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1. Introduction

Robustness of control systems to uncertainties has always been the central issue in feedback
control and therefore for dynamical systems with unknown parameters, a large number
of robust controller design methods have been presented (e.g. (3; 37)). Also, many
robust state feedback controllers achieving some robust performances such as quadratic
cost function(28; 31), H∞-disturbance attenuation(6) and so on have been suggested. It
is well-known that most of these problems are reduced to standard convex optimization
problems involving linear matrix inequalities (LMIs) which can be solved numerically very
efficiently. Furthermore, in the case that the full state of systems cannot be measured, the
control strategies via observer-based robust controllers (e.g. (12; 19; 27)) or robust output
feedback one (e.g. (9; 11)) have also been well studied. However, most of the resulting
controllers derived in the existing results have fixed structure, and these methods result in
worst-case design. Therefore these controllers become cautious when the perturbation region
of the uncertainties has been estimated larger than the proper region, because the robust
controller designed by the existing results only has a fixed gain.
From these viewpoints, it is important to derive robust controllers with adjustable parameters
which are tuned by using available information. Thus some researchers have proposed robust
controllers with adjustable parameters(18; 33). In the work of Ushida et al.(33), a quadratically
stabilizing state feedback controller based on the parametrization of H∞ controllers is derived.
Maki and Hagino(18) have introduced a robust controller with adaptation mechanism for
linear systems with time-varying parameter uncertainties and the controller gain in their
work is tuned on-line based on the information about parameter uncertainties. On the other
hand, we have proposed a robust controller with adaptive compensation input for a class of
uncertain linear systems(19; 21; 22). The adaptive compensation input is tuned by adjustable
parameters based on the error information between the plant trajectory and the desired one.
These adaptive robust controllers achieve good control performance and these approaches
are very simple due to the application of the linear quadratic control problem. Besides these
design methods reduce the cautiousness in a robust controller with a fixed gain, because
utilizing the error signal between the real response of the uncertain system and the desired one
is equivalent to giving consideration to the effect of the uncertainties as on-line information.
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In this chapter, for a class of uncertain linear systems, variable gain robust controllers which
achieve not only asymptotical stability but also improving transient behavior of the resulting
closed-loop system have been shown(23; 24; 26). The variable gain robust controllers, which
consist of fixed gain controllers and variable gain one, are tuned on-line based on the
information about parameter uncertainties. In this chapter, firstly, a design method of variable
gain state feedback controllers for linear systems with matched uncertainties has been shown
and next the variable gain state feedback controller is extended to output feedback controllers.
Finally, on the basis of the concept of piecewise Lyapunov functions (PLFs), an LMI-based
variable gain robust controller synthesis for linear systems with matched uncertainties and
unmatched one has been presented.
The contents of this chapter are as follows, where the item numbers in the list accord with the
section numbers.

2. Variable Gain Robust State Feedback Controllers

3. Variable Gain Robust Output Feedback Controllers

4. Variable Gain Robust Controllers based on Piecewise Lyapunov Functions

5. Conclusions and Future Works

Basic symbols are listed bellow.

Z
+ : the set of positive integers

R : the set of real numbers
R

n : the set of n-dimensional vectors
R

n×m : the set of n × m-dimensional matrices
In : n-dimensional identity matrix

Other than the above, we use the following notation and terms. For a matrix A, the transpose
of matrix A and the inverse of one are denoted by AT and A−1 respectively and rank {A}
represents the rank of the matrix A. Also, In represents n-dimensional identity matrix. For
real symmetric matrices A and B, A > B (resp. A ≥ B) means that A − B is positive
(resp. nonnegative) definite matrix. For a vector α ∈ R

n, ||α|| denotes standard Euclidian
norm and for a matrix A, ||A|| represents its induced norm. Besides, a vector α ∈ R

n,
∥

∥α
∥

∥

1

denotes 1-norm, i.e.
∥

∥α
∥

∥

1
is defined as

∥

∥α
∥

∥

1

△
=

n

∑
j=1

|αj|. The intersection of two sets Γ and Υ are

denoted by Γ ∩ Υ and the symbols “
△
=” and “⋆” mean equality by definition and symmetric

blocks in matrix inequalities, respectively. Besides, for a symmetric matrix P , λmax {P} (resp.
λmin {P}) represents the maximal eigenvalue (resp. minimal eigenvalue).
Furthermore, the following usefule lemmas are used in this paper.

Lemma 1. For arbitrary vectors λ and ξ and the matrices G and H which have appropriate dimensions,
the following relation holds.

2λTG∆(t)Hξ ≤ 2
∥

∥GTλ
∥

∥

∥

∥∆(t)Hξ
∥

∥

≤ 2
∥

∥GTλ
∥

∥

∥

∥Hξ
∥

∥

where ∆(t) ∈ R
p×q is a time-varying unknown matrix satisfying

∥

∥∆(t)
∥

∥ ≤ 1.

Proof. The above relation can be easily obtained by Schwartz’s inequality (see (8)).
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Lemma 2. (Schur complement) For a given constant real symmetric matrix Ξ, the following
arguments are equivalent.

(i). Ξ =

(

Ξ11 Ξ12

ΞT
12 Ξ22

)

> 0

(ii). Ξ11 > 0 and Ξ22 − ΞT
12Ξ−1

11 Ξ12 > 0

(iii). Ξ22 > 0 and Ξ11 − Ξ12Ξ−1
22 ΞT

12 > 0

Proof. See Boyd et al.(4)

Lemma 3. ( Barbalat’s lemma ) Let φ : R → R be a uniformly continuous function on [ 0, ∞) .

Suppose that limt→∞

∫ t
0 φ(τ)dτ exists and is finite. Then

φ(t) → 0 as t → ∞

Proof. See Khalil(13).

Lemma 4. (S-procedure) Let F (x) and G(x) be two arbitrary quadratic forms over R
n. Then F (x) <

0 for ∀x ∈ R
n satisfying G(x) ≤ 0 if and only if there exist a nonnegative scalar τ such that

F (x)− τG(x) ≤ 0 for ∀x ∈ R
n

Proof. See Boyd et al.(4).

2. Variable gain robust state feedback controllers

In this section, we propose a variable gain robust state feedback controller for a class of
uncertain linear systems. The uncertainties under consideration are supposed to satisfy
the matching condition(3) and the variable gain robust state feedback controller under
consideration consists of a state feedback with a fixed gain matrix and a compensation input
with variable one. In this section, we show a design method of the variable gain robust state
feedback controller.

2.1 Problem formulation

Consider the uncertain linear system described by the following state equation.

d

dt
x(t) = (A + B∆(t)E) x(t) + Bu(t) (2.1)

where x(t) ∈ R
n and u(t) ∈ R

m are the vectors of the state (assumed to be available
for feedback) and the control input, respectively. In (2.1) the matrices A and B denote the
nominal values of the system, and the pair (A, B) is stabilizable and the matrix ∆(t) ∈ R

m×q

denotes unknown time-varying parameters which satisfy
∥

∥∆(t)
∥

∥ ≤ 1. Namely, the uncertain
parameter satisfies the matching condition (See e.g. (3) and references therein).
The nominal system, ignoring the unknown parameter ∆(t) in (2.1), is given by

d

dt
x(t) = Ax(t) + Bu(t) (2.2)

where x(t) ∈ R
n and u(t) ∈ R

m are the vectors of the state and the control input for the
nominal system respectively.
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First of all, in order to generate the desirable transient behavior in time response for the
uncertain system (2.1) systematically, we adopt the standard linear quadratic control problem
(LQ control theory) for the nominal system (2.2). Note that some other design method so
as to generate the desired response for the controlled system can also be used (e.g. pole
assignment). It is well-known that the optimal control input for the nominal system (2.2)
can be obtained as u(t) = −Kx(t) and the closed-loop system

d

dt
x(t) = (A + BK) x(t)

= AKx(t) (2.3)

is asymptotically stable*.
Now in order to obtain on-line information on the parameter uncertainty, we introduce an

error signal e(t)
△
= x(t) − x(t), and for the uncertain system (2.1), we consider the following

control input.

u(t)
△
= Kx(t) + ψ(x, e,L, t) (2.4)

where ψ(x, e,L, t) ∈ R
m is a compensation input(21) to correct the effect of uncertainties, and

it is supposed to have the following structure.

ψ (x, e,L, t)
△
=F e(t) + L(x, e, t)e(t) (2.5)

In (2.4), F ∈ R
R

m×n
and L(t) ∈ R

m×n are a fixed gain matrix and an adjustable time-varying
matrix, respectively. Thus from (2.1), (2.3) – (2.5), the error system can be written as

d

dt
e(t) = (A + B∆(t)E) x(t) + B (Kx(t) +F e(t) + L(x, e, t)x(t))− AKx(t)

= AF e(t) + B∆(t)Ex(t) + L(x, e, t)e(t) (2.6)

In (2.6), AF is the matrix expressed as

AF = AK + BF (2.7)

Note that from the definition of the error signal, the uncertain system (2.1) is ensured to be
stable, because the nominal system is asymptotically stable.
From the above, our control objective in this section is to derive the fixed gain matrix
F ∈ R

m×n and the variable gain matrix L(x, e, t) ∈ R
m×n which stabilize the uncertain error

system (2.6).

* Using the unique solution of the algebraic Riccati equation ATX + X A − X BR−1BTX +Q = 0, the
gain matrix K ∈ R

m×n is determined as K = −R−1BTX where Q and R are nonnegative and positive
definite matrices, respectively. Besides, Q is selected such that the pair (A, C) is detectable, where C is

any matrix satisfying Q = CCT, and then the matrix AK
△
= A + BK is stable.
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2.2 Synthesis of variable gain robust state feedback controllers

In this subsection, we consider designing the variable matrix L(x, e, t) ∈ R
m×n and the

fixed gain matrix F ∈ R
m×n such that the error system (2.6) with unknown parameters is

asymptotically stable. The following theorem gives a design method of the proposed adaptive
robust controller.

Theorem 1. Consider the uncertain error system (2.6) with variable gain matrix L(x, e, t) ∈ R
m×n

and the fixed gain matrix F ∈ R
m×n.

By using the LQ control theory, the fixed gain matrix F ∈ R
m×n is designed as F = −R−1

e BTP
where P ∈ R

n×n is unique solution of the following algebraic Riccati equation.

AT
KP + PAK −PBR−1

e BTP +Qe = 0 (2.8)

where Qe ∈ R
n×n and Re ∈ R

m×m are positive definite matrices which are selected by designers.
Besides, the variable gain matrix L(x, e, t) ∈ R

m×n is determined as

L(x, e, t) = −

∥

∥Ex(t)
∥

∥

2

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥+ σ(t)
BTP (2.9)

In (2.9), σ(t) ∈ R
+ is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗
< ∞ (2.10)

where σ∗ is any positive constant and t0 denotes an initial time. Then the uncertain error system (2.6)
is bounded and

lim
t→∞

e(t; t0, e(t0)) = 0 (2.11)

Namely, asymptotical stability of the uncertain error system (2.6) is ensured.

Proof. Using symmetric positive definite matrix P ∈ R
n×n which satisfies (2.8), we introduce

the following quadratic function

V(e, t)
△
= eT(t)Pe(t) (2.12)

Let’s e(t) be the solution of (2.6) for t ≥ t0. Then the time derivative of the function V(e, t)
along the trajectory of (2.6) can be written as

d

dt
V(e, t) =eT(t)

(

AT
FP + PAF

)

e(t)

+ 2eT(t)PB∆(t)Ex(t) + 2eT(t)PBL(x, e, t)e(t) (2.13)

Now, one can see from (2.13) and Lemma 1 that the following inequality for the function
V(e, t) holds.

d

dt
V(e, t) =eT(t)

(

AT
FP +PAF

)

e(t) + 2
∥

∥BTPe(t)
∥

∥

∥

∥∆(t)Ex(t)
∥

∥

+ 2eT(t)PBL(x, e, t)e(t)

≤eT(t)
(

AT
FP +PAF

)

e(t) + 2
∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥

+ 2eT(t)PBL(x, e, t)e(t) (2.14)
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Additionally, using the relation (2.8), substituting (2.9) into (2.14) and some trivial
manipulations give the inequality

d

dt
V(e, t) ≤eT(t)

(

AT
FP + PAF

)

e(t) + 2
∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥

+ 2eT(t)PB

(

−

∥

∥Ex(t)
∥

∥

2

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥+ σ(t)
BTP

)

e(t)

≤eT(t)
(

AT
FP + PAF

)

e(t) + 2

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥+ σ(t)
σ(t)

=− eT(t)
{

Qe + PBR−1
e BTP

}

e(t) + 2

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥

∥

∥BTPe(t)
∥

∥

∥

∥Ex(t)
∥

∥+ σ(t)
σ(t) (2.15)

Notice the fact that for ∀α, β > 0

0 ≤
αβ

α + β
≤ α (2.16)

Then we can further obtain that for any t > t0

d

dt
V(e, t) ≤ − e(t)Ωe(t) + σ(t) (2.17)

where Ω ∈ R
n×n is the symmetric positive definite matrix given by

Ω = Qe + PBR−1
e BTP (2.18)

Besides, letting ζ
△
= λmin (Ω), we have

d

dt
V(e, t) ≤ − ζ

∥

∥e(t)
∥

∥

2
+ σ(t) (2.19)

On the other hand, from the definition of the quadratic function V(e, t), there always exist two
positive constants ξ− and ξ+ such that for any t ≥ t0,

ξ−
(∥

∥e(t)
∥

∥

)

≤ V (e, t) ≤ ξ+
(∥

∥e(t)
∥

∥

)

(2.20)

where ξ−
(∥

∥e(t)
∥

∥

)

and ξ+
(∥

∥e(t)
∥

∥

)

are given by

ξ−
(∥

∥e(t)
∥

∥

) △
= ξ−

∥

∥e(t)
∥

∥

2

ξ+
(∥

∥e(t)
∥

∥

) △
= ξ+

∥

∥e(t)
∥

∥

2
(2.21)

From the above, we want to show that the solution e(t) is uniformly bounded, and that the
error signal e(t) converges asymptotically to zero.
By continuity of the error system (2.6), it is obvious that any solution e(t; t0, e(t0)) of the error
system is continuous. Namely, e(t) is also continuous, because the state x(t) for the nominal
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system is continuous. In addition, it follows from (2.19) and (2.20), that for any t ≥ t0, we
have

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ V (e, t) = V (e, t0) +
∫ t

t0

d

dt
V(e, τ)dτ (2.22)

V (e, t) ≤ ξ+
(∥

∥e(t0)
∥

∥

)

−
∫ t

t0

ξ∗
(∥

∥e(τ)
∥

∥

)

dτ +
∫ t

t0

σ(τ)dτ (2.23)

In (2.23), ξ∗
(∥

∥e(t)
∥

∥

)

is defined as

ξ∗
(∥

∥e(t)
∥

∥

) △
= ζ

∥

∥e(t)
∥

∥

2
(2.24)

Therefore, from (2.22) and (2.23) we can obtain the following two results. Firstly, taking the
limit as t approaches infinity on both sides of inequality (2.23), we have the following relation.

0 ≤ ξ+
(∥

∥e(t0)
∥

∥

)

− lim
t→∞

∫ t

t0

ξ∗
(∥

∥e(τ)
∥

∥

)

dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (2.25)

Thus one can see from (2.10) and (2.25) that

lim
t→∞

∫ t

t0

ξ∗
(∥

∥e(τ)
∥

∥

)

dτ ≤ ξ+
(∥

∥e(t0)
∥

∥

)

+ σ∗ (2.26)

On the other hand, from (2.22) and (2.23), we obtain

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ ξ+
(∥

∥e(t0)
∥

∥

)

+
∫ t

t0

σ(τ)dτ (2.27)

Note that for any t ≥ t0,

sup
t∈[t0,∞)

∫ t

t0

σ(τ)dτ ≤ σ∗ (2.28)

It follows from (2.27) and (2.28) that

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ ξ+
(∥

∥e(t0)
∥

∥

)

+ σ∗ (2.29)

The relation (2.29) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore that e(t) is uniformly
continuous and one can see from the definition that the function ξ∗

(∥

∥e(t)
∥

∥

)

also uniformly
continuous. Applying the Lemma 2 ( Barbalat’s lemma ) to (2.26) yields

lim
t→∞

ξ∗
(∥

∥e(t)
∥

∥

)

= 0 (2.30)

Besides, since ξ∗
(∥

∥e(t)
∥

∥

)

is a positive definite scalar function, it is obvious that the following
equation holds.

lim
t→∞

∥

∥e(t)
∥

∥ = 0 (2.31)

Namely, asymptotical stability of the uncertain error system (2.6) is ensured. Therefore the
uncertain system (2.1) is also asymptotically stable, because the nominal system (2.2) is stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 1 is completed.
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Remark 1. Though, the variable gain controllers in the existing results(19; 21) can also be
good transient performance, these controllers may cause serious chattering, because the adjustment
parameters in the existing results(19; 21) are adjusted on the boundary surface of the allowable
parameter space (see. (26) for details). On the other hand, since the variable gain matrix (2.9) of
the proposed robust controller is continuous, chattering phenomenon can be avoided.

2.3 Illustrative examples

In order to demonstrate the efficiency of the proposed control scheme, we have run a simple
example.
Consider the following linear system with unknown parameter, i.e. the unknown parameter
∆(t) ∈ R

1.

d

dt
x(t) =

(

1 1
0 −2

)

x(t) +

(

0
1

)

∆(t)
(

5 4
)

+

(

0
1

)

u(t) (2.32)

Now we select the weighting matrices Q and R such as Q = 1.0I2 and R = 4.0 for the
standard linear quadratic control problem for the nominal system, respectively. Then solving
the algebraic Riccati equation, we obtain the following optimal gain matrix

K =
(

−6.20233 −2.08101
)

(2.33)

In addition, setting the design parameters Qe and Re such as Qe = 9.0I2 and Re = 1.0,
respectively, we have

F =
(

−2.37665 × 102 −9.83494 × 101
)

(2.34)

Besides for the variable gain matrix L(x, e, t) ∈ R
m×n, we select the following parameter.

σ(t) = 50 exp (−0.75t) (2.35)

In this example, we consider the following two cases for the unknown parameter ∆(t).

• Case 1) :

∆(t) = sin(πt)

• Case 2) :

∆(t) = −1.0 : 0 ≤ t ≤ 1.0
∆(t) = 1.0 : 1.0 < t ≤ 2.0
∆(t) = −1.0 : t > 2.0

Besides, for numerical simulations, the initial values of the uncertain system (2.32) and the

nominal system are selected as x(0) = x(0) =
(

1.0 −1.0
)T

.

J 1(e, t) J 2(e, t)

Case 1) 1.05685 × 10−4 1.41469 × 10−3

Case 2) 2.11708 × 10−4 2.79415 × 10−3

Table 1. The values of the performance indecies

318 Recent Advances in Robust Control – Novel Approaches and Design Methods
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Fig. 2. Time histories of the state x2(t)

The results of the simulation of this example are depicted in Figures 1–3 and Table 1. In these
Figures, “Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and
x2(t) and the control input u(t) generated by the proposed controller, and “Desired” shows
the desired time-response and the desired control input generated by the nominal system.
Additionally J k(e, t) (k = 1, 2) in Table 1 represent the following performance indecies.

J 1(e, t)
△
=

∫ ∞

0
eT(t)e(t)dt

J 2(e, t)
△
= sup

t

∥

∥e(t)
∥

∥

1

(2.36)

From Figures 1–3, we find that the proposed variable gain robust state feedback controller
stabilizes the uncertain system (2.32) in spite of uncertainties. Besides one can also see from
Figures 1 and 2 and Table 1 that the proposed variable gain robust state feedback controller
achieves the good transient performance and can avoid serious chattering.
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Fig. 3. Time histories of the control input u(t)

2.4 Summary

In this section, a design method of a variable gain robust state feedback controller for a class of
uncertain linear systems has been presented and, by numerical simulations, the effectiveness
of the proposed controller has been presented.
Since the proposed state feedback controller can easily be obtained by solving the standard
algebraic Riccati equation, the proposed design approach is very simple. The proposed
variable gain robust state feedback controller can be extended to robust servo systems and
robust tracking control systems.

3. Variable gain robust output feedback controllers

In section 2, it is assumed that all the state are measurable and the procedure specifies the
current control input as a function of the current value of the state vector. However it is
physically and economically impractical to measure all of the state in many practical control
systems. Therefore, it is necessary that the control input from the measurable signal is
constructed to achieve satisfactory control performance. In this section, for a class of uncertain
linear systems, we extend the result derived in section 2 to a variable gain robust output
feedback controller.

3.1 Problem formulation

Consider the uncertain linear system described by the following state equation.

d

dt
x(t) = (A + B∆(t)E) x(t) + Bu(t)

y(t) = Cx(t) (3.1)

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
l are the vectors of the state, the control input and

the measured output, respectively. In (3.1), the matrices A, B and C are the nominal values of
system parameters and the matrix ∆(t) ∈ R

p×q denotes unknown time-varying parameters
which satisfy

∥

∥∆(t)
∥

∥ ≤ 1. In this paper, we introduce the following assumption for the system
parameters(25).

BT = T C (3.2)
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where T ∈ R
m×l is a known constant matrix.

The nominal system, ignoring unknown parameters in (3.1), is given by

d

dt
x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (3.3)

In this paper, the nominal system (3.3) is supposed to be stabilizable via static output feedback
control. Namely, there exists an output feedback control u(t) = Ky(t)

(

i.e. a fixed gain matrix

K ∈ R
m×l

)

. In other words, since the nominal system is stabilizable via static output feedback

control, the matrix AK
△
= A+ BKC is asymptotically stable. Note that the feedback gain matrix

K ∈ R
m×l is designed by using the existing results (e.g. (2; 16)).

Now on the basis of the work of (25), we introduce the error vectors e(t)
△
= x(t) − x(t) and

ey(t)
△
= y(t)− y(t). Beside, using the fixed gain matrix K ∈ R

m×l , we consider the following
control input for the uncertain linear system (3.1).

u(t)
△
= Ky(t) + ψ(ey,L, t) (3.4)

where ψ(ey,L, t) ∈ R
m is a compensation input (e.g. (25)) and has the following form.

ψ(ey,L, t)
△
=L(ey, t)ey(t) (3.5)

In (3.5), L(ey, t) ∈ R
m×l is a variable gain matrix. Then one can see from (3.1) and (3.3) – (3.5)

that the following uncertain error system can be derived.

d

dt
e(t) = AKe(t) + B∆(t)Ex(t) + BL(ey, t)ey(t)

ey(t) = Ce(t) (3.6)

From the above, our control objective is to design the variable gain robust output feedback
controller which stabilizes the uncertain error system (3.6). That is to derive the variable gain
matrix L(ey, t) ∈ R

m×l which stabilizes the uncertain error system (3.6).

3.2 Synthesis of variable gain robust output feedback controllers

In this subsection, an LMI-based design method of the variable gain robust output feedback
controller for the uncertain linear system (3.1) is presented. The following theorem gives an
LMI-based design method of a variable gain robust output feedback controller.

Theorem 2. Consider the uncertain error system (3.6) with the variable gain matrix L(ey, t) ∈ R
m×l .

Suppose there exist the positive definite matrices S ∈ R
n×n, Θ ∈ R

l×l and Ψ ∈ R
l×l and the positive

constants γ1 and γ2 satisfying the following LMIs.

SAK + AT
KS + γ1ETE ≤ −Q

−CTΘC + SCTT TT C + CT TT CS ≤ 0
⎛

⎜

⎝

−CTΨC SCTT SCTT

⋆ −γ1 Im 0

⋆ ⋆ −γ2 Im

⎞

⎟

⎠
≤ 0

(3.7)
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Using the positive definite matrices Θ ∈ R
l×l and Ψ ∈ R

l×l, we consider the following variable gain
matrix.

L(ey, t) = −

(

∥

∥Ψ1/2Ce(t)
∥

∥

2
+ γ2

∥

∥Ex(t)
∥

∥

2
)2

∥

∥Θ1/2Ce(t)
∥

∥

2
(

∥

∥Ψ1/2Ce(t)
∥

∥

2
+ γ2

∥

∥Ex(t)
∥

∥

2
+ σ(t)

)T (3.8)

In (3.7), Q ∈ R
n×n is a symmetric positive definite matrix selected by designers and σ(t) ∈ R

1 in
(3.8) is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗
< ∞ (3.9)

where t0 and σ∗ are an initial time and any positive constant, respectively.
Then asymptotical stability of the uncertain error system (3.6) is guaranteed.

Proof. Firstly, we introduce the quadratic function V(e, t)
△
= eT(t)Se(t). The time derivative of

the quadratic function V(e, t) can be written as

d

dt
V(e, t) = eT(t)

(

SAK + AT
KS

)

e(t) + 2eT(t)SB∆(t)Ex(t) + 2eT(t)SBL(ey, t)ey(t) (3.10)

Now, using Lemma 1 and the assumption (3.2) we can obtain

d

dt
V(e, t) ≤ eT(t)

(

SAK + AT
KS

)

e(t) + 2eT(t)SB∆(t)E (e(t) + x(t)) + 2eT(t)SBL(ey, t)ey(t)

≤ eT(t)
(

SAK + AT
KS + γ1ETE

)

e(t) + 2eT(t)SCTT TL(ey, t)ey(t)

+
1

γ1
eT(t)SCTT TT CSe(t) +

1

γ2
eT(t)SCTT TT CSe(t) + γ2xT(t)ETEx(t) (3.11)

Here we have used the well-known following relation.

2aTb ≤ µaTa +
1

µ
bTb (3.12)

where a and b are any vectors with appropriate dimensions and µ is any positive constant.
Besides, we have the following inequality for the time derivative of the quadratic function
V(e, t).

d

dt
V(e, t) ≤ eT(t)

(

SAK + AT
KS + γ1ETE

)

e(t) + eT(t)CTΨCe(t) + γ2xT(t)ETEx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.13)

because by using Lemma 2 (Schur complement) the third LMI of (3.7) can be written as

− CTΨC +
1

γ1
SCTT TT CS +

1

γ2
SCTT TT CS ≤ 0 (3.14)
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Furthermore using the variable gain matrix (3.8), the LMIs (3.7) and the well-known inequality
for any positive constants α and β

0 ≤
αβ

α + β
≤ α ∀α, β > 0 (3.15)

and some trivial manipulations give the following relation.

d

dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t) (3.16)

In addition, by letting ζ
△
=min {λmin {Q}}, we obtain the following inequality.

d

dt
V(e, t) ≤ −ζ

∥

∥e(t)
∥

∥

2
+ σ(t) (3.17)

On the other hand, one can see from the definition of the quadratic function V(e, t) that there
always exist two positive constants δmin and δmax such that for any t ≥ t0,

ξ−
(∥

∥e(t)
∥

∥

)

≤ V (e, t) ≤ ξ+
(∥

∥e(t)
∥

∥

)

(3.18)

where ξ−
(∥

∥e(t)
∥

∥

)

and ξ+
(∥

∥e(t)
∥

∥

)

are given by

ξ−
(∥

∥e(t)
∥

∥

) △
= δmin

∥

∥e(t)
∥

∥

2

ξ+
(∥

∥e(t)
∥

∥

) △
= δmax

∥

∥e(t)
∥

∥

2
(3.19)

It is obvious that any solution e(t; t0, e(t0)) of the uncertain error system (3.6) is continuous.
In addition, it follows from (3.17) and (3.18), that for any t ≥ t0, we have

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ V (e, t) = V (e, t0) +
∫ t

t0

d

dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d

dt
V(e, τ)dτ ≤ ξ+

(∥

∥e(t0)
∥

∥

)

−
∫ t

t0

ζ
(∥

∥e(τ)
∥

∥

)

dτ +
∫ t

t0

σ(τ)dτ
(3.20)

In (3.20), ξ∗
(∥

∥e(t)
∥

∥

)

is defined as

ξ∗
(∥

∥e(t)
∥

∥

) △
= ζ

∥

∥e(t)
∥

∥

2
(3.21)

Therefore, from (3.20) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (3.20), we have

0 ≤ ξ+
(∥

∥e(t0)
∥

∥

)

− lim
t→∞

∫ t

t0

ξ∗
(∥

∥e(τ)
∥

∥

)

dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (3.22)

Thus one can see from (3.9) and (3.22) that

lim
t→∞

∫ t

t0

ξ∗
(∥

∥e(τ)
∥

∥

)

dτ ≤ ξ+
(∥

∥e(t0)
∥

∥

)

+ σ∗ (3.23)

On the other hand, from (3.20), we obtain

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ ξ+
(∥

∥e(t0)
∥

∥

)

+
∫ t

t0

σ(τ)dτ (3.24)
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It follows from (3.9) and (3.24) that

0 ≤ ξ−
(∥

∥e(t)
∥

∥

)

≤ ξ+
(∥

∥e(t0)
∥

∥

)

+ σ∗ (3.25)

The relation (3.25) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore, one can see from the
definition that ξ∗

(∥

∥e(t)
∥

∥

)

is also uniformly continuous. Thus applying Lemma 3 (Barbalat’s
lemma) to (3.23) yields

lim
t→∞

ξ∗
(∥

∥e(t)
∥

∥

)

= lim
t→∞

ζ
∥

∥e(t)
∥

∥

2
= 0 (3.26)

Namely, asymptotical stability of the uncertain error system (3.6) is ensured. Thus the
uncertain linear system (3.1) is also stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 2 is completed.

Theorem 2 provides a sufficient condition for the existence of a variable gain robust output
feedback controller for the uncertain linear system (3.1). Next, we consider a special case. In
this case, we consider the uncertain linear system described by

d

dt
x(t) = (A + B∆(t)C) x(t) + Bu(t)

y(t) = Cx(t)
(3.27)

Thus one can see from (3.3) – (3.5) and (3.27) that we have the following uncertain error
system.

d

dt
e(t) = AKe(t) + B∆(t)Cx(t) + BL(ey, t)ey(t)

ey(t) = Ce(t)
(3.28)

Next theorem gives an LMI-based design method of a variable gain robust output feedback
controller for this case.

Theorem 3. Consider the uncertain error system (3.28) with the variable gain matrix L(ey, t) ∈

R
m×l .

Suppose there exist the symmetric positive definite matrices X > 0,Y > 0 and matrices S ∈
R

n×n, Θ ∈ R
l×l and Ψ ∈ R

l×l and the positive constant γ satisfying the LMIs.

SAK + AT
KS ≤ −Q

(

Q = QT
> 0

)

−CTΘC + SCTT TT C + CTT TT CS ≤ 0
(

−CTΨC SCTT

⋆ −γIm

)

≤ 0

(3.29)

Using positive definite matrices Ψ ∈ R
l×l and Θ ∈ R

l×l and the positive scalars γ satisfying the
LMIs (3.29), we consider the variable gain matrix

L(ey, t) = −

(

∥

∥Ψ1/2ey(t)
∥

∥

2
+ γ

∥

∥y(t)
∥

∥

2
)2

∥

∥Θ1/2Ce(t)
∥

∥

2
(

∥

∥Ψ1/2ey(t)
∥

∥

2
+ γ

∥

∥y(t)
∥

∥

2
+ σ(t)

)T (3.30)

where σ(t) ∈ R
1 is any positive uniform continuous and bounded function satisfying (3.9).

Then asymptotical stability of the uncertain error system (3.28) is guaranteed.
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Proof. By using the symmetric positive definite matrix S ∈ R
n×n, we consider the quadratic

function V(e, t)
△
= eT(t)Se(t). Then using the assumption (3.2) we have

d

dt
V(e, t) =eT(t)

(

SAK + AT
KS

)

e(t) + 2eT(t)SCTT T∆(t)Cx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.31)

Additionally, applying the inequality (3.12) to the second term on the right hand side of (3.31)
we obtain

d

dt
V(e, t) ≤eT(t)

(

SAK + AT
KS

)

e(t) +
1

γ
eT(t)SCTT TT CSe(t) + γyT(t)y(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.32)

Now by using the LMIs (3.29), the variable gain matrix (3.30) and the inequality (3.15), we
have

d

dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t)

≤ −ζ
∥

∥e(t)
∥

∥

2
+ σ(t) (3.33)

where ζ is a positive scalar given by ζ = λmax {Q}.
Therefore, one can see from the definition of the quadratic function V(e, t) and Proof 1 that
the rest of proof of Theorem 2 is straightforward.

3.3 Illustrative examples

Consider the uncertain linear system described by

d

dt
x(t) =

⎛

⎝

−2.0 0.0 −6.0
0.0 1.0 1.0
3.0 0.0 −7.0

⎞

⎠ x(t) +

⎛

⎝

2.0
1.0
0.0

⎞

⎠ ∆(t)

(

1.0 0.0 1.0
0.0 3.0 1.0

)

x(t) +

⎛

⎝

2.0
1.0
0.0

⎞

⎠ u(t)

y(t) =

(

1.0 0.0 0.0
0.0 1.0 0.0

)

x(t)

(3.34)

Namely, the matrix T ∈ R
1×2in the assumption (3.2) can be expressed as T =

(

2.0 1.0
)

.

Firstly, we design an output feedback gain matrix K ∈ R
1×2 for the nominal system. By

selecting the design parameter α such as α = 4.5 and applying the LMI-based design
algorithm (see. (2) and Appendix in (25)), we obtain the following output feedback gain
matrix K ∈ R

1×2.

K =
(

3.17745 × 10−1 −1.20809 × 101
)

(3.35)

Finally, we use Theorem 1 to design the proposed variable gain robust output feedback
controller, i.e. we solve the LMIs (3.7). By selecting the symmetric positive definite matrix
Q ∈ R

3×3 such as Q = 0.1 × I3, we have

S =

⎛

⎝

7.18316 1.10208 3.02244 × 10−1

⋆ 5.54796 −6.10321 × 10−2

⋆ ⋆ 4.74128

⎞

⎠

γ1 = 2.01669 × 103, γ2 = 6.34316 × 102,

Θ =

(

3.14338 × 101 1.54786 × 101

⋆ 8.20347

)

, Ψ =

(

6.73050 6.45459
⋆ 6.57618

)

(3.36)
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Fig. 4. Time histories of the state x1(t)
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Fig. 5. Time histories of the state x2(t)

In this example, we consider the following two cases for the unknown parameter ∆(t) ∈ R
1×2.

• Case 1) : ∆(t) =
(

7.30192 −5.00436
)

× 10−1

• Case 2) : ∆(t) =
(

sin(5πt) cos(5πt)
)

Furthermore, initial values for the uncertain system (3.24) and the nominal system are selected

as x(0) =
(

1.5 2.0 −4.5
)T

and x(0) =
(

2.0 2.0 −5.0
)T

, respectively. Besides, we choose σ(t) ∈

R
+ in (3.8) as σ(t) = 5.0 × 1012 × exp

(

−1.0 × 10−4t
)

.
The results of the simulation of this example are depicted in Figures 4–7. In these figures,
“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t)
and the control input u(t) generated by the proposed variable gain robust output feedback
controller, and “Desired” shows the desired time-response and the desired control input
generated by the nominal system. From Figures 4–6, we find that the proposed variable gain
robust output feedback controller stabilize the uncertain linear system (3.34) in spite of plant
uncertainties and achieves good transient performance.
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Fig. 7. Time histories of the control input u(t)

3.4 Summary

In this section, we have proposed a variable gain robust output feedback controller for a
class of uncertain linear systems. Besides, by numerical simulations, the effectiveness of the
proposed controller has been presented.
The proposed controller design method is easy to design a robust output feedback controller.
Additionally, the proposed control scheme is adaptable when some assumptions are satisfied,
and in cases where only the output signal of the controlled system is available, the proposed
method can be used widely. In addition, the proposed controller is more effective for
systems with larger uncertainties. Namely, for the upper bound on the perturbation region
of the unknown parameter ∆(t) is larger than 1, the proposed variable gain output feedback
controller can easily be extended.

4. Variable gain robust controllers based on piecewise Lyapunov functions

The quadratic stability approach is popularly used for robust stability analysis of uncertain
linear systems. This approach, however, may lead to conservative results. Alternatively,
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non-quadratic Lyapunov functions have been used to improve the estimate of robust stability
and to design robust stabilizing controllers(7; 30; 34). We have also proposed variable gain
controllers and adaptive gain controllers based on Piecewise Lyapunov functions (PLFs)
for a class of uncertain linear systems(23; 24). However, the resulting variable gain robust
controllers may occur the chattering phenomenon. In this section, we propose a variable
gain robust state feedback controller avoiding chattering phenomenon for a class of uncertain
linear systems via PLFs and show that sufficient conditions for the existence of the proposed
variable gain robust state feedback controller.

4.1 Problem formulation

Consider a class of linear systems with non-linear perturbations represented by the following
state equation (see Remark 2).

d

dt
x(t) = (A +D∆(t)E) x(t) + Bu(t) (4.1)

where x(t) ∈ R
n and u(t) ∈ R

m are the vectors of the state (assumed to be available for
feedback) and the control input, respectively. In (4.1), the matrices A and B denote the nominal
values of the system, and the matrix B has full column rank. The matrices D and E which have
appropriate dimensions represent the structure of uncertainties. The matrix ∆(t) ∈ R

p×q

represents unknown time-varying parameters and satisfies the relation
∥

∥∆(t)
∥

∥ ≤ 1. Note
that the uncertain term D∆(t)E consists of matched part and unmatched one. Additionally,
introducing the integer N ∈ Z

+ defined as

N
△
= arg min

Z∈Z+
{Z | (Zm − n) ≥ 0} (4.2)

we assume that there exist symmetric positive definite matrices Sk ∈ R
n×n (k = 1, · · · ,N )

which satisfies the following relation(23; 24).

N
⋂

k=1

ΩSk
= {0} (4.3)

where ΩSk
represents a subspace defined as

ΩSk

△
=

{

x ∈ R
n | BTSkx = 0

}

(4.4)

The nominal system, ignoring the unknown parameter in (4.1), is given by

d

dt
x(t) = Ax(t) + Bu(t) (4.5)

where x(t) ∈ R
n and u(t) ∈ R

m are the vectors of the state and the control input, respectively.
First of all, we adopt the standard linear quadratic LQ control theory for the nominal system
(4.5) in order to generate the desirable transient response for the plant systematically, i.e. the
control input is given by u(t) = Kx(t). Note that some other design method so as to generate
the desired response for the controlled system can also be used (e.g. pole assignment). Thus
the feedback gain matrix K ∈ R

m×n is derived as K = −R−1BTP where P ∈ R
n×n is unique

solution of the algebraic Riccati equation

ATP + PA −PBR−1BTP +Q = 0 (4.6)
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In (4.6), the matrices Q ∈ R
n×n and R ∈ R

m×m are design parameters and Q is selected such
that the pair (A, C) is detectable, where C is any matrix satisfying Q = CCT , and then the

matrix AK
△
= A + BK is stable.

Now on the basis of the works of Oya et al.(21; 22), in order to obtain on-line information on

the parameter uncertainty, we introduce the error vector e(t)
△
= x(t)− x(t). Beside, using the

optimal gain matrix K ∈ R
m×n for the nominal system (4.5), we consider the following control

input.

u(t)
△
= Kx(t) + ψ (x, e,L, t) (4.7)

where ψ (x, e,L, t) ∈ R
m is a compensation input so as to reduce the effect of uncertainties

and nonlinear perturbations, and it is supposed to have the following structure.

ψ (x, e,L, t)
△
=F e(t) + L(x, e, t)e(t) (4.8)

where F ∈ R
m×n is a fixed gain matrix and L(x, e, t) ∈ R

m×n is an adjustable time-varying
matrix. From (4.1), (4.5), (4.7) and (4.8), we have

d

dt
e(t) = (A +D∆(t)E) x(t) + B {Kx(t) + ψ (x, e,L, t)}

= AF e(t) +D∆(t)Ex(t) + BL(x, e, t)e(t) (4.9)

In (4.9), AF ∈ R
n×n is a matrix given by AF

△
= AK + BF . Note that if asymptotical stability of

the uncertain error system (4.9) is ensured, then the uncertain system (4.1) is robustly stable,

because e(t)
△
= x(t)− x(t). Here, the fixed gain matrix F ∈ R

m×n is determined by using LQ
control theory for the nominal error system. Namely F = −RFBTXF and XF ∈ R

n×n is
unique solution of the algebraic Riccati equation

AT
KXF +XF AK −XF BR−1

F BTXF +QF = 0 (4.10)

where QF ∈ R
n×n and RF ∈ R

m×m are design parameters and symmetric positive definite
matrices. A decision method of the time-varying matrix L(x, e, t) ∈ R

m×n will be stated in the
next subsection.
From the above discussion, our control objective in this section is to design the robust
stabilizing controller for the uncertain error system (4.9). That is to design the variable gain
matrix L(x, e, t) ∈ R

m×n that the error system with uncertainties (4.9) is asymptotically stable.

4.2 Synthesis of variable gain robust state feedback controllers via PLFs

The following theorem gives sufficient conditions for the existence of the proposed controller.

Theorem 4. Consider the uncertain error system (4.9) and the control input (4.7) and (4.8).

Suppose that the matrices Sk
△
=P1 +P2 + · · ·+PN +PkBBTPk(k = 1, · · · ,N ) satisfy the relation

(4.3), where Pk ∈ R
n×n are symmetric positive definite matrices† satisfying the matrix inequalities

(

P1 + P2 + · · ·+ PN + PkBBTPk

)

AF + AT
F

(

P1 + P2 + · · ·+ PN + PkBBTPk

)

+
N−1

∑
j=1

γ
(k)

j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.11)

† i.e. Sk ∈ R
n×n are symmetric positive definite matrices.
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In (4.11), γ
(k)
j (k = 1, · · · ,N , j = 1, · · · ,N − 1) are positive scalars and Qk ∈ R

n×n are symmetric

positive definite matrices.
By using the matrices Sk ∈ R

n×n, L(x, e, t) ∈ R
m×n is determined as

L(x, e, t) = −

(∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

)2

(

σ(t) +
∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

) ∥

∥BTSke(t)
∥

∥

2
BTSk

for k = arg max
k

{

eT(t)PkBBTPke(t)
}

(4.12)

In (4.12), σ(t) ∈ R
1 is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗
< ∞ (4.13)

where σ∗ is any positive constant and t0 denotes an initial time. Then the uncertain error system (4.9)
are bounded and

lim
t→∞

e(t; t0, e(t0)) = 0 (4.14)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured.

Proof. Using symmetric positive definite matrices Pk ∈ R
n×n (k = 1, · · · ,N ) which satisfy

(4.11), we introduce the following piecewise quadratic function.

V(e, t) = eT(t)Ske(t) for k = arg max
k

{

eT(t)PkBBTPke(t)
}

and k = 1, · · · ,N

= max
k

{

eT(t)Ske(t)
}

(4.15)

Note that the piecewise quadratic function V(e, t) is continuous and its level set is closed.
The time derivative of the piecewise quadratic function V(e, t) can be written as

d

dt
V(e, t) = eT(t)

(

Sk AF + AT
FSk

)

e(t) + 2eT(t)SkD∆(t)Ex(t) + 2eT(t)SkBL(x, e, t)e(t)

for k = arg max
k

{

eT(t)PkBBTPke(t)
}

(4.16)

Now, using Lemma 1, we can obtain

d

dt
V(e, t) ≤ eT(t)

(

Sk AF + AT
FSk

)

e(t) + 2
∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

+ 2eT(t)SkBL(x, e, t)e(t) for k = arg max
k

{

eT(t)PkBBTPke(t)
}

(4.17)

Also, using the time-varying gain matrix (4.12) and the relation (4.17) and some trivial
manipulations give the following relation for the time derivative of the piecewise quadratic
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function V(e, t).

d

dt
V(e, t) ≤ eT(t)

(

Sk AF + AT
FS

)

e(t) + 2
∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

+ 2eT(t)SkB

{

−

(∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

)2

(

σ(t) +
∥

∥DTSke(t)
∥

∥

∥

∥Ex(t)
∥

∥

) ∥

∥BTSke(t)
∥

∥

2
BTSk

}

e(t)

for k = arg max
k

{

eT(t)PkBBTPke(t)
}

≤ eT(t)
(

Sk AF + AT
FS

)

e(t) + σ(t) for k = arg max
k

{

eT(t)PkBBTPke(t)
}

(4.18)

Now we consider the following inequality.

eT(t)
(

Sk AF + AT
FSk

)

e(t) < 0 for k = arg max
k

{

eT(t)PkBBTPke(t)
}

(4.19)

By using Lemma 4 (S-procedure), the inequality (4.19) is satisfied if and only if there exist

Sk > 0 and γ
(k)
j ≥ 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N ) satisfying

S1 AF + AT
FS1 +

N−1

∑
j=1

γ
(1)
j P1BBTP1 − γ

(1)
1 P2BBTP2 − · · · − γ

(1)
N−1PN BBTPN < 0

...

SN AF + AT
FSN +

N−1

∑
j=1

γ
(N )
j PN BBTPN − γ

(N )
1 P2BBTP2 − · · · − γ

(N )
N−1PN−1BBTPN−1 < 0

(4.20)

Noting that since the condition (4.11) is a sufficient condition for the matrix inequalities (4.20),
if the inequalities (4.11) are satisfied, then the condition (4.20) is also satisfied. Therefore, we
have the following relation.

eT(t)
(

Sk AF + AT
FSk

)

e(t) < −eT(t)Qke(t) (4.21)

Besides, by letting ζk
△
=min

k
{λmin {Qk}}, we obtain

d

dt
V(e, t) ≤ −ζk

∥

∥e(t)
∥

∥

2
+ σ(t) for k = arg max

k

{

eT(t)PkBBTPke(t)
}

(4.22)

On the other hand, from the definition of the piecewise quadratic function, there always exist
two positive constants δmin and δmax such that for any t ≥ t0,

η− (∥

∥e(t)
∥

∥

)

≤ V (e, t) ≤ η+ (∥

∥e(t)
∥

∥

)

(4.23)

where η−
(∥

∥e(t)
∥

∥

)

and η+
(∥

∥e(t)
∥

∥

)

are given by

η−
(∥

∥e(t)
∥

∥

) △
= δmin

∥

∥e(t)
∥

∥

2

η+
(∥

∥e(t)
∥

∥

) △
= δmax

∥

∥e(t)
∥

∥

2
(4.24)
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It is obvious that any solution e(t; t0, e(t0)) of the error system is continuous. In addition, it
follows from (4.22) and (4.23), that for any t ≥ t0, the following relation holds.

0 ≤ η− (∥

∥e(t)
∥

∥

)

≤ V (e, t) = V (e, t0) +
∫ t

t0

d

dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d

dt
V(e, τ)dτ ≤ η+ (∥

∥e(t0)
∥

∥

)

−
∫ t

t0

η∗ (
∥

∥e(τ)
∥

∥

)

dτ +
∫ t

t0

σ(τ)dτ
(4.25)

In (4.25), η∗
(∥

∥e(t)
∥

∥

)

is defined as

η∗ (
∥

∥e(t)
∥

∥

) △
= ζk

∥

∥e(t)
∥

∥

2
(4.26)

Therefore, from (4.25) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (4.25), we have

0 ≤ η+ (∥

∥e(t0)
∥

∥

)

− lim
t→∞

∫ t

t0

η∗ (
∥

∥e(τ)
∥

∥

)

dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (4.27)

Thus one can see from (4.13) and (4.27) that

lim
t→∞

∫ t

t0

η∗ (
∥

∥e(τ)
∥

∥

)

dτ ≤ η+ (∥

∥e(t0)
∥

∥

)

+ σ∗ (4.28)

On the other hand, from (4.25), we obtain

0 ≤ η− (∥

∥e(t)
∥

∥

)

≤ η+ (∥

∥e(t0)
∥

∥

)

+
∫ t

t0

σ(τ)dτ (4.29)

It follows from (4.13) and (4.29) that

0 ≤ η− (∥

∥e(t)
∥

∥

)

≤ η+ (∥

∥e(t0)
∥

∥

)

+ σ∗ (4.30)

The relation (4.30) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore, one can see from the
definition that η∗

(∥

∥e(t)
∥

∥

)

is also uniformly continuous. Applying the Lemma 3 ( Barbalat’s
lemma ) to (4.28) yields

lim
t→∞

η∗ (
∥

∥e(t)
∥

∥

)

= lim
t→∞

ζk

∥

∥e(t)
∥

∥ = 0 (4.31)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured. Thus the
uncertain linear system (4.1) is also stable.
Thus the proof of Theorem 4 is completed.

Remark 2. In this section, we consider the uncertain dynamical system (4.1) which has uncertainties
in the state matrix only. The proposed robust controller can also be applied to the case that the
uncertainties are included in both the system matrix and the input one. By introducing additional
actuator dynamics and constituting an augmented system, uncertainties in the input matrix are
embedded in the system matrix of the augmented system(36). Therefore the same design procedure
can be applied.
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Remark 3. In order to get the proposed controller, symmetric positive definite matrices Sk ∈
R

n×n (k = 1, · · · ,N ) satisfying the assumption (4.3) are required. The condition (4.3) is reduced
to the following rank condition.

rank
{

(

S1B S2B · · · SN B
)T

}

= n (4.32)

However there is not a globally effective method to obtain matrices satisfying the conditions (4.32). In
future work, we will examine the assumption (4.3) and the condition (4.32).

Remark 4. In this section, we introduce the compensation input (4.8). From (4.8) and (4.12), one can
see that if e(t) = 0, then the relation ψ (x, e,L, t) ≡ 0 is satisfied. Beside, we find that the variable
gain matrix L(x, e, t) ∈ R

m×n can be calculated except for e(t) = 0 (see (24)).

Now, we consider the condition (4.11) in Theorem 4. The condition (4.11) requires symmetric

positive definite matrices Pk ∈ R
n×n and positive scalars γ

(k)
j ∈ R

1 for stability. In this

section, on the basis of the works of Oya et al.(23; 24), we consider the following inequalities
instead of (4.11).

(P1 + P2 + · · ·+ PN ) AF + AT
F (P1 + P2 + · · ·+ PN )

+
N−1

∑
j=1

γ
(k)
j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.33)

In addition, introducing complementary variables ξ
(k)
j

△
=

(

γ
(k)
j

)−1
(j = 1, · · · ,N − 1, k =

1, · · · ,N ) and using Lemma 3 (Schur complement), we find that the condition (4.33)
equivalent to the following LMIs.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ψ (P1, · · · ,PN ) +Qk PkB PkB · · · PkB

BTPk −ξ
(k)
1 Im 0 · · · 0

BTPk 0 −ξ
(k)
2 Im · · · 0

...
...

...
. . .

...

BTPk 0 0 0 −ξ
(k)
N−1Im

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

< 0,

Pk > 0 and ξ
(k)
j > 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N )

(4.34)

where Ψ (P1, · · · ,PN ) in (1, 1)-block of the LMIs (4.34) is given by

Ψ (P1, · · · ,PN ) = (P1 + P2 + · · ·+PN ) AF + AT
F (P1 + P2 + · · ·+ PN ) (4.35)

Note that if there exist symmetric positive definite matrices Pk ∈ R
n×n and positive scalars

γ
(k)
j ∈ R

1 which satisfy the matrix inequalities (4.34), then the matrix inequality condition

(4.11) is also satisfied (23; 24).
From the above discussion, one can see that in order to get the proposed robust controller,

the positive scalars γ
(k)
j ∈ R

1 and the symmetric positive definite matrices Pk ∈ R
n×n which

satisfy the LMIs (4.34) and the assumption (4.3) are needed. Therefore firstly, we solve the
LMIs (4.34) and next, we check the rank condition (4.32).
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4.3 Illustrative examples

Consider the following uncertain linear system, i.e. Z = 2.

d

dt
x(t) =

(

−4 1

0 2

)

x(t) +

(

5 −1

0 1

)

∆(t)

(

1 1

0 1

)

x(t) +

(

0

1

)

u(t) (4.36)

By applying Theorem 4, we consider deriving the proposed robust controller. Now we select
the weighting matrices Q ∈ R

2×2 and R ∈ R
1×1 such as Q = 1.0I2 and R = 4.0 for the

quadratic cost function for the standard linear quadratic control problem for the nominal
system, respectively. Then solving the algebraic Riccati equation (4.6), we obtain the optimal
gain matrix

K =
(

−5.15278 × 10−3 −4.06405
)

(4.37)

In addition, setting the design parameters QF and RF such as QF = 10.0 × 106 I2 and RF =
1.0, respectively, we have the following fixed gain matrix.

F =
(

−1.23056 −9.99806
)

× 103 (4.38)

Besides, selecting the matrices Qk (k = 1, 2) in (4.34) as

Q1 =

⎛

⎜

⎝

20.0 1.0

1.0 1.0

⎞

⎟

⎠
, Q2 =

⎛

⎜

⎝

1.0 0.0

0.0 20.0

⎞

⎟

⎠
(4.39)

and solving the LMI condition (4.34), we get

P1 =

(

7.59401 × 101 6.82676 × 10−4

6.82676 × 10−4 2.00057 × 10−3

)

P2 =

(

7.59401 × 101 5.96286 × 10−4

5.96286 × 10−4 5.76862 × 10−2

)

γ1 = 7.13182 × 10−3, γ2 = 7.13182 × 10−3

(4.40)

From (4.36) and (4.40), ΩSk
(k = 1, 2) can be written as

ΩS1
=

{

x ∈ R
2 | 1.28240x1 + 7.80246x2 = 0}

ΩS2
=

{

x ∈ R
2 | 1.28032x1 + 7.77319x2 = 0}

(4.41)

and thus the assumption (4.3) is satisfied.
On the other hand for the uncertain linear system (4.36), the quadratic stabilizing controller
based on a fixed quadratic Lyapunov function cannot be obtained, because the solution of the
LMI of (A.1) does not exist.
In this example, we consider the following two cases for the unknown parameter ∆(t).

• Case 1) : ∆(t) =

(

−4.07360 8.06857
4.41379 3.81654

)

× 10−1
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• Case 2) : ∆(t) =

(

cos(3.0πt) 0
0 − sin(3.0πt)

)

Besides, for numerical simulations, the initial values for the uncertain linear system (4.36)

and the nominal system are selected as x(0) = x(0) =
(

2.0 −1.0
)T

(i.e. e(0) =
(

0.0 0.0
)T

),

respectively, and we choose σ(t) ∈ R
+ in (4.12) as σ(t) = 5.0 × 1012 × exp

(

−1.0 × 10−3t
)

.
The results of the simulation of this example are depicted in Figures 8–10. In these Figures,
“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t) and
the control input u(t) for the proposed variable gain robust controller. “Desired” shows the
desired time-response and the desired control input generated by the nominal system.
From Figures 8–10, we find that the proposed robust controller stabilizes the uncertain system
(4.36) in spite of uncertainties. one can see from Figure 10 the proposed controller can avoid
serious chattering. Therefore the effectiveness of the proposed controller is shown.
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Fig. 8. Time histories of the state x1(t)
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Fig. 9. Time histories of the state x2(t)
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Fig. 10. Time histories of the control input u(t)

4.4 Summary

In this section, we have proposed a design method of a variable gain robust controller for a
class of uncertain nonlinear systems. The uncertainties under consideration are composed of
matched part and unmatched one, and by using the concept of piecewise Lyapunov functions,
we have shown that the proposed robust controller can be obtained by solving LMIs (4.34) and
cheking the rank condition (4.32). By numerical simulations, the effectiveness of the proposed
controller has been presented.

5. Conclusions and future works

In this chapter, we have presented that the variable gain robust controller for a class of
uncertain linear systems and through the numerical illustrations, the effectiveness of the
proposed vaiable gain robust controllers has been shown. The advantage of the proposed
controller synthesis is as follows; the proposed variable gain robust controller in which the
real effect of the uncertainties can be reflected as on-line information is more flexible and
adaptive than the conventional robust controller with a fixed gain which is derived by the
worst-case design for the parameter variations. Additionally the proposed control systems are
constructed by renewing the parameter which represents the perturbation region of unknown
parameters, and there is no need to solve any other equation for the stability.
In Section 2 for linear systems with matched uncertainties, a design problem of variable gain
robust state feedback controllers in order to achieve satisfactory transient behavior as closely
as possible to desirable one generated by the nominal system is considered. Section 3 extends
the result for the variable gain robust state feedback controller given in Section 2 to variable
gain robust output feedback controllers. In this Section, some assumptions for the structure
of the system parameters are introduced and by using these assumptions, an LMI-based the
variable gain robust output feedback controller synthesis has been presented. In Section 4,
the design method of variable gain robust state feedback controller via piecewise Lyapunov
functions has been suggested. One can see that the crucial difference between the existing
results and the proposed variable gain controller based on PLFs is that for uncertain linear
systems which cannot be statilizable via the conventional quadratic stabilizing controllers, the
proposed design procedure can stabilize it. Besides, it is obvious that the proposed variable
robust control scheme is more effective for linear systems with larger uncertainties.
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The future research subjects are an extension of the variable gain robust state feedback
controller via PLFs to output feedback control systems. Besides, the problem for the extension
to such a broad class of systems as uncertain large-scale systems, uncertain time-delay systems
and so on should be tackled. Furthermore in future work, we will examine the condition (3.2)
in section 3 and assumptions (4.3) and (4.32) in section 4.
On the other hand, the design of feedback controllers is often complicated by presence of
physical constraints : saturating actuators, temperatures, pressures within safety margins
and so on. If the constraints are violated, serious consequences may ensue, for example,
physical components may be damaged, or saturation may cause a loss of closed-loop stability.
In particular, input saturation is a common feature of control systems and the stabilization
problems of linear systems with control input saturation have been studied (e.g. (17; 32)).
Furthermore, some researchers have investigated analysis of constrained linear systems and
reference managing for linear systems subject to input and state constraints (e.g. (10; 15)).
Therefore, the future research subjects are to address the constrained robust control problems
reducing the effect of unknown parameters.

6. Appendix

6.1 Quadratic stabilization

The following lemma provides a LMI-based design method of a robust controller via
Lyapunov stability criterion.

Lemma A.1. Consider the uncertain linear system (4.1) and the control law u(t) = Hx(t).
There exists the state feedback gain matrix H ∈ R

m×n such that the control law u(t) = Hx(t) is a
quadratic stabilizing control, if there exist X > 0,Y and δ > 0 satisfying the LMI

(

AX +X AT + BY + YT BT + δDDT XET

EX −δIq

)

< 0 (A.1)

If the solution X ,Y and δ of the LMI (A.1) exists, then the gain matrix H ∈ R
m×n is obtained as

H = YX−1.

Proof. Introducing the quadratic function V(x, t)
△
= exT(t)Px(t) as a Lyapunov function

candidate, we have

d

dt
V(x, t) = xT(t)

{

P (A + BH) + (A + BH)T P
}

x(t) + 2xT(t)PD∆(t)Ex(t)

≤ xT(t)
{

P (A + BH) + (A + BH)T P
}

x(t) + δxT(t)PDDTPx(t) +
1

δ
xT(t)ETEx(t)

(A.2)

Here we have used the well-known relation (3.12). Thus the uncrtain linear system (4.1) is
robustly stable provided that the following relation is satisfied.

P (A + BH) + (A + BH)T P + δPDDTP +
1

δ
ETE < 0 (A.3)

We introduce the matrix X
△
=P−1 and consider the change of variable Y

△
= HX . Then, by pre-

and post-multiplying (A.3) by X = P−1 , we have

AX +X AT + BY + YT BT + δDDT +
1

δ
XETEX < 0 (A.4)
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One can see from Lemma 2 (Schur complement) that the inequaity (A.4) is equivalent to the
LMI (A.1).
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