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1. Introduction  

There have been significant progresses reported in nonlinear adaptive control in the last two 
decades or so, partially because of the introduction of neural networks (Polycarpou, 1996; 
Chen & Liu, 1994; Lewis, Yesidirek & Liu, 1995; Sanner & Slotine, 1992; Levin & Narendra, 
1993; Chen & Yang, 2005). The adaptive control schemes reported intend to design adaptive 
neural controllers so that the designed controllers can help achieve the stability of the 
resulting systems in case of uncertainties and/or unmodeled system dynamics. It is a typical 
assumption that no restriction is imposed on the magnitude of the control signal. 
Accompanied with the adaptive control design is usually a reference model which is 
assumed to exist, and a parameter estimator. The parameters can be estimated within a pre-
designated bound with appropriate parameter projection. It is noteworthy that these design 
approaches are not applicable for many practical systems where there is a restriction on the 
control magnitude, or a reference model is not available. 
On the other hand, the economics performance index is another important objective for 
controller design for many practical control systems. Typical performance indexes include, 
for instance, minimum time and minimum fuel. The optimal control theory developed a few 
decades ago is applicable to those systems when the system model in question along with a 
performance index is available and no uncertainties are involved. It is obvious that these 
optimal control design approaches are not applicable for many practical systems where 
these systems contain uncertain elements. 
Motivated by the fact that many practical systems are concerned with both system stability 
and system economics, and encouraged by the promising images presented by theoretical 
advances in neural networks (Haykin, 2001; Hopfield & Tank, 1985) and numerous application 
results (Nagata, Sekiguchi & Asakawa, 1990; Methaprayoon, Lee, Rasmiddatta, Liao & Ross, 
2007; Pandit, Srivastava & Sharma, 2003; Zhou, Chellappa, Vaid & Jenkins, 1998; Chen & York, 
2008; Irwin, Warwick & Hunt, 1995; Kawato, Uno & Suzuki, 1988; Liang 1999; Chen & Mohler, 
1997; Chen & Mohler, 2003; Chen, Mohler & Chen, 1999), this chapter aims at developing an 
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intelligent control design framework to guide the controller design for uncertain, nonlinear 
systems to address the combining challenge arising from the following: 

• The designed controller is expected to stabilize the system in the presence of 
uncertainties in the parameters of the nonlinear systems in question. 

• The designed controller is expected to stabilize the system in the presence of 
unmodeled system dynamics uncertainties. 

• The designed controller is confined on the magnitude of the control signals. 

• The designed controller is expected to achieve the desired control target with minimum 
total control effort or minimum time. 

The salient features of the proposed control design framework include: (a) achieving nearly 
optimal control regardless of parameter uncertainties; (b) no need for a parameter estimator 
which is popular in many adaptive control designs; (c) respecting the pre-designated range 
for the admissible control. 
Several important technical aspects of the proposed intelligent control design framework 
will be studied: 

• Hierarchical neural networks (Kawato, Uno & Suzuki, 1988; Zakrzewski, Mohler & 
Kolodziej, 1994; Chen, 1998; Chen & Mohler, 2000; Chen, Mohler & Chen, 2000; Chen, 
Yang & Moher, 2008; Chen, Yang & Mohler, 2006) are utilized; and the role of each tier 
of the hierarchy will be discussed and how each tier of the hierarchical neural networks 
is constructed will be highlighted.  

• The theoretical aspects of using hierarchical neural networks to approximately achieve 
optimal, adaptive control of nonlinear, time-varying systems will be studied. 

• How the tessellation of the parameter space affects the resulting hierarchical neural 
networks will be discussed. 

In summary, this chapter attempts to provide a deep understanding of what hierarchical 
neural networks do to optimize a desired control performance index when controlling 
uncertain nonlinear systems with time-varying properties; make an insightful investigation 
of how hierarchical neural networks may be designed to achieve the desired level of control 
performance; and create an intelligent control design framework that provides guidance for 
analyzing and studying the behaviors of the systems in question, and designing hierarchical 
neural networks that work in a coordinated manner to optimally, adaptively control the 
systems.  
This chapter is organized as follows: Section 2 describes several classes of uncertain 
nonlinear systems of interest and mathematical formulations of these problems are 
presented. Some conventional assumptions are made to facilitate the analysis of the 
problems and the development of the design procedures generic for a large class of 
nonlinear uncertain systems. The time optimal control problem and the fuel optimal control 
problem are analyzed and an iterative numerical solution process is presented in Section 3. 
These are important elements in building a solution approach to address the control 
problems studied in this paper which are in turn decomposed into a series of control 
problems that do not exhibit parameter uncertainties. This decomposition is vital in the 
proposal of the hierarchical neural network based control design. The details of the 
hierarchical neural control design methodology are given in Section 4. The synthesis of 
hierarchical neural controllers is to achieve (a) near optimal control (which can be time-
optimal or fuel-optimal) of the studied systems with constrained control; (b) adaptive 
control of the studied control systems with unknown parameters; (c) robust control of the 
studied control systems with the time-varying parameters. In Section 5, theoretical results 
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are developed to justify the fuel-optimal control oriented neural control design procedures 
for the time-varying nonlinear systems. Finally, some concluding remarks are made. 

2. Problem formulation 

As is known, the adaptive control design of nonlinear dynamic systems is still carried out on a 
per case-by-case basis, even though there have numerous progresses in the adaptive of linear 
dynamic systems. Even with linear systems, the conventional adaptive control schemes have 
common drawbacks that include (a) the control usually does not consider the physical control 
limitations, and (b) a performance index is difficult to incorporate. This has made the adaptive 
control design for nonlinear system even more challenging. With this common understanding, 
this Chapter is intended to address the adaptive control design for a class of nonlinear systems 
using the neural network based techniques. The systems of interest are linear in both control 
and parameters, and feature time-varying, parametric uncertainties, confined control inputs, 
and multiple control inputs. These systems are represented by a finite dimensional differential 
system linear in control and linear in parameters.  
The adaptive control design framework features the following: 

• The adaptive, robust control is achieved by hierarchical neural networks. 

• The physical control limitations, one of the difficulties that conventional adaptive 
control can not handle, are reflected in the admissible control set. 

• The performance measures to be incorporated in the adaptive control design, deemed 
as a technical challenge for the conventional adaptive control schemes, that will be 
considered in this Chapter include: 

• Minimum time – resulting in the so-called time-optimal control 

• Minimum fuel – resulting in the so-called fuel-optimal control 

• Quadratic performance index – resulting in the quadratic performance optimal 
control. 

Although the control performance indices are different for the above mentioned approaches, 
the system characterization and some key assumptions are common. 
The system is mathematically represented by 

 ( ) ( ) ( )x a x C x p B x u= + +$  (1) 

where nx G R∈ ⊆  is the state vector, l
pp R∈Ω ⊂  is the bounded parameter vector, mu R∈  

is the control vector, which is confined to an admissible control set U , 

[ ]1 2( ) ( ) ( ) ( )na x a x a x a x
τ= A  is an n -dimensional vector function of x , 

11 12 1

21 22 2

1 2

( ) ( ) ...

( ) ( ) ... ( )
( )

... ... ... ...

( ) ( ) ... ( )

l

l

n n nl

C x C x C

C x C x C x
C x

C x C x C x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 is an n l× -dimensional matrix function of x , and 

11 12 1

21 22 2

1 2

( ) ( ) ...

( ) ( ) ... ( )
( )

... ... ... ...

( ) ( ) ... ( )

m

m

n n nm

B x B x B

B x B x B x
B x

B x B x B x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

is an n m× -dimensional matrix function of x . 
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The control objective is to follow a theoretically sound control design methodology to 

design the controller such that the system is adaptively controlled with respect to 

parametric uncertainties and yet minimizing a desired control performance. 
To facilitate the theoretical derivations, several conventional assumptions are made in the 
following and applied throughout the Chapter. 

AS1: It is assumed that (.)a , (.)C  and (.)B  have continuous partial derivatives with respect 

to the state variables on the region of interest. In other words, ( )ia x , ( )isC x , ( )ikB x , 
( )i

j

a x

x

∂
∂

, 

( )is

j

C x

x

∂
∂

, and
( )ik

j

B x

x

∂
∂

 for , 1,2, ,i j n= A ; 1,2, ,k m= A ; 1,2, ,s l= A  exist and are continuous 

and bounded on the region of interest. 

It should be noted that the above conditions imply that (.)a , (.)C  and (.)B  satisfy the 

Lipschitz condition which in turn implies that there always exists a unique and continuous 

solution to the differential equation given an initial condition 0 0( )x t ξ=  and a bounded 

control ( )u t . 

AS2: In practical applications, control effort is usually confined due to the limitation of 

design or conditions corresponding to physical constraints. Without loss of generality, 

assume that the admissible control set U  is characterized by: 

 { }:| | 1, 1,2, ,iU u u i m= ≤ = A  (2) 

where iu  is u 's i th component. 

AS3: It is assumed that the system is controllable. 

AS4: Some control performance criteria J  may relate to the initial time 0t  and the final time 

ft . The cost functional reflects the requirement of a particular type of optimal control. 

AS5: The target set fθ  is defined as { }: ( ( )) 0f fx x tθ ψ= =  where iψ ’s ( 1,2, ,i q= A )  are the 

components of  the continuously differentiable function vector (.)ψ . 

Remark 1: As a step of our approach to address the control design for the system (1), the 

above same control problem is studied with the only difference that the parameters in Eq. 

(1) are given. An optimal solution is sought to the following control problem: 

The optimal control problem ( 0P ) consists of the system equation (1) with fixed and known 

parameter vector p , the initial time 0t , the variable final time ft , the initial state 0 0( )x x t= , 

together with the assumptions AS1, AS2, AS3, AS4, AS5 satisfied such that the system state 

conducts to a pre-specified terminal set fθ  at the final time ft  while the control 

performance index is minimized. 

AS6: There do not exist singular solutions to the optimal control problem ( 0P ) as described 

in Remark 1 (referenced as the control problem ( 0P ) later on distinct from the original 

control problem ( P )). 

AS7: 
x

p

∂
∂

 is bounded on pp∈Ω  and xx∈Ω . 
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Remark 2: For any continuous function ( )f x  defined on the compact domain n
x RΩ ⊂ , 

there exists a neural network characterized by ( )fNN x  such that for any positive number 

*
fε , *| ( ) ( )|f ff x NN x ε− < . 

AS8: Let the sufficiently trained neural network be denoted by ( , )sNN x Θ , and the neural 

network with the ideal weights and biases by *( , )NN x Θ  where sΘ  and *Θ  designate the 

parameter vectors comprising weights and biases of the corresponding neural networks. 

The approximation of ( , )f sNN x Θ  to *( , )fNN x Θ  is measured by 

* *( ; ; ) | ( , ) ( , )|f s f s fNN x NN x NN xδ Θ Θ = Θ − Θ . Assume that *( ; ; )f sNN xδ Θ Θ  is bounded by a 

pre-designated number 0,sε >  i.e., *( ; ; ) s
f sNN xδ εΘ Θ < . 

AS9: The total number of switch times for all control components for the studied fuel-
optimal control problem is greater than the number of state variables. 
Remark 3: AS9 is true for practical systems to the best knowledge of the authors. The 
assumption is made for the convenience of the rigor of the theoretical results developed in 
this Chapter. 

2.1 Time-optimal control 

For the time-optimal control problem, the system characterization, the control objective, 
constraints remain the same as for the generic control problem with the exception that the 
control performance index reflected in the Assumption AS4 is replaced with the following: 

AS4: The control performance criteria is 

0

1
ft

t

J ds= ∫  where 0t  and ft  are the initial time and the 

final time, respectively. The cost functional reflects the requirement of time-optimal control. 

2.2 Fuel-optimal control  

For the fuel-optimal control problem, the system characterization, the control objective, 
constraints remain the same as for the time-optimal control problem with the Assumption 
AS4 replaced with the following: 

AS4: The control performance criteria is 

0

0 1
| |

ft
m

k kk
t

J e e u ds
=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑∫  where 0t  and ft  are the 

initial time and the final time, respectively, and ke  ( 0,1,2, ,k m= A ) are non-negative 

constants. The cost functional reflects the requirement of fuel-optimal control as related to 
the integration of the absolute control effort of each control variable over time. 

2.3 Optimal control with quadratic performance index 

For the quadratic performance index based optimal control problem, the system 
characterization, the control objective, constraints remain the same with the Assumption 
AS4 replaced with the following: 
AS4: The control performance criteria is 

0

1 1
( ( ) ( )) ( )( ( ) ( )) ( ) ( )

2 2

ft

f f f f f e e

t

J x t r t S t x t r t x Qx u u R u u dsτ τ τ⎡ ⎤= − − + + − −⎣ ⎦∫  where 0t  and ft  are 
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the initial time and the final time, respectively;  and ( ) 0fS t ≥ , 0Q ≥ , and 0R ≥  with 

appropriate dimensions; and the desired final state ( )fr t  is the specified as the equilibrium 

ex , and eu  is the equilibrium control.  

3. Numerical solution schemes to the optimal control problems 

To solve for the optimal control, mathematical derivations are presented below for each of 
the above optimal control problems to show that the resulting equations represent the 
Hamiltonian system which is usually a coupled two-point boundary-value problem 
(TPBVP), and the analytic solution is not available, to our best knowledge. It is worth noting 
that in the solution process, the parameter is assumed to be fixed.  

3.1 Numerical solution scheme to the time optimal control problem 

By assumption AS4, the optimal control performance index can be expressed as 

0
0( ) 1

ft

t
J t dt= ∫                             

where 0t  is the initial time, and ft  is the final time. 

Define the Hamiltonian function as 

( , , ) 1 ( ( ) ( ) ( ) )H x u t a x C x p B x uτλ= + + +  

where [ ]1 2 n
τλ λ λ λ= A  is the costate vector. 

The final-state constraint is ( ( )) 0fx tψ =  as mentioned before. 

The state equation can be expressed as 

0( ) ( ) ( ) ,
H

x a x C x p B x u t t
λ

∂
= = + + ≥
∂

$                 

The costate equation can be written as 

( ( ) ( ) ( ) )
,

a x C x p B x uH
t T

x x

τ
λ λ

∂ + +∂
− = = ≤

∂ ∂
$  

The Pontryagin minimum principle is applied in order to derive the optimal control (Lee & 
Markus, 1967). That is, 

* * * * *( , , , ) ( , , , )H x u t H x u tλ λ≤                         

for all admissible u . 

where *u , *x  and *λ  correspond to the optimal solution. 

Consequently,  

* * *

1 1
( ) ( )

m m
k k k kk k

B x u B x uτ τλ λ
= =

≤∑ ∑                    
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where ( )kB x  is the k th column of the ( )B x . 

Since the control components ku 's are all independent, the minimization of 
1

( )
m

k kk
B x uτλ

=∑  

is equivalent to the minimization of ( )k kB x uτλ . 

The optimal control can be expressed as * *sgn( ( ))k ku s t= − , where sgn(.)  is the sign function 

defined as sgn( ) 1t =  if 0t >  or sgn( ) 1t = − if 0t < ; and ( ) ( )k ks t B xτλ=  is the k th 

component of the switch vector ( ) ( )S t B x τ λ= . 

It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value 
problem, and its analytic solution is not available in general. 
With assumption AS6 satisfied, it is observed from the derivation of the optimal time control 

that the control problem ( 0P ) has bang-bang control solutions. 

Consider the following cost functional: 

0

2

1

1 ( ( ))
f

q
t

i i ft
i

J dt x tρψ
=

= +∑∫     

where iρ 's are positive constants, and iψ 's are the components of the defining equation of 

the target set { }: ( ( )) 0f fx x tθ ψ= =  to the system state is transferred from a given initial state 

by means of proper control, and q  is the number of components in ψ . 

It is observed that the system described by Eq. (1) is a nonlinear system but linear in control. 
With assumption AS6, the requirements for applying the Switching-Time-Varying-Method 
(STVM) are met. The optimal switching-time vector can be obtained by using a gradient-
based method. The convergence of the STVM is guaranteed if there are no singular 
solutions. 
Note that the cost functional can be rewritten as follows: 

0

' '
0 0[( ( ) ( ), )]

ft

t
J a x b x u dt= + < >∫   

where '
0 1
( ) 1 2 , ( ) ( ) ,

q i
i ii

a x a x C x p
x

ψ
ρψ

=

∂
= + < + >

∂∑  '
0 1
( ) 2 [ ] ( )

q i
i ii

b x B x
x

τψ
ρψ

=

∂
=

∂∑ , and ( )a x , 

( )C x , p  and ( )B x  are as given in the control problem ( 0P ). 

Define a new state variable 0( )x t  as follows: 

' '
0 0 00
( ) [( ( ) ( ), )]

t

t
x t a x b x u dt= + < >∫                                                                                

Define the augmented state vector 0x x x
ττ⎡ ⎤= ⎣ ⎦ , '

0( ) ( ) ( ( ) ( ) )a x a x a x C x p
ττ⎡ ⎤= +⎣ ⎦ , and 

'
0( ) ( ) ( ( ))B x b x B x

ττ⎡ ⎤= ⎣ ⎦ . 

The system equation can be rewritten in terms of the augmented state vector as 

( ) ( )x a x B x u= +$  where 0 0( ) 0 ( )x t x t
ττ⎡ ⎤= ⎣ ⎦ . 
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A Hamiltonian system can be constructed for the above state equation with the costate 
equation given by 

( ( ) ( ) )a x B x u
x

τλ λ∂
= − +

∂
$  where ( ) | ( )f f

J
t x t

x
λ ∂

=
∂

. 

It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal 
switching times must be finite provided that no singular solutions exist. Let the zeros of 

( )ks t−  be ,k jτ +  ( 1,2, ,2 kj N+= A , 1,2, ,k m= A ; and 
1 2, ,k j k jτ τ+ +<  for 1 21 2 kj j N+≤ < ≤ ). 

*
,2 1 ,2

1

( ) [sgn( ) sgn( )].
kN

k k j k j
j

u t t tτ τ
+

+ +
−

=
= − − −∑                                                                         

Let the switch vector for the k th component of the control vector be k kN Nτ τ
+

= where 

,1 ,2
k

k

N
k k N

τ
τ τ τ

+

+
+ +⎡ ⎤=

⎣ ⎦
A . Let 2k kN N+= . Then kNτ  is the switching vector of kN  

dimensions. 

Let the vector of switch functions for the control variable ku  be defined as 

1 2
k k k

k

N N N

N

τ
φ φ φ +

⎡ ⎤= ⎢ ⎥⎣ ⎦
A  where 1

,( 1) ( )kN j
k k jj sφ τ− += −  ( 1,2, ,2 kj N+= A ). 

The gradient that can be used to update the switching vector kNτ  can be given by 

k

N
k

NJ

τ
φ∇ = −                                                               

The optimal switching vector can be obtained iteratively by using a gradient-based method. 

, 1 , ,k k kN i N i Nk iKτ τ φ+ = +                                         

where ,k iK  is a properly chosen k kN N× -dimensional diagonal matrix with non-negative 

entries for the i th iteration of the iterative optimization process;  and ,kN iτ  represents the 

i th iteration of the switching vector kNτ . 

Remark 4: The choice of the step sizes as characterized in the matrix ,k iK  must consider two 

facts: if the step size is chosen too small, the solution may converge very slowly; if the step 
size is chosen too large, the solution may not converge. Instead of using the gradient  
descent method, which is relatively slow compared to other alternative such as methods 
based on Newton's method and inversion of the Hessian using conjugate gradient 
techniques. 

When the optimal switching vectors are determined upon convergence, the optimal control 

trajectories and the optimal state trajectories are computed. This process will be repeated for 

all selected nominal cases until all needed off-line optimal control and state trajectories are 

obtained. These trajectories will be used in training the time-optimal control oriented neural 

networks. 
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3.2 Numerical solution scheme to the fuel optimal control problem 

By assumption AS4, the optimal control performance index can be expressed as 

0
0 0

1

( ) | |
f

mt

k kt
k

J t e e u dt
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑∫                            

where 0t  is the initial time, and ft  is the final time. 

Define the Hamiltonian function as 

0
1

( , , ) | | ( ( ) ( ) ( ) )
m

k k
k

H x u t e e u a x C x p B x uτλ
=

= + + + +∑  

where [ ]1 2 n
τλ λ λ λ= A  is the costate vector. 

The final-state constraint is ( ( )) 0fx tψ =  as mentioned before. 

The state equation can be expressed as 

0( ) ( ) ( ) ,
H

x a x C x p B x u t t
λ

∂
= = + + ≥
∂

$                

The costate equation can be written as 

0 1

( ( ) ( ) ( ) )

( | |) ( ( ) ( ) ( ) )
,

m
k kk

a x C x p B x uH

x x

e e u a x C x p B x u
t T

x x

τ

τ

λ λ

λ=

∂ + +∂
− = = +

∂ ∂

∂ + ∂ + +
= ≤

∂ ∂
∑

     

The Pontryagin minimum principle is applied in order to derive the optimal control (Lee & 
Markus, 1967). That is, 

* * * * *( , , , ) ( , , , )H x u t H x u tλ λ≤  for all admissible u , where *u , *x  and *λ  correspond to the 

optimal solution. 
Consequently,  

* * * *

1 1

1 1

| | ( )

| | ( )

m m
k k k kk k

m m
k k k kk k

e u B x u

e u B x u

τ

τ

λ

λ
= =

= =

+ ≤

+

∑ ∑
∑ ∑

                   

where ( )kB x  is the k th column of the ( )B x . 

Since the control components ku 's are all independent, the minimization of 

1 1
| | ( )

m m
k k k kk k

e u B x uτλ
= =

+∑ ∑  is equivalent to the minimization of | | ( )k k k ke u B x uτλ+ . 

Since 0ke ≠ , define ( ) /k k ks B x eτλ= . The fuel-optimal control satisfies the following 

condition:  
* *

* *

*

sgn( ( )),| ( )| 1

0,| ( )| 1

,| ( )| 1

k k

k k

k

s t s t

u s t

undefined s t

⎧− >
⎪⎪= <⎨
⎪ =⎪⎩
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where 1,2, ,k m= A . 

Note that the above optimal control can be written in a different form as follows: 

* * *
k k ku u u+ −= +                                                       

where * *1
sgn( ( ) 1) 1

2
k ku s t+ ⎡ ⎤= − − +⎣ ⎦ , and * *1

sgn( ( ) 1) 1
2

k ku s t− ⎡ ⎤= − + −⎣ ⎦ . 

It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value 
problem, and its analytic solution is not available in general. 
With assumption AS6 satisfied, it is observed from the derivation of the optimal fuel control 

that the control problem ( 0P ) only has bang-off-bang control solutions. 

Consider the following cost functional: 

0

2
0

1 1

| | ( ( ))
f

qmt

k k i i ft
k i

J e e u dt x tρψ
= =

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∑ ∑∫     

where iρ 's are positive constants, and iψ 's are the components of the defining equation of 

the target set { }: ( ( )) 0f fx x tθ ψ= =  to the system state is transferred from a given initial state 

by means of proper control, and q  is the number of components in ψ . 

It is observed that the system described by Eq. (1) is a nonlinear system but linear in control. 
With assumption AS6, the requirements for the STVM's application are met. The optimal 
switching-time vector can be obtained by using a gradient-based method. The convergence 
of the STVM is guaranteed if there are no singular solutions. 
Note that the cost functional can be rewritten as follows: 

0

' '
0 0

1

[( ( ) ( ), ) | |]
f

mt

k kt
k

J a x b x u e u dt
=

= + < > +∑∫     

where '
0 0 1
( ) 2 , ( ) ( ) ,

q i
i ii

a x e a x C x p
x

ψ
ρψ

=

∂
= + < + >

∂∑  '
0 1
( ) 2 [ ] ( )

q i
i ii

b x B x
x

τψ
ρψ

=

∂
=

∂∑ , and ( )a x , 

( )C x , p  and ( )B x  are as given in the control problem ( 0P ). 

Define a new state variable 0( )x t  as follows: 

' '
0 0 00

1

( ) [( ( ) ( ), ) | |]
mt

k kt
k

x t a x b x u e u dt
=

= + < > +∑∫  

Define the augmented state vector 0x x x
ττ⎡ ⎤= ⎣ ⎦ , 

'
0( ) ( ) ( ( ) ( ) )a x a x a x C x p

ττ⎡ ⎤= +⎣ ⎦ , and '
0( ) ( ) ( ( ))B x b x B x

ττ⎡ ⎤= ⎣ ⎦ . 

The system equation can be rewritten in terms of the augmented state vector as 

( ) ( )x a x B x u= +$  where 0 0( ) 0 ( )x t x t
ττ⎡ ⎤= ⎣ ⎦ . 
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The adjoint state equation can be written as 

( ( ) ( ) )a x B x u
x

τλ λ∂
= − +

∂
$  where ( ) | ( )f f

J
t x t

x
λ ∂

=
∂

. 

It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal 
switching times must be finite provided that no singular solutions exist. Let the zeros of 

( ) 1ks t− −  be ,k jτ +  ( 1,2, ,2 kj N+= A , 1,2, ,k m= A ; and 
1 2, ,k j k jτ τ+ +<  for 1 21 2 kj j N+≤ < ≤ ) which 

represent the switching times corresponding to positive control *
ku + , the zeros of ( ) 1ks t− +  

be ,k jτ −  ( 1,2, ,2 kj N−= A , 1,2, ,k m= A ; and 
1 2, ,k j k jτ τ− −<  for 1 21 2 kj j N−≤ < ≤ ) which represent 

the switching times corresponding to negative control *
ku − . Altogether ,k jτ + 's and ,k jτ − 's 

represent the switching times which uniquely determine *
ku  as follows: 

*
,2 1 ,2

1

,2 1 ,2
1

1
( ) { [sgn( ) sgn( )]

2

[sgn( ) sgn( )]}.

k

k

N

k k j k j
j

N

k j k j
j

u t t t

t t

τ τ

τ τ

+

−

+ +
−

=

− −
−

=

= − − − −

− − −

∑

∑
 

Let the switch vector for the k th component of the control vector be 

( ) ( )k k kN N N
τ

τ ττ τ τ
+ −⎡ ⎤= ⎢ ⎥⎣ ⎦

where ,1 ,2
k

k

N
k k N

τ
τ τ τ

+

+
+ +⎡ ⎤=

⎣ ⎦
A  and ,1 ,2

k

k

N
k k N

τ
τ τ τ

−

−
− −⎡ ⎤=

⎣ ⎦
A . Let 

2 2k k kN N N+ −= + . Then kNτ  is the switching vector of kN  dimensions. 

Let the vector of switch functions for the control variable ku  be defined as 

1 2 2 1 2 2
k k k k k

k k k k

N N N N N

N N N N
φ φ φ φ φ+ + + −+ +

⎡ ⎤= ⎢ ⎥⎣ ⎦
A A  where 1

,( 1) ( ( ) 1)kN j
k k k jj e sφ τ− += − +  

( 1,2, ,2 kj N+= A ), and ,2
( 1) ( ( ) 1)k

k

N j
k k k jj N

e sφ τ+
−

+
= − −  ( 1,2, ,2 kj N−= A ). 

The gradient that can be used to update the switching vector kNτ  can be given by 

k

N
k

NJ

τ
φ∇ = −                                     

The optimal switching vector can be obtained iteratively by using a gradient-based method. 

, 1 , ,k k kN i N i Nk iKτ τ φ+ = +                                         

where ,k iK  is a properly chosen k kN N× -dimensional diagonal matrix with non-negative 

entries for the i th iteration of the iterative optimization process;  and ,kN iτ  represents the 

i th iteration of the switching vector kNτ . 

When the optimal switching vectors are determined upon convergence, the optimal control 
trajectories and the optimal state trajectories are computed. This process will be repeated for 
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all selected nominal cases until all needed off-line optimal control and state trajectories are 
obtained. These trajectories will be used in training the fuel-optimal control oriented neural 
networks. 

3.3 Numerical solution scheme to the quadratic optimal control problem 

The Hamiltonian function can be defined as  

1
( , , ) ( ( ) ( )) ( )

2
e eH x u t x Qx u u R u u a Cp Buτ τ τλ= + − − + + +                         

The state equation is given by  

H
x a Cp Bu

λ
∂

= = + +
∂

$    

The costate equation can be given by  

( )a Cp BuH
Qx

x x

τ
λ λ

∂ + +∂
− = = +

∂ ∂
$  

The stationarity equation gives 

( )
0 ( )e

a Cp BuH
R u u

u u

τ
λ

∂ + +∂
= = + −
∂ ∂

 

u can be solved out as 

1
eu R B uτλ−= − +  

The Hamiltonian system becomes 

1

1

( ) ( ) ( )( )

( ( ) ( ) ( )( ))

e

e

x a x C x p B x R B u

a x C x p B x R B u
Qx

x

τ

τ τ

λ

λ
λ λ

−

−

⎧ = + + − +
⎪
⎨ ∂ + + − +
− = +⎪

∂⎩

$

$
 

Furthermore, the boundary condition can be given by 

( ) ( )( ( ) ( ))f f f ft S t x t r tλ = −  

Notice that for the Hamiltonian system which is composed of the state and costate 
equations, the initial condition is given for the state equation, and the constraints on the 
costate variables at the final time for the costate equation.  

It is observed that the Hamiltonian system is a set of nonlinear ordinary differential 

equations in ( )x t and ( )tλ which develop forward and back in time, respectively. Generally, 

it is not possible to obtain the analytic closed-form solution to such a two-point boundary-

value problem (TPBVP). Numerical methods have to be employed to solve for the 

Hamiltonian system. One simple method, called shooting method may be used. There are 

other methods like the “shooting to a fixed point” method, and relaxation methods, etc. 
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The idea for the shooting method is as follows: 
1. First make a guess for the initial values for the costate. 
2. Integrate the Hamiltonian system forward. 
3. Evaluate the mismatch on the final constraints. 
4. Find the sensitivity Jacobian for the final state and costate with respect to the initial 

costate value. 
5. Using the Newton-Raphson method to determine the change on the initial costate 

value. 
6. Repeat the loop of steps 2 through 5 until the mismatch is close enough to zero.  

4. Unified hierarchical neural control design framework 

Keeping in mind that the discussions and analyses made in Section 3 are focused on the 

system with a fixed parameter vector, which is the control problem ( 0P ). To address the 

original control problem ( P ), the parameter vector space is tessellated into a number of sub-

regions. Each sub-region is identified with a set of vertexes. For each of the vertexes, a 

different control problem ( 0P ) is formed. The family of control problems ( 0P ) are combined 

together to represent an approximately accurate characterization of the dynamic system 

behaviours exhibited by the nonlinear systems in the control problem ( P ). This is an 

important step toward the hierarchical neural control design framework that is proposed to 

address the optimal control of uncertain nonlinear systems.   

4.1 Three-layer approach 

While the control problem ( P ) is approximately equivalent to the family of control 

problems ( 0P ), the solutions to the respective control problems ( 0P ) must be properly 

coordinated in order to provide a consistent solution to the original control problem ( P ). 

The requirement of consistent coordination of individual solutions may be mapped to the 

hierarchical neural network control design framework proposed in this Chapter that 

features the following:  

• For a fixed parameter vector, the control solution characterized by a set of optimal state 
and control trajectories shall be approximated by a neural network, which may be 
called a nominal neural network for this nominal case. For each nominal case, a 
nominal neural network is needed. All the nominal neural network controllers 
constitute the nominal layer of neural network controllers. 

• For each sub-region, regional coordinating neural network controllers are needed to 
coordinate the responses from individual nominal neural network controllers for the 
sub-region. All the regional coordinating neural network controllers constitute the 
regional layer of neural network controllers. 

• For an unknown parameter vector, global coordinating neural network controllers are 
needed to coordinate the responses from regional coordinating neural network 
controllers. All the global coordinating neural network controllers constitute the global 
layer of neural networks controllers. 

The proposed hierarchical neural network control design framework is a systematic 
extension and a comprehensive enhancement of the previous endeavours (Chen, 1998; Chen 
& Mohler & Chen, 2000).  
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4.2 Nominal layer 

Even though the hierarchical neural network control design methodology is unified and 

generic, the design of the three layers of neural networks, especially the nominal layer of 

neural networks may consider the uniqueness of the problems under study. For the time 

optimal control problems, the role of the nominal layer of neural networks is to identify the 

switching manifolds that relate to the bang-bang control. For the fuel optimal problems, the 

role of the nominal layer of neural networks is to identify the switching manifolds that relate 

to the bang-off-bang control. For the quadratic optimal control problems, the role of the 

nominal layer of neural networks is to approximate the optimal control based on the state 

variables.  

 
 
 

 
 

Fig. 1. Nominal neural network for time optimal control 

 
Consequently a nominal neural network for the time optimal control takes the form of a 

conventional neural network with continuous activation functions cascaded by a two-level 

stair case function which itself may viewed as a discrete neural network itself, as shown in 

Fig. 1. For the fuel optimal control, a nominal neural network takes the form of a 

conventional neural network with continuous activation functions cascaded by a three-level 

stair case function, as shown in Fig. 2.  

 
 

 

 
 

 

Fig. 2. Nominal neural network for fuel optimal control 

For the quadratic optimal control, no switching manifolds are involved. A conventional 
neural network with continuous activation functions is sufficient for a nominal case, as 
shown in Fig. 3. 

Conventional NN 

Conventional NN 
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Fig. 3. Nominal neural network for quadratic optimal control 

4.3 Overall architecture 

The overall architecture of the multi-layered hierarchical neural network control framework, 

as shown in Fig. 4, include three layers: the nominal layer, the regional layer, and the global 

layer. These three layers play different roles and yet work together to attempt to achieve 

desired control performance.  

At the nominal layer, the nominal neural networks are responsible to compute the near 

optimal control signals for a given parameter vector. The post-processing function block is 

necessary for both time optimal control problem and fuel optimal control problems while 

indeed it may not be needed for the quadratic optimal control problems. For time optimal 

control problems, the post-processing function is a sign function as shown in Fig. 2. For the 

fuel optimal control problems, the post-processing is a slightly more complicated stair-case 

function as shown in Fig. 3.  

At the regional layer, the regional neural networks are responsible to compute the desired 

weighting factors that are in turn used to modulate the control signals computed by the 

nominal neural networks to produce near optimal control signals for an unknown 

parameter vector situated at the know sub-region of the parameter vector space. The post-

processing function block is necessary for all the three types of control problems studied in 

this Chapter. It is basically a normalization process of the weighting factors produced by the 

regional neural networks for a sub-region that is enabled by the global neural networks.  

At the global layer, the global neural networks are responsible to compute the possibilities 

of the unknown parameter vector being located within sub-regions. The post-processing 

function block is necessary for all the three types of control problems studied in this 

Chapter. It is a winner-take-all logic applied to all the output data of the global neural 

networks. Consequently, only one sub-regional will be enabled, and all the other sub-

regions will be disabled. The output data of the post-processing function block is used to 

turn on only one of the sub-regions for the regional layer. 

To make use of the multi-layered hierarchical neural network control design framework, it 

is clear that the several key factors such as the number of the neural networks for each layer, 

the size of each neural network, and desired training patterns, are important. This all has to 

do with the determination of the nominal cases. A nominal case designates a group of 

system conditions that reflect one of the typical system behaviors. In the context of control of 

a dynamic system with uncertain parameters, which is the focus of this Chapter, a nominal 

case may be designated as corresponding to the vertexes of the sub-regions when the 

parameter vector space is tessellated into a number of non-overlapping sub-regions down to 

a level of desired granularity. 

Conventional NN 
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Fig. 4. Multi-layered hierarch neural network architecture  
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Once the nominal cases are identified, the numbers of neural networks for the nominal layer, 
the regional layer and the global layer can be determined accordingly. Each nominal neural 
network corresponds to a nominal case identified. Each regional neural network corresponds 
to a nominal neural network. Each global neural network corresponds to a sub-region.  
With the numbers of neural networks for all the three layers in the hierarchy determined, 
the size of each neural network is dependent upon the data collected for each nominal case. 
As shown in the last Section, the optimal state trajectories and the optimal control 

trajectories for each of the control problems ( 0P ) can be obtained through use of the STVM 

approach for time optimal control and for fuel optimal control or the shooting method for 
the quadratic optimal control. For each of the nominal cases, the optimal state trajectories 
and optimal control trajectories may be properly utilized to form the needed training 
patterns. 

4.4 Design procedure 

Below is the design procedure for multi-layered hierarchical neural networks: 

• Identify the nominal cases. The parameter vector space may be tessellated into a 
number of non-overlapping sub-regions. The granualarity of the tessellation process is 
determined by how sensitive the system dynamic behaviors are to the changes of the 
parameters. Each vertext of the sub-regions identifies a nominal case. For each nominal 
case, the optimal control problem may be solved numerically and the nuermical 
solution may be obtained. 

• Determine the size of the nominal layer, the regional layer and the global layer of the 
hierarchy.  

• Determine the size of the neural networks for each layer in the hierarchy. 

• Train the nominal neural networks. The numerically obtained optimal state and control 
trajectories are acquired for each nominal case. The training data pattern for the 
nominal neural networks is composed of the state vector as input and the control signal 
as the output. In other words, the nominal layer is to establish and approximate a state 
feedback control. Finish training when the training performance is satisfactory. Repeat 
this nominal layer training process for all the nominal neural networks. 

• Training the regional neural networks. The input data to the nominal neural networks 
is also part of the input data to the regional neural networks. In addition, for a specific 
regional neural network, the ideal output data of the corresponding nominal neural 
network is also part of its input data. The ideal output data of the regional neural 
network can be determined as follows: 

• If the data presented to a given regional neural network reflects a nominal case that 
corresponds to the vertex that this regional neural network is to be trained for, then 
assign 1 or else 0. 

• Training the global neural networks. The input data to the nominal neural networks is 
also part of the input data to the global neural networks. In addition, for a specific 
global neural network, the ideal output data of the corresponding nominal neural 
network is also part of its input data. The ideal output data of the global neural network 
can be determined as follows: 

• If the data presented to a given global neural network reflects a nominal case that 
corresponds to the sub-region that this global neural network is to be trained for, 
then assign 1 or else 0. 
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5. Theoretical justification 

This Section provides theoretical support for the adoption of the hierarchical neural 
networks.  
As shown in (Chen, Yang & Moher, 2006), the desired prediction or control can be achieved 
by a properly designed hierarchical neural network. 
Proposition 1 (Chen, Yang & Mohler, 2006): Suppose that an ideal system controller can be 

characterized by function vectors u
if and l

if  ( 1 l ui n n≤ ≤ = ) which are continuous 

mappings from a compact support xnRΩ ⊂  to yn
R , such that a continuous function vector  

f also defined on Ω  can be expressed as , ,1
( ) ( ) ( )ln u l

j i j i ji
f x f x f x

=
= ×∑  on the point-wise basis 

( x∈Ω ; and , ( )u
i jf x  and , ( )l

i jf x  are the jth component of u
if  and l

if ). Then there exists a 

hierarchical neural network, used to approximate the ideal system controller or system 

identifier, that includes lower level neural networks l
inn 's and upper level neural networks 

u
inn  ( 1 l ui n n≤ ≤ = ) such that for any 0jε > , , ,1

sup | |ln l u
x j i j i j ji

f nn nn ε∈Ω =
− × <∑  where 

, ( )u
i jnn x  and , ( )l

i jnn x  are the jth component of u
inn  and l

inn . 

The following proposition is to show that the parameter uncertainties can also be handled 
by the hierarchical neural networks.  
Proposition 2: For the system (1) and the assumptions AS1-AS9, with the application of the 
hierarchical neural controller, the deviation of the resuting state trajectory for the unknow 
parameter vector from that of the optimal state trajectory is bounded. 

Proof: Let the estiamte of the parameter vector be denoted by p̂ . The counterpart of system 

(1) for the estimated paramter vector p̂ can be given by 

ˆ( ) ( ) ( )x a x C x p B x u= + +$  

Integrating of the above equation and system (1) from 0t to t  leads to the following two 

equations: 

0
1 1 0 1 1 1

ˆ( ) ( ) [ ( ( )) ( ( )) ( ( )) ( )]
t

t
x t x t a x s C x s p B x s u s ds= + + +∫  

0
2 2 0 2 2 2( ) ( ) [ ( ( )) ( ( )) ( ( )) ( )]

t

t
x t x t a x s C x s p B x s u s ds= + + +∫  

By noting that 1 0 2 0 0( ) ( )x t x t x= = , subtraction of the above two equations yields 

0

0

1 2 1 2 1 2

1 1 2

( ) ( ) { ( ( )) ( ( )) [ ( ( )) ( ( ))] ( )]}

ˆ{ ( ( ))( ) [ ( ( )) ( ( ))] }

t

t

t

t

x t x t a x s a x s B x s B x s u s ds

C x s p p C x s C x s p ds

− = − + − +

− + −

∫

∫
 

Note that, by Taylor’s theorem, 1 2 1 2( ( )) ( ( )) ( ( ) ( ))Ta x s a x s a x s x s− = − , 

1 2 1 2( ( )) ( ( )) ( ( ) ( ))TB x s B x s B x s x s− = − , and 1 2 1 2( ( )) ( ( )) ( ( ) ( ))TC x s C x s C x s x s− = − . 
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Define 1 2( ) ( ) ( )x t x t x tΔ = − , and ˆp p pΔ = − . Then we have  

0

0
1

( ) { ( ) ( ) ( )] ( ) }

( ( ))

t

T T Tt

t

t

x t a x s B x s u s C x s p ds

C x s pds

Δ = Δ + Δ + Δ +

Δ

∫

∫
 

If the both sides of the above equation takes an appropriate norm and the triangle inequality 
is applied, the following is obtained: 

0

0
1

|| ( )|||| { ( ) ( ) ( )] ( ) } ||

|| ( ( )) ||

t

T T Tt

t

t

x t a x s B x s u s C x s p ds

C x s p ds

Δ ≤ Δ + Δ + Δ +

Δ

∫

∫
 

Note that 1|| ( ( ) ||C x s pΔ  can be made uniformly bounded by ε  as long as the estimate of 

p is made sufficiently close to p (which can be controlled by the granularity of tessellation), 

and p is bounded; | ( )| 1u t ≤ ; || || sup ( )T x Ta a x∈Ω= < ∞ , || || sup ( )T x TB B x∈Ω= < ∞ and 

|| || sup ( )T x TC C x∈Ω= < ∞ . 

It follows that 

0
0|| ( )|| ( ) (|| || || || || |||| ||) ( )

t

T T T t
x t t t a B C p x s dsεΔ ≤ − + + + Δ∫  

Define a constant 0 (|| || || || || |||| ||)T T TK a B C p= + + . Applying the Gronwall-Bellman 

Inequality to the above inequality yields 

0
0 0 0 0

2
0

0 0 0 0

|| ( )|| ( ) ( )exp{ }

( )
( ) exp( ( ))

2

t t

t s
x t t t K s t K d ds

t t
t t K K t t K

ε ε σ

ε ε ε

Δ ≤ − + −

−
≤ − + − ≤

∫ ∫
 

where 
0

0 0 0 0

( )
( )(1 exp( ( )))

2

t t
K t t K K t t

−
= − + − , and K < ∞ . 

This completes the proof. 

6. Simulation 

Consider the single-machine infinity-bus (SMIB) model with a thyristor-controlled series-
capacitor (TCSC) installed on the transmission line (Chen, 1998) as shown in Fig. 5, which 
may be mathematically described as follows:  

0

( 1)

1
( ( 1) sin )

(1 )

b

t
m

d e

VV
P P D

M X s X

ω ω
δ

ω δω

−⎡ ⎤
⎡ ⎤ ⎢ ⎥= ∞⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎢ ⎥+ −⎣ ⎦

$

$
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where δ is rotor angle (rad), ω  rotor speed (p.u.), 2 60bω π= ×  synchronous speed as base 

(rad/sec), 0.3665mP =  is mechanical power input (p.u.), 0P  is unknown fixed load (p.u.), 

2.0D = damping factor, 3.5M = system inertia referenced to the base power, 1.0tV =  

terminal bus voltage (p.u.), 0.99V∞ =  infinite bus voltage (p.u.), 2.0dX =  transient 

reactance of the generator (p.u.), 0.35eX =  transmission reactance (p.u.), 

min max[ , ] [0.2,0.75]s s s∈ =  series compensation degree of the TCSC, and ( ,1)eδ  is system 

equilibrium with the series compensation degree fixed at 0.4es = . 

The goal is to stabilize the system in the near optimal time control fashion with an 

unknown load 0P  ranging 0 and 10% of mP . Two nominal cases are identified. The 

nominal neural networks have 15 and 30 neurons in the first and second hidden layer 

with log-sigmoid and tan-sigmoid activation functions for these two hidden layers, 

respectively. The input data to regional neural networks is the rotor angle, its two 

previous values, the control and its previous value, and the outputs are the weighting 

factors. The regional neural networks have 15 and 30 neurons in the first and second 

hidden layer with log-sigmoid and tan-sigmoid activation functions for these two hidden 

layers, respectively. The global neural networks are really not necessary in this simple 

case of parameter uncertainty. 
Once the nominal and regional neural networks are trained, they are used to control the 

system after a severe short-circuit fault and with an unknown load (5% of mP ). The resulting 

trajectory is shown in Fig. 6. It is observed that the hierarchical neural controller stabilizes 
the system in a near optimal control manner. 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5. The SMIB system with TCSC 
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Fig. 6. Control performance of hierarchical neural controller. Solid - neural control; dashed -
optimal control. 

7. Conclusion 

Even with remarkable progress witnessed in the adaptive control techniques for the 

nonlinear system control over the past decade, the general challenge with adaptive control 

of nonlinear systems has never become less formidable, not to mention the adaptive control 

of nonlinear systems while optimizing a pre-designated control performance index and 

respecting restrictions on control signals. Neural networks have been introduced to tackle 

the adaptive control of nonlinear systems, where there are system uncertainties in 

parameters, unmodeled nonlinear system dynamics, and in many cases the parameters may 

be time varying. It is the main focus of this Chapter to establish a framework in which 

general nonlinear systems will be targeted and near optimal, adaptive control of uncertain, 

time-varying, nonlinear systems is studied. The study begins with a generic presentation of 

the solution scheme for fixed-parameter nonlinear systems. The optimal control solution is 

presented for the purpose of minimum time control and minimum fuel control, respectively. 

The parameter space is tessellated into a set of convex sub-regions. The set of parameter 

vectors corresponding to the vertexes of those convex sub-regions are obtained. 

Accordingly, a set of optimal control problems are solved. The resulting control trajectories 

and state or output trajectories are employed to train a set of properly designed neural 

networks to establish a relationship that would otherwise be unavailable for the sake of near 

optimal controller design.  In addition, techniques are developed and applied to deal with 

the time varying property of uncertain parameters of the nonlinear systems. All these pieces 
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come together in an organized and cooperative manner under the unified intelligent control 

design framework to meet the Chapter’s ultimate goal of constructing intelligent controllers 

for uncertain, nonlinear systems.  
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