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1. Introduction 

This chapter presents the design of a controller that  ensures both the robust stability and 
robust performance of a physical plant using a linearized identified model . The structure of 
the plant and the statistics of the noise and disturbances affecting the plant  are assumed to be 
unknown. As the design of the robust controller relies on the availability of a plant model, the 
mathematical model of the plant is first identified  and the identified model, termed here the 
nominal model, is then employed in the controller design. As an effective design of the robust 
controller relies heavily on an accurately identified model of the plant, a reliable identification 
scheme is developed here to handle unknown model structures and statistics of the noise and 
disturbances. Using a mixed-sensitivity H∞ optimization framework, a robust controller is 
designed with the plant uncertainty modeled by additive perturbations in the numerator and 
denominator polynomials of the identified plant model. The proposed identification and 
robust controller design are evaluated extensively on simulated systems as well as on two 
laboratory-scale physical systems, namely the magnetic levitation and two- tank liquid level 
systems. In order to appreciate the importance of the identification stage and the interplay 
between this stage and the robust controller design stage, let us first consider a model of an 
electro-mechanical system formed of a DC motor relating the input voltage to the armature 
and the output angular velocity. Based on the physical laws, it is a third-order closed-loop 
system formed of fast electrical and slow mechanical subsystems. It is very difficult to identify 
the fast dynamics of this system, and hence the identified model will be of a second-order 
while the true order remains to be three. Besides this error in the model order, there may also 
be errors in the estimated model parameters. Consider now the problem of designing a 
controller for this electro-mechanical system. A constant-gain controller based on the identified 
second-order model will be stable for all values of the gain as long the negative feedback is 
used. If, however, the constant gain controller is implemented on the physical system, the true 
closed-loop third-order system may not be stable for large values of the controller gain. This 
simple example clearly shows the disparity between the performance of the identified system 
and the real one and hence provides a strong motivation for designing a robust controller 
which factors uncertainties in the model.  
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A physical system, in general, is formed of cascade, parallel and feedback combinations of 
many subsystems. It may be highly complex, be of high order and its structure may be 
different from the one derived from physical laws governing its behavior. The identified 
model of a system is at best an approximation of the real system because of the many 
difficulties encountered and assumptions made in completely capturing its dynamical 

behavior. Factors such as the presence of noise and disturbances affecting the input and the 
output, the lack of persistency of excitation, and a finite number of input-output samples all 
contribute to the amount of uncertainty in the identified model. As a result of this, high-
frequency behavior including fast dynamics may go un-captured in the identified model. 
The performance of the closed- loop system formed of a physical plant and a controller 
depends critically upon the quality of the identified model. Relying solely on the robustness 

of the controller to overcome the uncertainties of the identified plant will result in a poor 
performance. Generally, popular controllers such as proportional (P), proportional integral 
(PI) or proportional integral and derivative (PID) controllers are employed in practice as 
they are simple, intuitive and easy to use and their parameters can be tuned on line. When 
these controllers are designed using the identified model, and implemented on the physical 
system, there is no guarantee that the closed-loop system will be stable, let alone meeting 

the performance requirements. The design of controllers using identified models to ensure 
robust stability is becoming increasingly important in recent times. In (Cerone, Milanese, 
and Regruto, 2009),  an interesting iterative scheme is proposed which consists of first 
identifying the plant and employing the identified model to design a robust controller, then 
implementing the designed controller on the real plant and evaluating its performance on 
the actual closed-loop system. However, it is difficult to establish whether the identify-

control-implement-evaluate scheme will converge, and even if it does, whether it will 
converge to an optimal robust controller. In this work, each of these issues, namely the 
identification, the controller design and its implementation on an actual system, are all 
addressed separately with the clear objective of developing a reliable identification scheme 
so that the identified model will be close to the true model, hence yielding a reliable 
controller design scheme which will produce a controller that will be robust enough to 

ensure both stability and robust performance of the actual closed-loop system. Crucial 
issues in the identification of physical systems include the unknown order of the model,   
the partially or totally unknown statistics of the noise and disturbances affecting data, and 
the fact that the plant is operating in a closed-loop configuration. To tackle these issues, a 
number of  schemes designed to (a) attenuate the effect of unknown noise and disturbances 
(Doraiswami, 2005), (b) reliably select the model order of the identified system (Doraiswami, 

Cheded, and Khalid, 2010) and (c) identify a plant operating in a closed-loop (Shahab and 
Doraiswami, 2009) have been developed and are presented here for completeness. The 
model uncertainty associated with the identified model is itself modeled as additive 
perturbations in both the plant numerator and the denominator polynomials so as to 
develop robust controllers using the mixed-sensitivity H∞ controller design procedure 
(Kwakernaak, 1993). The mixed-sensitivity H∞ control design procedure conservatively 

combines and simultaneously solves both problems of robust stability and robust 
performance using a single H∞  norm. 
This design procedure is sound, mature, focuses on handling the problem of controller 
design when the plant model is uncertain, and has been successfully employed in practice in 
recent years (Cerone, Milanese, and Regruto, 2009), (Tan, Marquez, Chen, and Gooden, 

www.intechopen.com



 
Identification of Linearized Models and Robust Control of Physical Systems 

 

441 

2001). The proposed scheme is extensively tested on both simulated systems and physical 
laboratory-scale systems namely, a magnetic levitation and two-tank liquid level systems.  
The key contribution herein is to demonstrate the efficacy of (a) the proposed model order 
selection criterion to reduce the uncertainty in the plant model structure, a criterion which is 
simple, verifiable and reliable (b) the two-stage closed-loop identification scheme which 
ensures quality of the identification performance, and (c) the mixed-sensitivity optimization 
technique in the H∞-framework to meet the control objectives of robust performance and 
robust stability without violating the physical constraints imposed by components such as 
actuators, and in the face of uncertainties that stem from the identified model employed in 
the design of the robust controller. It should be noted here that the identified model used in 
the design of the robust controller is the linearized model of the physical system at some 
operating point, termed the nominal model.  
The chapter is structured as follows. Section 2 discusses the stability and performance of a 
typical closed-loop system. In Section 3, the robust performance and robust stability 
problems are considered in the mixed-sensitivity H∞ framework. Section 4 discusses the 
problem of designing a robust controller using the identified model with illustrated 
examples. Section 5 gives a detailed description of the complete identification scheme used 
to select the model order, identify the plant in a closed-loop configuration and in the 
presence of unknown noise and disturbances. Finally, in Section 6, evaluations of the 
designed robust controllers on two-laboratory scale systems are presented.      

2. Stability and performance of a closed-loop system 

An important objective of the control system to ensure that the output of the system tracks a 
given reference input signal in the face of both noise and disturbances affecting the system, 
and the plant model uncertainty. A further objective of the control system is to ensure that 
the performance of the system meets the desired time-domain and frequency-domain 
specifications such as the rise time, settling time, overshoot, bandwidth, and peak of the 
magnitude frequency response while respecting the constraints on the control input and 
other variables. An issue of paramount practical importance facing the control engineer is 
how to design a controller which will both stabilize the plant when its model is uncertain 
and ensure that its performance specifications are all met. Put succinctly, we seek a 
controller that will ensure both stability and performance robustness in the face of model 
uncertainties. To achieve this dual purpose, we need to first introduce some analytical tools 
as described next. 

2.1 Key sensitivity functions 

Consider the typical closed-loop system shown in Fig. 1 where 0G is the nominal plant, 

0C the controller that stabilizes the nominal plant 0G ; r and y  the reference input, and 

output, respectively; id and 0d  the disturbances at the plant input and  plant output, 

respectively, and v the measurement or sensor noise. The nominal model, heretofore 

referred to as the identified model, represents a mathematical model of a physical plant 

obtained from physical reasoning and experimental data.  

Let w  and z  be, respectively, a (4x1) input vector comprising r, 0d , id and v , and a (3x1) 

output vector formed of the plant output y, control input u, and the tracking error e , as 

given below by: 
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Fig. 1. A typical control system  

 [ ]0
T

iw r d d v=  (1) 

 [ ]Tz e u y=  (2) 

The four key closed-loop transfer functions which play a significant role in the stability and 

performance of a control system are the four sensitivity functions for the nominal plant and 

nominal controller. They are the system’s sensitivity 0S , the input-disturbance sensitivity 

0iS , the control sensitivity 0uS and the complementary sensitivity 0T , given by: 

 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
, , ,

1 1 1 1
i u

G C G C
S S S G S S C T

G C G C G C G C
= = = = = =

+ + + +
 (3) 

The performance objective of a control system is to regulate the tracking error e r y= −  so 

that the steady-state tracking error is acceptable and its transient response meets the time- 

and frequency-domain specifications respecting the physical constraints on the control input 

so that, for example, the actuator does not get saturated. The output to be regulated, namely 

e and u, are given by:  

 0 0 0 0( ) i ie S r d T v S d= − + −  (4) 

 0 0 0( )u iu S r v d T d= − − −  (5) 

The transfer matrix relating w to z is then given by:  

 0 0 0 0

0 0 0 0 0

i i

u u u

r

e S S S T d

u S T S S d

v

⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎣ ⎦

 (6) 

2.2 Stability and performance 

One cannot reliably assert the stability of the closed-loop by merely analyzing only one of 

the four sensitivity functions such as the closed-loop transfer function 0( )T s  because there 

may be an implicit pole/zero cancellation process wherein the unstable poles of the plant 

(or the controller) may be cancelled by the zeros of the controller (or the plant). The 

cancellation of unstable poles may exhibit unbounded output response in the time domain. 
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In order to ensure that there is no unstable pole-zero cancellation, a more rigorous definition 

of stability, termed internal stability, needs to be defined. The closed-loop system is 

internally stable if and if all the eight transfer function elements of the transfer matrix of 

Equation (6) are stable. Since there are only four distinct sensitivity functions, 0S , 0iS , 

0uS and 0T , the closed-loop system is therefore internally stable if and only if these four 

sensitivity functions 0S , 0iS , 0uS and 0T are all stable. Since all these sensitivity functions 

have a common denominator ( 0 01 G C+ ), the characteristic polynomial 0( )sϕ of the closed-

loop system is: 

 
0 0 0 0 0( ) ( ) ( ) ( ) ( )p c p cs N s D s D s N sϕ = +

 (7) 

where 0 0( ) , ( )p pN s D s and 0 0( ) , ( )c cN s D s are the numerator and the denominator 

polynomials of 0( )G s and 0( )C s , respectively. One may express internal stability in terms of 

the roots of the characteristic polynomial as follows. 

Lemma 1 (Goodwin, Graeb, and Salgado, 2001): The closed-loop system is internally stable 

if and only if the roots of 0( )sϕ all lie in the open left-half of the s-plane.  
We will now focus on the performance of the closed-loop system by analyzing the closed- 
loop transfer matrix given by Equation (6). We will focus on the tracking error e for 
performance, and the control input u for actuator saturation: 

• The tracking error e is small if (a) 0S  is small in the frequency range where r  and 

0d are large, (b) 0uS is small in the frequency range where id is large and (c) 0T and is 

small in the frequency range where v is large.  

• The control input u is small if (a) 0uS  is small in the frequency range where r , 0d and 

v are large, and (b) 0T  is small in the frequency range where id is large. 
Thus the performance requirement must respect the physical constraint that imposes on the 
control input  to be small so that the actuator does not get saturated. 

3. Robust stability and performance 

Model uncertainty stems from the fact that it is very difficult to obtain a mathematical model 
that can capture completely the behavior of a physical system and which is relevant for the 
intended application. One may use physical laws to obtain the structure of a mathematical 

model of a physical system, with the parameters of this model obtained using system 
identification techniques. However, in practice, the structure as well as the parameters need to 
be identified from the input-output data as the structure derived from the physical laws may 
not capture adequately the behavior of the system or, in the extreme case, the physical laws 

may not be known. The “true” model is a more comprehensive model that contains features 
not captured by the identified model, and is relevant to the application at hand, such as 
controller design, fault diagnosis, and condition monitoring. The difference between the 

nominal and true model is termed as the modeling error which includes the following: 

• The structure of the nominal model which differs from that of the true model as a result 
of our inability to identify features such as  high-frequency behavior, fast subsystem 
dynamics, and approximation of infinite-dimensional system by a finite- dimensional 
ones. 

• Errors in the estimates of the numerator and denominator coefficients, and in the 
estimate of the time delay 
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• The deliberate negligence of fast dynamics to simplify sub-systems’ models. This will 
yield a system model that is simple, yet capable enough to capture the relevant features 
that would facilitate the intended design.  

3.1 Co-prime factor-based  uncertainty model  

The numerator-denominator perturbation model considers the perturbation in the 
numerator and denominator polynomials separately, instead of lumping them together as a 
single perturbation of the overall transfer function. This perturbation model is useful in 
applications where an estimate of the model is obtained using system identification methods 
such as the best least-squares fit between the actual output and its estimate obtained from an 
assumed mathematical model. Further, an estimate of the perturbation on the numerator 
and denominator coefficients may be computed from the data matrix and the noise variance.  

Let 0G and G  be respectively the nominal and actual SISO rational transfer functions. The 

normalized co-prime factorization in this case is given by 

 
1

0 0 0

1

G N D

G N D

−

−

=

=
 (8) 

where 0N and N are the numerator polynomials, and both 0D  and D  the denominator 

polynomials. In terms of the nominal numerator and denominator polynomials, the transfer 

function G is given by: 

 ( )( ) 1
0 0N DG N D

−= + Δ + Δ  (9) 

where NΔ and D RH∞Δ ∈ are respectively the frequency-dependent perturbation in the 

numerator and denominator polynomials (Kwakernaak, 1993). Fig. 2 shows the closed- loop 

system driven by a reference input r with a perturbation in the numerator and denominator 

polynomials. The three relevant signals are expressed in equations (10-12). 
 

0
N 1

0
D−

N
Δ

y

−

−

0
C

1 2
q q−u

D
Δ

r

 

Fig. 2. Co-prime factor-based uncertainty model for a SISO plant 

 ( ) ( )
1

10 0 0
1 2 0 0 0 1 2

0 0 0 01 1
u u

C D C
u r q q S r D S q q

G C G C

−
−= − − = − −

+ +
 (10) 

 ( ) ( )
1

10
0 2 1 0 0 0 2 1

0 01

D
y T r q q T r D S q q

G C

−
−= + − = + −

+
 (11) 
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 [ ]1 2 N D

u
q q

y

⎡ ⎤
− = Δ −Δ ⎢ ⎥

⎣ ⎦
 (12) 

3.2 Robust stability and performance 

Since the reference input does not play any role in the stability robustness, it is set equal to 
zero and the robust stability model then becomes as given in Fig. 3 

 

1

0 0uD S− 1

0 0
D S−

NΔ
−

1 2
q q−u

DΔ

y

 

Fig. 3. Stability robustness model with zero reference input  

The robust stability of the closed-loop system with plant model uncertainty is established 
using the small gain theorem. 

Theorem 1: Assume that 0C internally stabilizes the nominal plant 0G . Hence 0S RH∞∈  

and 0uS RH∞∈ . Then the closed-loop system stability problem is well posed and the system 

is internally stable for all allowable numerator and denominator perturbations, i.e.: 

 [ ] 01 /N D γΔ Δ ≤  (13) 

If and only if 

 [ ] 1
0 0 0 0uS S D γ−

∞
<  (14) 

Proof: The SISO robust stability problem considered herein is a special case of the MIMO 
case proved in (Zhou, Doyle, & Glover, 1996).  

Thus to ensure a robustly-stable closed-loop system, the nominal sensitivity 0S should be 

made small in frequency regions where the denominator uncertainty DΔ is large, and the 

nominal control input sensitivity 0uS should be made small in frequency regions where the  

numerator uncertainty NΔ is large.  

Our objective here is to design a controller 0C such that robust performance and robust 

stability of the system are both achieved, that is, both the performance and stability hold for 

all allowable plant model perturbations [ ] 01 /N D γΔ Δ ≤ for some 0 0γ > . Besides these 

requirements, we need also to consider physical constraints on some components such as 

actuators, for example, that especially place some limitations on the control input. From 

Theorem 1 and Equation (6), it is clear that the requirements for robust stability, robust 

performance and control input limitations are inter-related, as explained next: 

• Robust performance for tracking with disturbance rejection as well as robust stability in 

the face of denominator perturbations require a small sensitivity function 0S in the low-

frequency region and, 
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• Control input limitations and robust stability in the face of numerator perturbations 

require a small control input sensitivity function 0uS in the relevant frequency region.  

With a view to addressing these requirements, let us select the regulated outputs to be a 

frequency-weighted tracking error we , and a weighted control input wu to meet respectively 

the requirements of performance, and control input limitations. 

 [ ]Tw w wz e u=  (15) 

where wz  is a  (2x1) vector output to be regulated, we , and wu  are defined by their 

respective Fourier transforms: ( ) ( ) ( )w Se j e j W jω ω ω=  and ( ) ( ) ( )w uu j u j W jω ω ω= . The 

frequency weights involved, ( )SW jω and ( )uW jω , are chosen such that their inverses are 

the upper bounds of the respective sensitive functions so that weighted sensitive functions 

become normalized, i.e.:  

 0 0( ) ( ) 1 , ( ) ( ) 1S u uW j S j W j S jω ω ω ω≤ ≤      (16) 

The map relating the frequency weighted output wz and the reference input r  is shown in 

Fig. 4: 
 

e

u

r y

0
G

0
C

uW

SW

 

Fig. 4. Nominal closed-loop system relating the reference input and the weighted outputs 

The weighting functions ( )sW jω , and ( )suW jω  provide the tools to specify the trade-off 

between robust performance and robust stability for a given application. For example, if 

performance robustness (and stability robustness to the denominator perturbation DΔ ) is 

more important than the control input limitation, then the weighting function SW is chosen 

to be larger in magnitude than 0uW . On the other hand, to emphasize control input 

limitation (and stability robustness to the numerator perturbation NΔ ), the weighting 

function 0uW  is chosen to be larger in magnitude than SW  . For steady-state tracking with 

disturbance rejection, one may include in the weighting function SW  an approximate but 

stable ‘integrator’ by choosing its pole close to zero for continuous-time systems or close to 

unity for discrete-time systems so as to avoid destabilizing the system (Zhou, Doyle, and 

Glover, 1996). Let rzT  be the nominal transfer matrix (when the plant perturbation 0 0Δ = ) 

relating the reference input to the frequency-weighted vector output wz , which is a function 

of 0G and 0C  , be given by: 

 1
0 0 0

T

rz S u uT D W S W S− ⎡ ⎤= ⎣ ⎦   (17) 
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where 0s sW D W=  and 0u uW D W=  so that the 1
0D− term appearing in the mixed sensitivity 

measure rzT  is cancelled, thus yielding the following  simplified measure 

[ ]0 0
T

rz S u uT W S W S= . The mixed-sensitivity optimization problem for robust performance 

and stability in the frameworkH∞ −  is then reduced to finding the controller 0C such that : 

 ( )0 0, 1rzT C G γ
∞
≤ <  (18) 

It is shown in (McFarlane & Glover, 1990) that the minimization of rzT ∞ as given by 

Equation (18), guarantees not only robust stability but also robust performance for all 

allowable perturbations satisfying [ ] 1 /N D γ
∞

Δ Δ ≤ . 

4. H∞ controller design using the identified model  

Consider the problem of designing a controller for an unknown plant G. We will assume 
however that the system G is linear and admits a rational polynomial model. A number of 
identification experiments are performed off-line under various operating regimes that 
includes assumptions on the model and its environment, such as : 
• The model order 
• The length of the data record 
• The type of rich inputs 
• Noise statistics 
• The plant operates in a closed-loop, thus making the plant input correlated with both 

the measurement noise and disturbances  
• Combinations of any the above 

Let ˆ
iG be the identified model from the thi experiment based on one or more of the above 

stated assumptions. Let ˆ
iC be the corresponding controller which stabilizes all the plants in 

the neighborhood of ˆ
iG  within a ball of radius ˆ1 / iγ . Given an estimate of the plant model 

ˆ
iG , the controller ˆ

iC is then designed using the mixed-sensitivity H∞ optimization scheme , 

with both the identified model ˆ
iG  and the controller ˆ

iC based on it, now effectively replacing 

the nominal plant 0G and nominal controller 0C , respectively. Let the controller ˆ
iC   

stabilize the identified plant ˆ
iG for all ˆ ˆ1 /i iγ∞

Δ ≤  where ˆ
iΔ  is formed of the perturbations  

in the numerator and denominator of ˆ
iG . To illustrate the identification-based H∞ -

optimization scheme, let us consider the following example. Let the true order of the system G 

be 2 and assume the noise to be colored. Let ˆ : 1,2,3iG i = be the estimates obtained assuming 

the model order to be 2, 3, and 4, respectively and let the noise be a zero-mean white noise 

process; 4Ĝ  is obtained assuming the model order to be 2, the noise to be colored but the input 

not to be rich enough; Let 5Ĝ be an estimate based on correct assumptions regarding model 

order, noise statistics, richness of excitation of the input and other factors as pointed out above. 

Clearly the true plant G may not be in the neighborhood of ˆ
iG , i.e. ˆ

iG S∉ for all 5i ≠  where 

 { }ˆ ˆ ˆ ˆ: 1 /i i i iS G γ
∞

= Δ ≤  (19) 

The set ˆ
iS is a ball of radius ( ˆ1 / iγ ) centered at ˆ

iG . Fig. 5 below shows the results of 

performing a number of experiments under different assumptions on the model order, types 
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of rich inputs, length of the data record, noise statistics and their combinations. The true 

plant G, its estimates ˆ
iG  and the set ˆ

iS  are all indicated by a circle of radius ( ˆ1 / iγ ) 

centered at ˆ
iG in Figure 5. The true plant G is located at the center of the set 5Ŝ .  

 

3
Ŝ

4
Ŝ5

Ŝ1
Ŝ

2
Ŝ

3
Ĝ

4
Ĝ1

Ĝ 5
Ĝ G=

2
Ĝ

 

Fig. 5. The set ˆ
iS is a ball of radius ˆ1 / iγ  centered at ˆ

iG  

4.1 Illustrative example: H∞ controller design   

A plant is first identified and then the identified model is employed in designing an H∞ 

controller using the mixed sensitivity performance measure. As discrete-time models and 
digital controllers are commonly used in system identification and controller 
implementation, a discrete-time equivalent of the continuous plant is used here to design a 
discrete-time H∞ controller. The plant model is given by: 

 ( )
( )1

0 1 2

0.5335 1

1 0.7859 0.3679

z
G z

z z

−

− −

−
=

− +
 (20) 

The weighting function for the sensitivity and control input sensitivity functions were 

chosen to be 
1

0.01
, 0.1

1 0.99
s uW W

z−
= =

−
. The weighting function for the sensitivity is chosen  

to have a pole close to the unit circle to ensure an acceptable small steady-state error. The 
controller will have a pole at 0.99 approximating a stable integrator. The plant is identified 
for (a) different choices of model orders ranging from 1 to 10 when the true order is 2, and 
(b) different values of the standard deviation of the colored measurement noise vσ . Fig. 6 
shows the step and the magnitude response of the sensitivity function. The closed-loop 
system is unstable when the selected order is 1 and for some realizations of the noise, and 
hence these cases are not included in the figures shown here. When the model order is 
selected to be less than the true order, in this case 1, and when the measurement noise’s 
standard deviation vσ is large, the set of identified models does not contain the true model. 
Consequently the closed-loop system will be unstable.  
Comments: The robust performance and the stability of the closed-loop system depend 
upon the accuracy of the identified model. One cannot simply rely on the robustness of the 
H∞ controller to absorb the model uncertainties. The simulation results clearly show that the 
model error stems from an improper selection of the model order and the Signal-to-Noise 
Ratio (SNR) of the input-output data. The simulation results show that there is a need for an 
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appropriate identification scheme to handle colored noise and model order selection to 
ensure a more robust performance and stability.  
 

 

Fig. 6. Figures A and B on the left show the Step responses (top) and Magnitude responses 

of sensitivity (bottom) when the model order is varied from 2 to 10 when the noise standard 

deviation is 0.001vσ = . Similarly figures C and D on the right-hand show when the  noise 

standard deviation vσ  is varied in the range [ ]0.02 0.11vσ ∈ . 

5. Identification of the plant               

The physical system is in general complex, high-order and nonlinear and therefore an 
assumed linear mathematical model of such a system is at best an approximation of the ‘true 
model’. Nevertheless a mathematical model linearized at a given operating point can be 
identified and the identified model successfully used in the design of the required 
controller, as explained below. Some key issues in the identification of a physical system 
include (a) the unknown statistics of the noise and disturbance affecting the input-output 
data (b) the proper selection of an appropriate structure of the mathematical model, 
especially its order and (c) the plants operating in a closed-loop configuration.     
For the case (a) a two-stage identification scheme, originally proposed in (Doraiswami, 2005) 
is employed here. First a high-order model is selected so as to capture both the system 
dynamics and any artifacts (from noise or other sources). Then, in the second stage, lower-
order models are derived from the estimated high-order model using a frequency-weighted 
estimation scheme. To handle the model order selection, and the identification of the plant, 
especially an unstable one, approaches proposed in (Doraiswami, Cheded, and Khalid, 
2010) and (Shahab and Doraiswami, 2009) are employed respectively.  

5.1 Model order selection 

For mathematical tractability, the well-known criteria based on information-theoretic criteria 
such as the famous Akaike Information Criterion  (Stoica and Selen, 2004), when applied to 
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a physical system, may require simplified assumptions such as long and uncorrelated data 
records, linearized models and a Gaussian probability distribution function (PDF) of the 
residuals. Because of these simplifying assumptions, the resulting criteria may not always 
give the correct model order. Generally, the estimated model order may be large due to the 
presence of artifacts arising from noise, nonlinearities, and pole-zero cancellation effects. 
The proposed model order selection scheme consists of selecting only the set of models, 
which are identified using the scheme proposed in (Doraiswami, 2005), and for which all the 
poles are in the right-half plane (Doraiswami, Cheded, and Khalid, 2010). The remaining 
identified models are not selected as they consist of extraneous poles.  
Proposed Criterion: The model order selection criterion hinges on the following Lemma 
established in (Doraiswami, Cheded, and Khalid, 2010).  

Lemma: If the sampling frequency is chosen in the range 2 4c s cf f f≤ < , then the complex-

conjugate poles of the equivalent discrete-time equivalent of a continuous-time system will 
all lie on the right-half of the z-plane, whereas the real ones will all lie on the positive real 
line. 

This shows that the discrete-time poles lie on the right-half of the z-plane if the sampling 

rate ( sf ) is more than twice the Nyquist rate ( 2 cf ). Thus, to ensure that the system poles are 

located on the right-half and the noise poles on the left-half of  the z-plane, the sampling 

rate sf must be larger than four times the maximum frequency max
sf of the system, and less 

than four times the minimum frequency of the noise, min
vf . 

 max min4 4s v
sf f f≤ <  (21) 

5.2 Identification of a plant operating in closed loop 

In practice, and for a variety of reasons (for e.g. analysis, design and control), it is often 
necessary to identify a system that must operate in a closed-loop fashion under some type of 
feedback control. These reasons could also include safety issues, the need to stabilize an 
unstable plant and /or improve its performance while avoiding the cost incurred through 
downtime if the plant were to be taken offline for test. In these cases, it is therefore necessary 
to perform closed-loop identification. There are three basic approaches to closed-loop 
identification, namely a direct, an indirect and a two-stage one. A direct approach to 
identifying a plant in a closed-loop identification scheme using the plant input and output 
data is fraught with difficulties due to the presence of unknown and generally inaccessible 
noise, the complexity of the model or a combination of both. Although computationally 
simple, this approach can lead to parameter estimates that may be biased due mainly to the 
correlation between the input and the noise, unless the noise model is accurately 
represented or the signal-to-noise ratio is high (Raol, Girija, & Singh, 2004). The 
conventional indirect approach is based on identifying the closed-loop system using the 
reference input and the system (plant) output. Given an estimate of the system open-loop 
transfer function, an estimate of the closed-loop transfer function can be obtained from the 
algebraic relationship between the system’s open-loop and closed-loop transfer functions. 
The desired plant transfer function can then be deduced from the estimated closed-loop 
transfer function. However, the derivation of the plant transfer function from the closed-
loop transfer function may itself be prone to errors due to inaccuracies in the model of the 
subsystem connected in cascade with the plant. The two-stage approach, itself a form of an 
indirect method, is based on first identifying the sensitivity and the complementary 
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sensitivity functions using a subspace Multi-Input, Multi-Output (MIMO) identification 
scheme (Shahab & Doraiswami, 2009). In the second stage, the plant transfer function is 
obtained from the estimates of the plant input and output generated by the first stage.  

5.2.1 Two-stage identification  

In the first stage, the sensitivity function ( )S z  and the complementary sensitivity functions 

( )T z  are estimated using all the three available measurements, namely the reference input, 

r, plant input, u and the plant output, y , to ensure that the estimates are reliable. In other 

words, a Multiple-Input, Multiple-Output (MIMO) identification scheme with one input 

(the reference input r), and two outputs (the plant input u and the plant output y) is used 

here rather than a Single-Input, Single-Output (SISO) scheme using one input u and one 

output y. The MIMO identification scheme is based on minimizing the performance 

measure, J, as:  

 
2

ˆ
ˆmin

z
J z z= −  (22) 

where [ ]Tz y u= and [ ]ˆ ˆ ˆ
T

z y u= , û is the estimated plant input and ŷ is the estimated 

plant output. The plant input u, and the plant output y are related to the reference input r 

and the disturbance w by: 

 ( ) ( ) ( ) ( ) ( )u z S z r z S z w z= +  (23) 

 ( ) ( ) ( ) ( ) ( ) ( )y z T z r z T z w z v z= + +  (24) 

As pointed out earlier, the proposed MIMO identification scheme will ensure that the 

estimates of the sensitivity and the complementary sensitivity functions are consistent (i.e. 

they have identical denominators), and hence will also ensure that the estimates of the plant 

input u and the plant output y , which are both employed in the second stage, are reliable. 

Note here that the reference signal r is uncorrelated with the measurement noise w and the 

disturbance v, unlike in the case where the plant is identified using the direct approach. This 

is the main reason for using the MIMO scheme in the first stage. In the second stage, the 

plant ( )G z is identified from the estimated plant input, û , and  plant  output, ŷ , obtained 

from the stage 1 identification scheme, i.e.:  

 ˆˆ( ) ( ) ( )u z S z r z=  (25) 

 ˆˆ( ) ( ) ( )y z T z r z=  (26) 

Note that here the input û and the output ŷ  are not correlated with the noise w and 

disturbance term v. Treating û  as the input and ŷ as the output of the plant, and ˆ̂y as the 

estimate of the plant output estimate, ŷ , the identification scheme is based on minimizing 

the weighted frequency-domain performance measure  

 ( ) 2

ˆ̂ ,

ˆˆ ˆmin ( ) ( ) ( )
y

W j y j y jω ω ω−  (27) 
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where ( )W jω is the weighting function. Furthermore,  it is shown that: 

Lemma: If the closed-loop system is stable, then  

• The unstable poles of the plant must be cancelled exactly by the zeros of the sensitivity 
function if the reference input is bounded. 

• The zeros of the plants form a subset of the zeros of the complementary transfer 
function 

This provides a cross-checking of the estimates of the poles and the zeros of the plant 
estimated in the second stage with the zeros of the sensitivity and complementary functions 
in the first stage, respectively.  

6.1 Evaluation on a physical system: magnetic levitation system (MAGLEV) 

The physical system is a feedback magnetic levitation system (MAGLEV) (Galvao, 
Yoneyama, Marajo, & Machado, 2003). Identification and control of the magnetic levitation 
system has been a subject of research in recent times in view of its applications to 
transportation systems, magnetic bearings used to eliminate friction, magnetically-levitated 
micro robot systems, magnetic levitation-based automotive engine valves. It poses a 
challenge for both identification and controller design. 
 

 

Fig. 7. Laboratory-scale MAGLEV system 

The model of the MAGLEV system, shown in Fig. 7, is unstable, nonlinear and is modeled 
by: 

 
2

( )

( )

y s

u s s

β
α

=
−

 (28) 

where y is the position, and u the voltage input. The poles, p, of the plant are real and are 

symmetrically located about the imaginary axis, i.e.:  p α= ± . The linearized model of the 

system was identified in a closed-loop configuration using LABVIEW data captured 

through both A/D and D/A devices. Being unstable, the plant was identified in a closed- 

loop configuration using a controller which was a lead compensator. The reference input 

was a rich persistently-exciting signal consisting of a random binary sequence. An 

appropriate sampling frequency was determined by analyzing the input-output data for 

different choices of the sampling frequencies. A sampling frequency of 5msec was found to 

be the best as it proved to be sufficiently small to capture the dynamics of the system but not 

the noise artifacts. The physical system was identified using the proposed two-stage MIMO 

identification scheme. First, the sensitivity and complementary sensitivity functions of the 
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closed-loop system were identified. The estimated plant input and output were employed in 

the second stage to estimate the plant model. The model order for identification was 

selected to be second order using the proposed scheme. Figure 8 below gives the pole-zero 

maps of both the plant and the sensitivity function on the left-hand side,  and, on the right-

hand side, the comparison between the frequency response of the identified model ˆ ( )G jω , 

obtained through non-parametric identification, i.e. estimated by injecting various 

sinusoidal inputs of different frequencies applied to the system, and the estimate of the 

transfer function obtained using the proposed scheme.  
 

 

Fig. 8. A and B show pole-zero maps of the plant and of the sensitivity function (left) while 
C and D (right)  show the comparison of the frequency response of the identified model 
with the non-parametric model estimate, and the correlation of the residual, respectively   

The nominal closed-loop input sensitivity function was identified as: 

 
( )1 1

0 1 2

1.7124z 1 1.116
( )

1 - 1.7076z +0.7533z

z
S z

− −

− −

−
==  (29) 

and the nominal plant model as:   

 
( )

( )( )
1 1

0
0 1 1

0

0.0582 1 0.0687
( )

1 1.116 1 0.7578

z zN
G z

D z z

− −

− −

−
= =

− −
 (30) 

6.1.1 Model validation  

The identified model was validated using the following criteria:  

• The proposed model-order selection was employed. The identifications in stages I and 
II were performed for orders ranging from 1 to 4. A second-order model was selected in 
both stages since all the poles of the identified model were located in the right-half of 
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the z-plane. Note here that the dynamics of the actuator (electrical subsystem) was not 
captured by the model as it is very fast compared to that of the mechanical subsystem.  

• A 4th order model was employed in stage I to estimate the plant input and the output 
for the subsequent stage II identification.  

• The plant has one stable pole located at 0.7580 and one unstable pole at 1.1158. The 
reciprocity condition is not exactly satisfied as, theoretically, the stable pole should be at 
0.8962 and not at 0.7580.  

•  The zeros of the sensitivity function contain the unstable pole of the plant, i.e. the 
unstable pole of the plant located at 1.1158 is a zero of the sensitivity function.  

• The frequency responses of the plant, computed using two entirely different 
approaches, should be close to each other. In this case, a non-parametric approach was 
employed and compared to the frequency response obtained using the proposed 
model-based scheme, as shown on the right-hand side of Fig. 8. The non-parametric 
approach gives an inaccurate estimate at high frequencies due to correlation between 
the plant input and the noise.  

• The residual is zero mean white noise with very small variance. 

6.1.2 H∞ Mixed sensitivity H∞ controller design 

The weighting functions are selected by giving more emphasis on robust stability and less 

on robust performance: ( ) 0.001sW jω =  and ( ) 0.1uW jω = . To improve the robustness of the 

closed-loop system, a feed-forward control of the reference input is used, instead of the 

inclusion of an integrator in the controller. The H∞ controller is given by: 

 
( )( )

( )( )
1 1

0 1 1

2.5734 1 1.113 1 0.7578
( )  

1 0.2044 1 0.7457

z z
C z

z z

− −

− −

+ −
=

− +
 (31) 

 

 

Fig. 9. The step and frequency responses of the closed-loop system with H∞ controller 
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It is interesting to note here that there is a pole-zero cancelation between the nominal plant 
and the controller since a plant pole and a controller zero are both equal to 0.7578. In this 

case, the H∞ norm is 0.1513γ = and hence the performance and stability measure is 

[ ]0 0 0.1513S u uW S W S γ
∞
= =  with [ ] 1 / 6.6087.N D γ

∞
Δ Δ ≤ =  The step response and 

magnitude responses of the weighted sensitivity, complementary sensitivity and the control 
input sensitivity of the closed-loop control system are all shown above in Fig. 9. 

6.2 Evaluation on a physical sensor network: a two-tank liquid level system 

The physical system under evaluation here is formed of two tanks connected by a pipe. A dc 
motor-driven pump supplies fluid to the first tank and a PI controller is used to control the 
fluid level in the second tank by maintaining the liquid height at a specified level, as shown in 
Fig. 10. This system is a cascade connection of a dc motor and a pump relating the input to the 

motor, u , and the flow iQ  . It is expressed by the following first-order time-delay system: 

 ( )i m i mQ a Q b uφ= − +$  (32) 

where ma and mb are the parameters of the motor-pump subsystem and ( )uφ is a dead-band 

and saturation-type of nonlinearity. The Proportional and Integral (PI) controller is given by: 

 
3 2

3p I

x e r h

u k e k x

= = −
= +

$
 (33) 

where pk and Ik are the PI controller’s gains and r is the reference input. 
 

aγ

3sγ

1sγ

 

Fig. 10. Two-tank liquid level system 
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With the inclusion of the leakage, the liquid level system is now modeled by : 

 
( ) ( )

( ) ( )

1
1 12 1 2 1

2
2 12 1 2 0 2

i

dH
A Q C H H C H

dt
dH

A C H H C H
dt

ϕ ϕ

ϕ ϕ

= − − −

= − −

`
 (34) 

 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ=` ` is the leakage flow rate, ( )0 0 2Q C Hϕ= is the output 

flow rate, 1H is the height of the liquid in tank 1, 2H the height of the liquid in tank 2, 1A  

and 2A  the cross-sectional areas of the 2 tanks, g=980 2/seccm  the gravitational constant, 

and 12C  and oC  the discharge coefficients of the inter-tank and output valves, respectively.  

The linearized model of the entire system formed by the motor, pump, and the tanks is 
given by: 

 
x Ax Br

y Cx

= +
=

$
 (35) 

where x, A, B and C are given by: 

1 1 11

2 22

3

0

0 0
, , 0 0 1 , [1 0 0 0]

1 0 0 0

0

T

m p

m p m I mi

a a bh

a ah
x A B b k C

x

b k b k aq

α
β

− −⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥ ⎡ ⎤= = = =⎣ ⎦⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

iq , q` , 0q , 1h and 2h are respectively the increments in iQ , Q` , oQ , 0
1H and 0

2H , whereas 

1a , 2a ,α and β are parameters associated with the linearization process, α is  the leakage 

flow rate, 1q hα=` , and β is the output flow rate, and 2oq hβ= . The dual-tank fluid system 

structure can be cast into that of an interconnected system with a sensor network, composed 

of 3 subsystems ,euG uqG , and qhG relating the measured signals, namely the error e, 

control input u, flow rate Q and the height h, respectively. The proposed two-stage 

identification scheme is employed to identify these subsystems. It consists of the following 

two stages: 

• In Stage 1, the MIMO closed-loop system is identified using data formed of the 

reference input r, and the subsystems’ outputs measured by the 3 available sensors. 

• In Stage 2, the subsystems euG uqG , and qhG are then identified using the subsystem’s 

estimated input and output measurements obtained from the first stage. 

Figure 11 shows the estimation of the 4 key signals e, u, Q and h in our two-tank experiment, 

that are involved in the MIMO transfer function in stage I identification. Stage I 

identification yields the following MIMO closed-loop transfer function given by: 

 1ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
T

e z u z f z h z D z N z r z−⎡ ⎤ =⎣ ⎦  (36) 
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Fig. 11. (Left) The error and flow rate and their estimates and (Right) the control input and                   
height and their estimates.  

1 2 3

1 2 3

1 2 3

    1.9927      - 191.5216     380.4066      - 190.8783

    0.0067      - 1.2751         2.5526          - 1.2842
where

 - 183.5624     472.5772     - 394.4963      105.4815

   - 0.9927   

z z z

z z z
N

z z z

− − −

− − −

− − −
=

1 2 3

1 2 3

    189.1386     - 378.6386      190.4933

1.0000   - 2.3830    + 1.7680    - 0.3850

z z z

D z z z

− − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=

  

The zeros of the sensitivity function, relating the reference input r to the error e , are located 
at 1.02 and 1.0.  
Fig. 12 below shows the combined plots of the actual values of the height, flow rate and 

control input, and their estimates from both stages 1 and 2. From this figure, we can 

conclude that the results are on the whole excellent, especially for both the height and 

control input.  

Stage II identification yields the following three open-loop transfer functions that are 

identified using their respective input/output estimates generated by the stage-1 

identification process:  

 
1

1

( ) 0.4576ˆ ( ) 0.0067
( ) 1

eu

u z z
G z

e z z

−

−= = +
−

 (37) 

 
1

1

( ) 0.0104
( )

( ) 1 0.9968
uq

Q z z
G z

u z z

−

−= =
−

 (38) 
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1

1

( ) 0.7856
( )

( ) 1 1.0039
qh

h z z
G z

Q z z

−

−= =
−

 (39)  

 
 

 
 
 

Fig. 12. The actual height (in blue), its estimate from stage 1(in green) and its estimate from 
stage 2 (in red). Similarly for the flow rate and the control input 

Comments: 

• The two-tank level system is highly nonlinear as can be clearly seen especially from the 
flow rate profile located at the top right corner of Fig. 11. There is a saturation-type 
nonlinearity involved in the flow process.  

• The subsystems euG and qhG   representing respectively the PI controller and the transfer 

function relating the flow rate to the tank height are both unstable with a pole at unity 

representing an integral action. The estimated transfer functions ˆ
euG and ˆ

qhG   have 

captured these unstable poles. Although the pole of ˆ
euG is exactly equal to unity, the 

pole of ˆ
qhG , located at 1.0039 , is very close to unity. This slight deviation from unity 

may be due to the nonlinearity effects on the flow rate     

• The zeros of the sensitivity function have captured the unstable poles of the open- loop 
unstable plant with some error. The values of the zeros of the sensitivity function are 
1.0178, and 1.0002 while those of the subsystem poles are 1 and 1.0039. 

6.2.1 Mixed-sensitivity H∞ controller design 

The identified plant is the cascade combination of the motor, pump and the two tanks, 
which is essentially the forward path transfer function formed of the cascade combinations 

of uqG and qhG  , that relates  the control input u to the tank height h , and which is given by: 
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 0
0 1 2

2

0 1 1.99

( )

7
( )

) 68( 0.99z

N z z
G z

zD z − −

−

=
− +

=  (40) 

The weighting functions are selected by giving more emphasis on robust stability and less 

on robust performance: ( )1( ) 0.01 / 1 0.99sW z z−⎡ ⎤= −⎣ ⎦  and ( ) 1uW z =  where jz e ω= . The H∞  

controller is then given by: 

 
1

0

1 2

1 1 2

0.044029(1 )(1 1.98 0.9804 )

(1 0.99 )(
(

1 0.6093 )(1 0.60
)

08 )

z z z
C

z
z

z z

− − −

− − −
+ − +

− − +
=  (41) 

The controller has an approximate integral action for steady-state tracking with disturbance 

rejection and a pole at 0.99 which is very close to unity. In this case, the H∞ norm is 

0.0663γ = . The step response and the magnitude responses of the sensitivity, 

complementary sensitivity and the control input sensitivity of the closed-loop control 

system are all shown in Fig. 13. 
 
 
 

 
 
 

Fig. 13. Step and magnitude freq. res1ponses of the closed-loop system with H∞ controller 

6.2.2 Remarks on the mixed-sensitivity H∞ control design 

The sensitivity is low in the low frequency regions where the denominator perturbations are 

large, the control sensitivity is small in the high frequency regions of the numerator 

perturbations, and the complementary sensitivity is low in the high frequency region where 

the overall multiplicative model perturbations are high. As the robustness is related to 
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performance, this will ensure robust performance for steady-state tracking with disturbance 

rejection, controller input limitations and measurement noise attenuation. When tight 

performance bounds are specified, the controller will react strongly but may be unstable 

when implemented on the actual physical plant. For safety reasons, the controller design is 

started with very loose performance bounds, resulting in a controller with very small gains 

to ensure stability of the controller on the actual plant. Then, the performance bounds are 

made tighter to gradually increase the performance of the controller. The design method 

based on the mixed-sensitivity criterion generalizes some classical control design techniques 

such as the classical loop-shaping technique, integral control to ensure tracking,  

performance and specified high frequency roll-off, and direct control over the closed-loop 

bandwidth and time response by means of pole placement. 

7. Conclusion 

This chapter illustrates, through analysis, simulation and practical evaluation, how the two 

key objectives of control system design, namely robust stability and robust performance, can 

be achieved. Specifically, it shows that in order to ensure both robust performance and 

robust stability of a closed-loop system where the controller is designed based on an 

identified model of the plant, it is then of paramount importance that both the identification 

scheme as well as the controller design strategy be selected appropriately, as the tightness of 

the achieved robustness bound depends on the magnitude of the modeling error produced 

by the selected identification scheme. In view of this close dependence, a comprehensive 

closed-loop identification scheme was proposed here that greatly mitigates the effects of 

measurement noise and disturbances and relies on a novel model order selection scheme. 

More specifically, the proposed identification consists of (a) a two-stage scheme to overcome 

the unknown noise and disturbance by first obtaining a high-order model, and then 

deriving from it a reduced-order model, (b) a novel model-order selection criterion based on 

verifying the location of the poles and (c) a two-stage scheme to identify first the closed-loop 

transfer functions of subsystems, and then obtain the plant model using the estimates on the 

input and output from the first stage.  The controller design was based on the well-known 

mixed-sensitivity H∞  controller design technique that achieves simultaneously robust 

stability and robust performance. This technique is able to handle plant uncertainties 

modeled as additive perturbations in the numerator and denominator of the identified 

model, and provides tools to achieve a trade-off between robust stability, robust 

performance and control input limitations. The identification and controller design were 

both successfully evaluated on a number of simulated as well practical physical systems 

including the laboratory-scale unstable magnetic levitation and two-tank liquid level 

systems. This study has provided us with ample encouragement to replicate the use of the 

powerful techniques used in this chapter, on different systems and to enrich the overall 

approach with other identification and robust controller design.   
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