mechanisms underlying the antiapoptotic function of ER.  

4.2 Involvement of tumor growth rate in ER-mediated chemoresistance 

Evidence has shown that ER- tumors have a higher growth rate as indicated by a higher 
labeling index and mitotic index (6). Since many agents used in chemotherapy for breast 
cancer have some degree of cell-cycle specificity, there might be a correlation between higher 
growth rate and chemotherapy response (6). Dougherty MK et al used three in vitro models 
(MCF-7, T47D and ZR-75) to examine and compare growth rates as well as paclitaxel-induced 
apoptosis in ER+ and ER- clones with the same originate (54). They found that in T47D and 
ZR-75 cell lines, loss of ER was associated with a decrease in doubling time and an increase in 
paclitaxel sensitivity. However, when cell culture conditions were altered to achieve 
equivalent cell proliferation rates, no difference in paclitaxel sensitivity was observed. 
Similarly, an ER- clone of MCF-7 cells that did not exhibit an enhanced growth rate compared 
to its ER+ counterpart also did not show increased paclitaxel sensitivity. In these in vitro 
models, the decreased sensitivity to paclitaxel appears to be correlated closely with the 
decreased growth rate observed in ER+ breast tumors (54).  

4.3 ABC transportors and ER-mediated chemoresistance 

The most widely studied phenomenon of drug resistance is multidrug resistance (MDR) that 
has been linked to overexpression of a membrane associated P-glycoprotein (1, 2), a member 
of ATP-binding cassette (ABC) transporter family that functions as an efflux pump for 
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various structurally unrelated anticancer agents, such as the vinca alkaloids, anthracyclines 
and taxanes (1, 2). Several studies have suggested that ABC transporters might be involved 
in E2/ER-induced drug resistance. For example, E2 increased the cytoplasmic concentration 
of P-gp in ER+ breast cancer cells that were resistant to doxorubicin treatment (55). In 
addition, ABCC11 (MRP8) expression is high in high-expressing ER breast cancers, 
supporting the notion that expression of ABCC11 in ER+ breast cancers may contribute to 
decreased sensitivity to chemotherapy combinations (56). Interestingly, Sugimoto Y et al 
recently reported that both estrogens (57) and antiestrogens (58) inhibit breast cancer 
resistance protein (BCRP)-mediated drug resistance. They also found that the physiological 
levels of E2 down-regulate both endogenous and exogenous BCRP expression in ER+ cells 
by post-transcriptional mechanisms (59). Moreover, they showed that estrogen decreases P-
gp expression in MDR1-transduced, ER+ human breast cancer cells, and this E2-mediated P-
gp down-regulation sensitizes tumor cells to vincristine. However, it is possible that the 
effects of estrogen on P-gp expression may differ in ER+ human breast cancer cells 
expressing endogenous and exogenous P-gp, which needs to be further assessed in 
appropriate models (60). 

4.4 Enhanced 3-tubulin expression by E2/ER 

It has been suggested that certain changes in cytoskeletons, such as tubulin mutations and 
isoforms, alterations in microtubule-bindings proteins (e.g. stathmin, tau), as well as enhanced 

3-tubulin expression might be correlated with reduced response to antimicrotubule agent-
based chemotherapy or worse outcome in a variety of tumor settings. In in vitro studies or in 

clinical investigations, enhanced expression of 3-tubulin has shown to play a crucial role in 
the development of chemoresistance to antimicrotubule agents in a variety of tumors such as 
lung, breast, prostate or orarian cancers (61-66), and has be considered as a predictive marker 

of paclitaxel resistance (25, 67-70). Nevertheless, the mechanism underlying 3-tubulin 

expression still remains unclear. In Drosophila, 3-tubulin expression is enhanced by an 
exposure to ecdysone, a steroid hormone, through a transcriptional mechanism (71). Recently, 

Saussede-Aim J et al found that exposure of ER+ MCF-7 cells to estradiol induced 3-tubulin 
expression in both mRNA and protein levels, while estradiol had no effect on the expression of 

3-tubulin in ER- MDA-MB-231 cells (72). They further showed that co-administration of 

antiestrogens including tamoxifen or fulvestrant, completely abolished the increase of 3-

tubulin mRNA levels due to estradiol in MCF-7 cells, implying that estradiol regulates 3-
tubulin expression, and thereby induces resistance of ER+ breast tumors to antimicrotubule 
drugs through an ER-dependent pathway.  

4.5 Tumor-host interaction in ER-mediated chemoresistance 

Estrogen regulates differentiation, maturation and function of many cell types in monocyte–
macrophage system directly or indirectly via other cells by autocrine/paracrine mechanisms 
(73). Estrogen effects on this system are primarily repressive, and mainly mediated by 
repression of expression of genes for cytokines or modulation of other inflammatory 
mediators by the ER-dependent or nongenomic pathways. The ER-dependent mechanisms 
mostly involve modulation of the NF-kappaB pathway for transcriptional regulation of 
cytokine or other mediator genes. In the context of hormone-regulated cancer, estrogen can 
influence production of cytokines or other inflammatory mediators by both tumor cells and 
tumor-invading macrophages (73). The interactions of breast cancer cells with tumor-
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associated macrophages, regulation of the monocyte–macrophage system by estrogen and 
cross-talk between the ER and cytokine-mediated pathways, may play an important role in 
tumor progression as well as the development of resistance to anticancer treatment (73-75). 
 

 

Fig. 3. ICI 182, 780 abrogates the resistance of ER positive breast tumor cells to paclitaxel 

(7). BCap37 cells were treated with 1 nmol/L 17- estradiol, 50 nmol/L paclitaxel, 100 
nmol/L ICI 182, 780 or their various combinations. MCF-7 and T47D cells were treated with 

100 nmol/L 17- estradiol, 500 or 2000 nmol/L paclitaxel, 1mol/L ICI 182, 780 or their 
various combinations. A, determination of cell viability by MTT assays and apoptosis by 
DNA fragmentation assays after BC-V and BC-ER cells were exposed to paclitaxel for 48 h. 

B, effect of 17- estradiol, paclitaxel, ICI 182, 780 and their combinations on the expression of 

ER and IBin BC-ER cells. C, cell viability of MCF-7 and T47D cells after 72 h of 

paclitaxel treatment with MTT assays. D, effect of 17- estradiol, paclitaxel, ICI 182, 780 and 

their combinations on the expression of ERand IB in T47D cells. Proteins were extracted 
from cells after 24 h of paclitaxel treatment.  

5. Stratagies to sensitize ER+ breast tumors to chemotherapy 

Considering that ERs are expressed in ~65% of human breast cancer, the ER-mediated 
resistance to chemotherapy has become a big challenge for clinical treatment of breast 
tumors. Unfortunately, despite the fact that the involvement of ER in drug resistance to  
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chemotherapy has been observed for more than a decade, very few studies have 
investigated the potential strategies to reverse the ER-mediated chemoresistance or sensitize 

ER+ breast tumors to chemotherapy. Because the resistance of ER+ breast tumors to 
chemotherapy is mainly mediated by activation of estrogen/ER signal pathway, it is logical 

that agents targeting or inhibiting the ER signal pathway may have the potential to reverse 
the ER-mediated chemoresistance. Indeed, as described below, a number of studies have 

shown that antiestrogenic agents in combination with chemotherapeutic drugs are of 
significant therapeutic benefit in ER+ breast cancer over chemotherapy alone. Moreover, 

recent investigations indicate that the ER-derived peptide, MicroRNAs specifically targeting 
ER, as well as agents targeting estrogen-related receptors (ERRs) may hold great promise to 

sensitize ER+ breast tumors to chemotherapy. 

5.1 Sensitization of ER+ breast tumors to chemotherapy by SERMs 

Selective estrogen receptor modulators (or SERMs) bind ERs but have a mixed 
agonist/antagonist profile. Tamoxifen and raloxifene are well-known first and second 
generations of SERMs, respectively (76-78).  New SERMs in clinical development include 
idoxifene, droloxifene, arzoxifene, acolbifene/EM-800, lasofoxifene, TAT-59, ERA-923, 
toremifene, GW5638/GW7604, etc (76-78). Kurebayashi J et al found that concurrent 
treatment of 5-FU and 4-hydroxytamoxifen (4OHT) additively inhibited the growth of ER+ 
ML-20 and KPL-1 breast cancer cells but not ER- MDA-MB-231 cells (79). They further 
demonstrated that 4OHT significantly decreased thymidilate synthase activity, which might 
increase the antitumor activity of 5-FU (79). However, conflicting observations on the 
interaction between tamoxifen and chemotherapeutic agents including 5-FU and 
doxorubicin in terms of antitumor activity have been reported by different laboratories (79-
83). In addition, Wu L et al showed that arzoxifene and 4OHT can inhibit specifically the 
repopulation of ER+ MCF-7 and T47D breast cancer cells between courses of weekly 
treatment with 5-FU or methotrexate (84). Most recently, they further confirmed that 
combined treatment with arzoxifene given between cycles of 5-FU or paclitaxel can inhibit 
repopulation of MCF-7 breast cancer xenografts (85). They proposed that scheduling of 
short-acting antiestrogenic agents between courses of adjuvant chemotherapy for human 
breast cancer has potential to improve the outcome of treatment. Additionally, the increased 
etoposide cytotoxicity by tamoxifen as compared to cells treated with either drug alone was 
observed in brain tumor HTB-14 cells expressing ER, which was accompanied with 
enhanced inhibition of protein kinase C (PKC) and insulin-like growth factor II (IGF-II) (86).  

5.2 Sensitization of ER+ breast tumors to chemotherapy by aromatase inhibitors 

One strategy to inhibit the activation of estrogen/ER pathway is to block the conversion of 
estrogen precursors into estrogen by aromatase inhibitors (AIs) (87). Currently, third-
generation aromatase inhibitors, such as the non-steroidal agents anastrozole, letrozole and 
the steroidal agent exemestane, have been introduced into the market as endocrine therapy 
in postmenopausal patients, either alone or as part of multiple hormonal therapies (88). In 
addition to the above AIs, cyclooxygenase (COX) inhibitors also decrease aromatase mRNA 
expression and enzymatic activity (89). A recent study by Chen D et al showed that the 
combination of paclitaxel with exemestane produced additive antitumor effect in cultured 

human breast cancer cell lines. Interestingly, this additive effect was independent of ER 
expression, but dependent on the presence of androstenedione (90). The effects of AIs on 

www.intechopen.com



 
Breast Cancer – Current and Alternative Therapeutic Modalities 

 

514 

sensitivity of ER+ breast tumors to chemotherapy remains unclear and need to be further 
investigated. 

5.3 Sensitization of ER+ breast tumors to chemotherapy by SERDs 

The pure antiestrogens, also called selective estrogen receptor downregulators (or SERDs), 
including fulvestrant (ICI 182, 780), ZK-703, ZK-253, RU58668 and TAS-108, act by 
decreasing the level of ERs through their ubiquitinylation and subsequent targeting to the 
proteasome (87). Unlike tamoxifen, fulvestrant is a pure antagonist of estrogen-regulated 
gene expression that could down-regulat ER expression without any concomitant rise in 

other growth signal pathways, e.g., EGFR or TGF-. Recently, our laboratory 
demonstrated that pretreatment with fulvestrant significantly prevented E2-induced 
resistance to paclitaxel and vinca alkaloids in human breast cancer BCap37 cells transfected 

with ER-expressing vector (BC-ER) while down-regulates the protein levels of ER in BC-ER 
cells (7, 8). Similar sensitizing effect of fulvestrant was observed in MCF-7 and T47D breast 

cancer cells expressing endogenous ER (7, 8)These results provided additional evidence 

for the correlation between ER and the resistance of breast tumors to chemotherapeutic 
drugs such as paclitaxel and vinca alkaloids. More recently, through implanted ER- and ER+ 
BCap37 cells into athymic nude mice, we established isogenic ER- and ER+ xenograft breast 
tumor models. Subsequently, we demonstrated that co-treatment of fulvestrant could 
significantly sensitize ER+ breast tumors to paclitaxel (unpublished data). Because 
fulvestrant has been successfully used in the treatment of ER+ advanced breast tumors, our 
experimental results may also suggest the clinical strategy to combine fulvestrant with 
certain chemotherapeutic drugs for the treatment of ER+ breast tumors.  

5.4 Other strategies potentially useful for sensitizing ER+ breast tumors to 
chemotherapy 

In addition to the well-known antiestrogens including the SERMs, AIs and SEDMs, studies 
have been conducted to explore new agents that may interfere the biological responses 
medicated by E2/ER. One example is the synthesis of ER-derived peptide. Two ER-derived 
peptides specifically targeting estradiol/ER action, pY-peptide (Ac-Leu-pTyr-Asp-Leu-Leu-
Leu-NH2) and Tat-peptide (Ac-EFVCLKSIILLNS-AAA-RKKRRQRRR-NH2) have shown 
activity to inhibit the growth of ER+ breast tumors in vitro and in vivo (91, 92). Moreover, 
accumulating evidence is revealing an important role of MicroRNAs in anticancer drug 
resistance (93). Adams et al reported that MicroRNA (miR)-206 could decrease endogenous 

ER in MCF-7 cells via two specific target sites within the 3’-untranslated region of the 
human ER transcript (22, 94). They further found that miR-206 expression was markedly 
decreased in ER+ human breast cancer tissues, and that the introduction of miR-206 into 

estrogen-dependent MCF-7 cells led to the suppression of ERexpression and growth 

inhibition. These data suggest that miR-206 is a key factor for the regulation of ER 
expression in breast cancer, which could be a novel candidate for targeting ER (22, 94). 

Nuclear receptor estrogen-related receptor (ERR) family, comprising ERR, ERR and ERR, 
are the closest relatives to ERafter ER(95). The ERRs share several biochemical activities 
with ERs, bind and regulate transcription via estrogen response elements (EREs) and 
extended ERE half-sites termed ERR response elements (ERREs), but do not bind 

endogenous estrogens. The ERRs act in an analogous fashion as ER, but the effect of ERR 

binding to an ERE or ERRE can be either negative or positive. ERRlikely plays a role in 
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modulating estrogen responsiveness both by modulating levels of estrogens themselves and 
expression of estrogen-regulated genes in estrogen target-tissues such as breast cancer. The 
search for ligands of the ERRs is an active area of research. Targeting ERRs holds great 
promise and may open new opportunities for the management of breast cancers (95). 
As described above, the mechanisms underlying ER-mediated chemoresistance involve ER-
coregulatory proteins and cross-talk between plasma membrane-localized ER, nuclear-
localized ER and other growth-factor signaling networks, such as EGFR, IGFR, VEGFR and 
HER2. As a consequence, targeting the ER-coregulators or “cross-talk” pathways may 
provide opportunities to overcome the ER-mediated chemoresistance, either alone or in 
combination with agents inhibiting E2/ER activation. However, the mechanisms of ER-
mediated chemoresistance need to be further clarified so that effective strategies could be 
developed to sensitize ER+ breast tumors to chemotherapy. 
 

 

Fig. 4. Possible strategies to reverse ER-mediated chemoresistance or sensitize ER positive 
tumors to chemotherapy. SERMs, selective estrogen receptor modulators; AIs, aromatase 
inhibitors; SERDs, selective estrogen receptor down-regulators; ERRs, estrogen-related 
receptors. 

6. Future perspectives 

Cumulative data from in vitro experiments and clinical investigations have demonstrated the 

association between ER expression and the resistance to chemotherapy in breast tumors. 
However, most of in vitro data were based on comparative studies between the tumor cell lines 
derived from different individuals. Although some paired cell lines were derived under the 
selective pressure of a low/no estrogen environments, these tumor cells are still not likely to 
be isogenic because many features, including their proliferative capacity, might have changed 
due to genetic alterations (54). Thus, it is difficult to elucidate the cellular and molecular 

mechanisms. The pairs of isogenic breast cell lines generated by stable transfection of ER or 
empty vector in our laboratory have provided a valuable model system to investigate the 

mechanism underlying ER-mediated breast tumor cell resistance to chemotherapeutic agents. 
Interestingly, we found that estrogen had marginal effect on microtubule dynamics in breast 
tumor cells expressing ER (BC-ER) treated with paclitaxel and vinca alkaloids, but may 
decrease the G2-M population through the increase of cells at the G1 phase. This phenomenon 
is similar to the finding previously reported by Zajchowski et al. (96, 97). However, the 
question still remains whether G1 arrest and decreased G2-M population by estrogen may 
affect the above drug-induced apoptosis. Further studies are required to elucidate this issue, 
and it is important to integrate data obtained from breast tumors expressing endogenous ER 
with those expressing exogenous ER. 
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Some previous reports about the association between ER status and response to 
chemotherapy can be confused by the use of chemo-endocrine therapy, where the ER+ 
population may have responded to the hormonal part of the treatment (98, 99). Moreover, 
there are heterogeneous in design, in determination of marker and response evaluation, 
which could be partly responsible for conflicting results about the predictive and prognostic 
value of these markers (98-103). Therefore, some cautions are required when interpret these 
results, considering that there are many factors need to be taken into account, such as 
differences in patient selection, whether the patients were previously untreated with 
chemotherapy or endocrine therapy, type of chemotherapy, size of the study, follow-up 
time, different evaluation methods, different cut-off value of ER or other related markers, 
interactions between combined chemotherapeutic drugs, etc. 
Compared to the available in vitro and clinical reports, very few animal studies have been 
conducted to determine the role and underlying mechanisms of estrogen and ER in 
development of chemoresistance, as well as to explorer the potential strategies to reverse the 
ER-mediated drug resistance. However, appropriate animal models may provide us with 
easily controlled ways to further evaluate various signal pathways/molecules in vivo, to 
determine the differences between in vitro and in vivo models, to test chemotherapeutic 
drugs that we have interests, to investigate agents that may hold promise to sensitize ER+ 
breast tumors to chemotherapy, either alone or in desirable combinations/sequences. There 
are less variables need to be taken into account when interpret or analyze the data obtained 
in animal models compared to clinical patients. The hope to overcome the ER-mediated 
chemoresistance relies on further clarification of specific pathways or molecules 
contributing most significantly to the resistance. More exhaustive and systematic attempts 
to provide this information are essential to reach deeper understandings on ER-mediated 
chemoresistance in breast tumors. Moreover, it is known that breast cancer patients show a 
wide range of ER expression levels, and the levels of ER expression in individual patients 
change during disease progression and/or in response to systemic therapies. Thus, the 
treatment plan for breast cancer patients might need to be optimized based on the most up-
to-date molecular characteristics and responses to therapy in individuals. 
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