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1. Introduction

Robust control theory is an interdisciplinary branch of engineering and applied mathematics
literature. Since its introduction in 1980’s, it has grown to become a major scientific domain.
For example, it gained a foothold in Economics in the late 1990 and has seen increasing
numbers of Economic applications in the past few years. This theory aims to design
a controller which guarantees closed-loop stability and performances of systems in the
presence of system uncertainty. In practice, the uncertainty can include modelling errors,
parametric variations and external disturbance. Many results have been presented for
robust control of linear systems. However, most real physical systems are nonlinear in
nature and usually subject to uncertainties. In this case, the linear dynamic systems are not
powerful to describe these practical systems. So, it is important to design robust control of
nonlinear models. In this context, different techniques have been proposed in the literature
(Input-Output linearization technique, backstepping technique, Variable Structure Control
(VSC) technique, ...).
These two last decades, fuzzy model control has been extensively studied; see
(Zhang & Heng, 2002)-(Chadli & ElHajjaji, 2006)-(Kim & Lee, 2000)-(Boukas & ElHajjaji, 2006)
and the references therein because T-S fuzzy model can provide an effective representation
of complex nonlinear systems. On the other hand, time-delay are often occurs in various
practical control systems, such as transportation systems, communication systems, chemical
processing systems, environmental systems and power systems. It is well known that the
existence of delays may deteriorate the performances of the system and can be a source of
instability. As a consequence, the T-S fuzzy model has been extended to deal with nonlinear
systems with time-delay. The existing results of stability and stabilization criteria for this
class of T-S fuzzy systems can be classified into two types: delay-independent, which are
applicable to delay of arbitrary size (Cao & Frank, 2000)-(Park et al., 2003)-(Chen & Liu,
2005b), and delay-dependent, which include information on the size of delays, (Li et al.,
2004) - (Chen & Liu, 2005a). It is generally recognized that delay-dependent results are
usually less conservative than delay-independent ones, especially when the size of delay
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is small. We notice that all the results of analysis and synthesis delay-dependent methods
cited previously are based on a single LKF that bring conservativeness in establishing
the stability and stabilization test. Moreover, the model transformation, the conservative
inequalities and the so-called Moon’s inequality (Moon et al., 2001) for bounding cross
terms used in these methods also bring conservativeness. Recently, in order to reduce
conservatism, the weighting matrix technique was proposed originally by He and al. in
(He et al., 2004)-(He et al., 2007). These works studied the stability of linear systems with
time-varying delay. More recently, Huai-Ning et al. (Wu & Li, 2007) treated the problem
of stabilization via PDC (Prallel Distributed Compensation) control by employing a fuzzy
LKF combining the introduction of free weighting matrices which improves existing ones in
(Li et al., 2004) - (Chen & Liu, 2005a) without imposing any bounding techniques on some
cross product terms. In general, the disadvantage of this new approach (Wu & Li, 2007) lies in
that the delay-dependent stabilization conditions presented involve three tuning parameters.
Chen et al. in (Chen et al., 2007) and in (Chen & Liu, 2005a) have proposed delay-dependent
stabilization conditions of uncertain T-S fuzzy systems. The inconvenience in these works is
that the time-delay must be constant. The designing of observer-based fuzzy control and the
introduction of performance with guaranteed cost for T-S with input delay have discussed in
(Chen, Lin, Liu & Tong, 2008) and (Chen, Liu, Tang & Lin, 2008), respectively.
In this chapter, we study the asymptotic stabilization of uncertain T-S fuzzy systems with
time-varying delay. We focus on the delay-dependent stabilization synthesis based on the
PDC scheme (Wang et al., 1996). Different from the methods currently found in the literature
(Wu & Li, 2007)-(Chen et al., 2007), our method does not need any transformation in the
LKF, and thus, avoids the restriction resulting from them. Our new approach improves
the results in (Li et al., 2004)-(Guan & Chen, 2004)-(Chen & Liu, 2005a)-(Wu & Li, 2007) for
three great main aspects. The first one concerns the reduction of conservatism. The second
one, the reduction of the number of LMI conditions, which reduce computational efforts.
The third one, the delay-dependent stabilization conditions presented involve a single fixed
parameter. This new approach also improves the work of B. Chen et al. in (Chen et al., 2007)
by establishing new delay-dependent stabilization conditions of uncertain T-S fuzzy systems
with time varying delay. The rest of this chapter is organized as follows. In section 2, we
give the description of uncertain T-S fuzzy model with time varying delay. We also present
the fuzzy control design law based on PDC structure. New delay dependent stabilization
conditions are established in section 3. In section 4, numerical examples are given to
demonstrate the effectiveness and the benefits of the proposed method. Some conclusions are
drawn in section 5.

Notation: ℜn denotes the n-dimensional Euclidiean space. The notation P > 0 means that P is
symmetric and positive definite. W + WT is denoted as W + (∗) for simplicity. In symmetric
bloc matrices, we use ∗ as an ellipsis for terms that are induced by symmetry.

2. Problem formulation

Consider a nonlinear system with state-delay which could be represented by a T-S fuzzy
time-delay model described by

Plant Rule i(i = 1, 2, · · · , r): If θ1 is µi1 and · · · and θp is µip THEN

ẋ(t) = (Ai + ∆Ai)x(t) + (Aτi + ∆Aτi)x(t − τ(t)) + (Bi + ∆Bi)u(t)
x(t) = ψ(t), t ∈ [−τ, 0],

(1)
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Robust Control of Nonlinear Time-Delay Systems via Takagi-Sugeno Fuzzy Models 3

where θj(x(t)) and µij(i = 1, · · · , r, j = 1, · · · , p) are respectively the premise variables and
the fuzzy sets; ψ(t) is the initial conditions; x(t) ∈ ℜn is the state; u(t) ∈ ℜm is the control
input; r is the number of IF-THEN rules; the time delay, τ(t), is a time-varying continuous
function that satisfies

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ β (2)

The parametric uncertainties ∆Ai, ∆Aτi, ∆Bi are time-varying matrices that are defined as
follows

∆Ai = MAiFi(t)EAi, ; ∆Aτi = MAτiFi(t)EAτi, ; ∆Bi = MBiFi(t)EBi (3)

where MAi, MAτi, MBi, EAi, EAτi, EBi are known constant matrices and Fi(t) is an unknown
matrix function with the property

Fi(t)
T Fi(t) ≤ I (4)

Let Āi = Ai + ∆Ai; Āτi = Aτi + ∆Aτi; B̄i = Bi + ∆Bi

By using the common used center-average defuzzifier, product inference and singleton
fuzzifier, the T-S fuzzy systems can be inferred as

ẋ(t) =
r

∑
i=1

hi(θ(x(t)))[Āix(t) + Āτix(t − τ(t)) + B̄iu(t)] (5)

where θ(x(t)) = [θ1(x(t)), · · · , θp(x(t))] and νi(θ(x(t))) : ℜp → [0, 1], i = 1, · · · , r, is the
membership function of the system with respect to the ith plan rule. Denote hi(θ(x(t))) =
νi(θ(x(t)))/ ∑

r
i=1 νi(θ(x(t))). It is obvious that

hi(θ(x(t))) ≥ 0 and ∑
r
i=1 hi(θ(x(t))) = 1

the design of state feedback stabilizing fuzzy controllers for fuzzy system (5) is based on the
Parallel Distributed Compensation.

Controller Rule i(i = 1, 2, · · · , r): If θ1 is µi1 and · · · and θp is µip THEN

u(t) = Kix(t) (6)

The overall state feedback control law is represented by

u(t) =
r

∑
i=1

hi(θ(x(t)))Kix(t) (7)

In the sequel, for brevity we use hi to denote hi(θ(x(t))). Combining (5) with (7), the
closed-loop fuzzy system can be expressed as follows

ẋ(t) =
r

∑
i=1

r

∑
j=1

hihj[Âijx(t) + Āτix(t − τ(t))] (8)

with Âij = Āi + B̄iKj

In order to obtain the main results in this chapter, the following lemmas are needed

23Robust Control of Nonlinear Time-Delay Systems via Takagi-Sugeno Fuzzy Models
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Lemma 1. (Xie & DeSouza, 1992)-(Oudghiri et al., 2007) (Guerra et al., 2006) Considering Π < 0 a
matrix X and a scalar λ, the following holds

XTΠX ≤ −2λX − λ2Π−1 (9)

Lemma 2. (Wang et al., 1992) Given matrices M, E, F(t) with compatible dimensions and F(t)
satisfying F(t)TF(t) ≤ I.
Then, the following inequalities hold for any ǫ > 0

MF(t)E + ETF(t)T MT ≤ ǫMMT + ǫ−1ETE (10)

3. Main results

3.1 Time-delay dependent stability conditions

First, we derive the stability condition for unforced system (5), that is

ẋ(t) =
r

∑
i=1

hi [Āix(t) + Āτix(t − τ(t))] (11)

Theorem 1. System (11) is asymptotically stable, if there exist some matrices P > 0, S > 0, Z > 0, Y
and T satisfying the following LMIs for i = 1, 2, .., r

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕi + ǫAiE
T
AiEAi PAτi − Y + TT AT

i Z −Y PMAi PMAτi

∗ −(1 − β)S − T − TT + ǫAτiE
T
τiEτi AT

τiZ −T 0

∗ ∗ − 1
τ Z 0 ZMAi ZMAτi

∗ ∗ ∗ − 1
τ Z 0

∗ ∗ ∗ ∗ −ǫAi I 0
∗ ∗ ∗ ∗ ∗ −ǫAτi I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (12)

where ϕi = PAi + AT
i P + S + Y + YT.

Proof 1. Choose the LKF as

V(x(t)) = x(t)TPx(t) +
∫ t

t−τ(t) x(α)TSx(α)dα +
∫ 0
−τ

∫ t
t+σ ẋ(α)TZẋ(α)dαdσ (13)

the time derivative of this LKF (13) along the trajectory of system (11) is computed as

V̇(x(t)) = 2x(t)T Pẋ(t) + x(t)TSx(t)− (1 − τ̇(t))x(t − τ(t))TSx(t − τ(t))

+τẋ(t)TZẋ(t)−
∫ t

t−τ ẋ(s)T Zẋ(s)ds
(14)

Taking into account the Newton-Leibniz formula

x(t − τ(t)) = x(t)−
∫ t

t−τ(t)
ẋ(s)ds (15)

We obtain equation (16)
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V̇(x(t)) =
r

∑
i=1

hi[2x(t)TPĀix(t) + 2x(t)T PĀτix(t − τ(t))]

+x(t)TSx(t)− (1 − β)x(t − τ(t))TSx(t − τ(t))

+τẋ(t)TZẋ(t)−
∫ t

t−τ
ẋ(s)TZẋ(s)ds

+2[x(t)TY + x(t − τ(t))TT]× [x(t)− x(t − τ(t))−
∫ t

t−τ(t)
ẋ(s)ds] (16)

As pointed out in (Chen & Liu, 2005a)

ẋ(t)TZẋ(t) ≤
r

∑
i=1

hiη(t)
T

[
ĀT

i ZĀi ĀT
i ZĀτi

ĀT
τiZĀi ĀT

τiZĀτi

]
η(t) (17)

where η(t)T = [x(t)T, x(t − τ(t))T ].
Allowing WT = [YT, TT ], we obtain equation (18)

V̇(x(t)) ≤
r

∑
i=1

hiη(t)
T [Φ̃i + τWZ−1WT ]η(t)

−
∫ t

t−τ(t)
[ηT(t)W + ẋ(s)T Z]Z−1[ηT(t)W + ẋ(s)TZ]Tds (18)

where

Φ̃i =

[
PĀi + ĀT

i P + S + τĀT
i ZĀi + Y + YT PĀτi + τĀT

i ZĀτi − Y + TT

∗ −(1 − β)S + τĀT
τiZĀτi − T − TT

]
(19)

By applying Schur complement Φ̃i + τWZ−1WT
< 0 is equivalent to

Φ̄i =

⎡
⎢⎢⎣

ϕ̄i PĀτi − Y + TT ĀT
i Z −Y

∗ −(1 − β)S − T − TT ĀT
τiZ −T

∗ ∗ − 1
τ Z 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎦ < 0

The uncertain part is represented as follows

∆Φ̄i =

⎡
⎢⎢⎣

P∆Ai + ∆AT
i P P∆Aτi ∆AT

i Z 0

∗ 0 ∆AT
τiZ 0

∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

PMAi

0
ZMAi

0

⎤
⎥⎥⎦ F(t)

[
EAi 0 0 0

]
+ (∗) +

⎡
⎢⎢⎣

PMAτi

0
ZMAτi

0

⎤
⎥⎥⎦ F(t)

[
0 EAτi 0 0

]
+ (∗) (20)
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By applying lemma 2, we obtain

∆Φ̄i ≤ ǫ−1
Ai

⎡
⎢⎢⎣

PMAi

0
ZMAi

0

⎤
⎥⎥⎦
[

MT
AiP 0 MT

AiZ 0
]
+ ǫAi

⎡
⎢⎢⎣

ET
Ai
0
0
0

⎤
⎥⎥⎦
[

EAi 0 0 0
]

+ǫ−1
Aτi

⎡
⎢⎢⎣

PMAτi

0
ZMAτi

0

⎤
⎥⎥⎦
[

MT
AτiP 0 MT

AτiZ 0
]
+ ǫAτi

⎡
⎢⎢⎣

0

ET
Aτi
0
0

⎤
⎥⎥⎦
[

0 EAτi 0 0
]

(21)

where ǫAi and ǫAτi are some positive scalars.
By using Schur complement, we obtain theorem 1.

3.2 Time-delay dependent stabilization conditions

Theorem 2. System (8) is asymptotically stable if there exist some matrices P > 0, S > 0, Z > 0, Y,
T satisfying the following LMIs for i, j = 1, 2, .., r and i ≤ j

Φ̄ij + Φ̄ji ≤ 0 (22)

where Φ̄ji is given by

Φ̄ij =

⎡
⎢⎢⎢⎣

PÂij + ÂT
ijP + S + Y + YT PĀτi − Y + TT ÂT

ijZ −Y

∗ −(1 − β)S − T − TT ĀT
τiZ −T

∗ ∗ − 1
τ Z 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎦ (23)

Proof 2. As pointed out in (Chen & Liu, 2005a), the following inequality is verified.

ẋ(t)TZẋ(t) ≤
r

∑
i=1

r

∑
j=1

hihjη(t)
T

⎡
⎣

(Âij+Âji)
T

2 Z
(Âij+Âji)

2
(Âij+Âji)

T

2 Z
(Āτi+Āτ j)

2
(Āτi+Āτ j)

T

2 Z
(Âij+Âji)

2
(Āτi+Āτ j)

T

2 Z
(Āτi+Āτ j)

2

⎤
⎦ η(t) (24)

Following a similar development to that for theorem 1, we obtain

V̇(x(t)) ≤
r

∑
i=1

r

∑
j=1

hihjη(t)
T [Φ̃ij + τWZ−1WT]η(t)

−
∫ t

t−τ(t)
[η(t)TW + ẋ(s)T Z]Z−1[η(t)TW + ẋ(s)TZ]Tds (25)

where Φ̃ij is given by

Φ̃ij =

⎡
⎢⎢⎢⎢⎣

PÂij + ÂT
ijP + S

+τ
(Âij+Âji)

T

2 Z
(Âij+Âji)

2 + Y + YT

PĀτi + τ
(Âij+Âji)

T

2 Z
(Āτi+Āτ j)

2
−Y + TT

∗ −(1 − β)S + τ
(Āτi+Āτ j)

T

2 Z
(Āτi+Āτ j)

2
−T − TT

⎤
⎥⎥⎥⎥⎦

(26)
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By applying Schur complement
r

∑
i=1

r

∑
j=1

hihjΦ̃ij + τWZ−1WT
< 0 is equivalent to

r

∑
i=1

r

∑
j=1

hihjΦ̂ij =
1

2

r

∑
i=1

r

∑
j=1

hihj(Φ̂ij + Φ̂ji)

=
1

2

r

∑
i=1

r

∑
j=1

hihj(Φ̄ij + Φ̄ji) < 0 (27)

where Φ̂ij is given by

Φ̂ij =

⎡
⎢⎢⎢⎢⎣

PÂij + ÂT
ijP + S + Y + YT PĀτi − Y + TT (Âij+Âji)

T

2 Z −Y

∗ −(1 − β)S − T − TT (Āτi+Āτ j)
T

2 Z −T

∗ ∗ − 1
τ Z 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎥⎦

(28)

Therefore, we get V̇(x(t)) ≤ 0.

Our objective is to transform the conditions in theorem 2 in LMI terms which can be easily
solved using existing solvers such as LMI TOOLBOX in the Matlab software.

Theorem 3. For a given positive number λ. System (8) is asymptotically stable if there exist some
matrices P > 0, S > 0, Z > 0, Y, T and Ni as well as positives scalars ǫAij, ǫAτij, ǫBij, ǫCi, ǫCτi, ǫDi

satisfying the following LMIs for i, j = 1, 2, .., r and i ≤ j

Ξij + Ξji ≤ 0 (29)

where Ξij is given by

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
ξij + ǫAijMAiM

T
Ai

+ǫBiMBiM
T
Bi

]
PAT

τi − Y + TT AiP + Bi Nj −Y

∗

[
−(1 − β)S − T − TT

+ǫAτiiMAτiiM
T
Aτi

]
AτiP

∗ ∗ 1
τ (−2λP + λ2Z) 0

∗ ∗ ∗ − 1
τ Z

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

PET
Ai NT

j ET
Bi PET

Aτi

−T 0 0
PET

Ai NT
j ET

Bi PET
Aτi

0 0 0
−ǫAij I 0 0

∗ −ǫBij I 0

∗ ∗ −ǫAτij I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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in which ξij = PAT
i + NT

j BT
i + AiP + Bi Nj + S + Y + YT. If this is the case, the Ki local feedback

gains are given by

Ki = NiP
−1, i = 1, 2, .., r (31)

Proof 3. Starting with pre-and post multiplying (22) by diag[I, I, Z−1P, I] and its transpose,we get

Ξ1
ij + Ξ1

ji ≤ 0, 1 ≤ i ≤ j ≤ r (32)

where

Ξ1
ij =

⎡
⎢⎢⎢⎣

PÂij + ÂT
ijP + S + Y + YT PĀτi − Y + TT ÂT

ijP −Y

∗ −(1 − β)S − T − TT ĀT
τiP −T

∗ ∗ − 1
τ PZ−1P 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎦ (33)

As pointed out by Wu et al. (Wu et al., 2004), if we just consider the stabilization condition, we can

replace Âij, Aτi with ÂT
ij and AT

τi, respectively, in (33).

Assuming Nj = KjP, we get

Ξ2
ij + Ξ2

ji ≤ 0, 1 ≤ i ≤ j ≤ r (34)

Ξ2
ij =

⎡
⎢⎢⎢⎢⎣

ξ̄ij PĀT
τi − Y + TT ĀiP + B̄iNj −Y

∗

[
−(1 − β)S
−T − TT

]
ĀτiP −T

∗ ∗ − 1
τ PZ−1P 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎥⎦

(35)

It follows from lemma 1 that

− PZ−1P ≤ −2λP + λ2Z (36)

We obtain

Ξ3
ij + Ξ3

ji ≤ 0, 1 ≤ i ≤ j ≤ r (37)

where

Ξ3
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ̄ij PĀT
τi − Y + TT ĀiP + B̄iNj −Y

∗

[
−(1 − β)S
−T − TT

]
ĀτiP −T

∗ ∗

[
1
τ (−2λP
+λ2Z)

]
0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)
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The uncertain part is given by

∆Ξ̄ij =

⎡
⎢⎢⎣

P∆AT
i + NT

j ∆BT
i + ∆AiP + ∆BiNj P∆AT

τi ∆AiP + ∆BiNj 0

∗ 0 ∆AτiP 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦

=

[
MAi

03×1

]
F(t)

[
EAiP 0 EAiP 0

]
+ (∗)

+

[
MBi

03×1

]
F(t)

[
EBiNj 0 EBiNj 0

]
+ (∗)

+

⎡
⎣

0
MAτi

02×1

⎤
⎦ F(t)

[
EAτiP 0 EAτiP 0

]
+ (∗) (39)

By using lemma 2, we obtain

∆Ξ̄ij ≤ ǫAij

[
MAi

03×1

] [
MT

Ai 01×3

]
+ ǫ−1

Aij

⎡
⎢⎢⎣

PET
Ai

0

PET
Ai

0

⎤
⎥⎥⎦
[

EiP 0 EiP 0
]

+ǫBij

[
MBi

03×1

] [
MT

Bi 01×3

]
+ ǫ−1

Bij

⎡
⎢⎢⎢⎣

NT
j ET

Bi

0

NT
j ET

Bi

0

⎤
⎥⎥⎥⎦
[

EBiNj 0 EBiNj 0
]

+ǫAτij

⎡
⎣

0
MAτi

02×1

⎤
⎦ [

0 MT
Aτi 01×2

]
+ ǫ−1

Aτij

⎡
⎢⎢⎣

PET
Aτi

0

PET
Aτi

0

⎤
⎥⎥⎦
[

EAτiP 0 EAτiP 0
]

(40)

where ǫAij, ǫAτij and ǫBij are some positive scalars.
By applying Schur complement and lemma 2, we obtain theorem 3.

Remark 1. It is noticed that (Wu & Li, 2007) and theorem (3) contain, respectively, r3 + r3(r − 1)
and 1

2 r(r + 1) LMIs. This reduces the computational complexity. Moreover, it is easy to see that the
requirements of β < 1 are removed in our result due to the introduction of variable T.

Remark 2. It is noted that Wu et al. in (Wu & Li, 2007) have presented a new approach to
delay-dependent stabilization for continuous-time fuzzy systems with time varying delay. The
disadvantages of this new approach is that the LMIs presented involve three tuning parameters.
However, only one tuning parameter is involved in our approach.

Remark 3. Our method provides a less conservative result than other results which have been
recently proposed (Wu & Li, 2007), (Chen & Liu, 2005a), (Guan & Chen, 2004). In next paragraph, a
numerical example is given to demonstrate numerically this point.
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4. Illustrative examples

In this section, three examples are used to illustrate the effectiveness and the merits of the
proposed results.
The first example is given to compare our result with the existing one in the case of constant
delay and time-varying delay.

4.1 Example 1

Consider the following T-S fuzzy model

ẋ(t) = ∑
2
i=1 hi(x1(t))[(Ai + ∆Ai)x(t) + (Aτi + ∆Aτi)x(t − τ(t)) + Biu(t)] (41)

where

A1 =

[
0 0.6
0 1

]
, A2 =

[
1 0
1 0

]
, Aτ1 =

[
0.5 0.9
0 2

]
, Aτ2 =

[
0.9 0
1 1.6

]

B1 = B2 =

[
1
1

]

∆Ai = MF(t)Ei, ∆Aτi = MF(t)Eτi

M =

[
−0.03 0

0 0.03

]

E1 = E2 =

[
−0.15 0.2

0 0.04

]

Eτ1 = Eτ2 =

[
−0.05 −0.35
0.08 −0.45

]

The membership functions are defined by

h1(x1(t)) =
1

1 + exp(−2x1(t))

h2(x1(t)) = 1 − h1(x1(t)) (42)

For the case of delay being constant and unknown and no uncertainties (∆Ai = 0, ∆Aτi = 0),
the existing delay-dependent approaches are used to design the fuzzy controllers.
Based on theorem 3, for λ = 5, the largest delay is computed to be τ = 0.4909 such that system
(41) is asymptotically stable. Based on the results obtained in (Wu & Li, 2007), we get this table

Methods Maximum allowed τ

Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1524
Theorem of Guan and Chen (Guan & Chen, 2004) 0.2302

Theorem of Wu and Li (Wu & Li, 2007) 0.2664
Theorem 3 0.4909

Table 1. Comparison Among Various Delay-Dependent Stabilization Methods

It appears from this table that our result improves the existing ones. Letting τ = 0.4909, the
state-feedback gain matrices are
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K1 =
[

5.5780 −16.4347
]

, K2 =
[

4.0442 −15.4370
]

Fig 1 shows the control results for system (41) with constant time-delay via fuzzy controller (7)

with the previous gain matrices under the initial condition x(t) =
[

2 0
]T

, t ∈
[
−0.4909 0

]
.

0 2 4 6 8 10
−2

0

2

4

x 1
(t

)

0 2 4 6 8 10
−1

0

1
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20
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Fig. 1. Control results for system (41) without uncertainties and with constant time delay
τ = 0.4909.

It is clear that the designed fuzzy controller can stabilize this system.

For the case of ∆Ai �= 0, ∆Aτi �= 0 and constant delay, the approaches in (Guan & Chen, 2004)
(Wu & Li, 2007) (Lin et al., 2006) cannot be used to design feedback controllers as the system
contains uncertainties. The method in (Chen & Liu, 2005b) and theorem 3 with λ = 5 can be
used to design the fuzzy controllers. The corresponding results are listed below.

Methods Maximum allowed τ

Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1498
Theorem 3 0.4770

Table 2. Comparison Among Various Delay-Dependent Stabilization Methods With
uncertainties

It appears from Table 2 that our result improves the existing ones in the case of uncertain T-S
fuzzy model with constant time-delay.
For the case of uncertain T-S fuzzy model with time-varying delay, the approaches proposed
in (Guan & Chen, 2004) (Chen & Liu, 2005a) (Wu & Li, 2007) (Chen et al., 2007) and (Lin et al.,
2006) cannot be used to design feedback controllers as the system contains uncertainties and
time-varying delay. By using theorem 3 with the choice of λ = 5, τ(t) = 0.25+ 0.15 sin(t)(τ =
0.4, β = 0.15), we can obtain the following state-feedback gain matrices:

K1 =
[

4.7478 −13.5217
]

, K2 =
[

3.1438 −13.2255
]
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The simulation was tested under the initial conditions x(t) =
[

2 0
]T

, t ∈
[
−0.4 0

]
and

uncertainty F(t) =

[
sin(t) 0

0 cos(t)

]
.
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Fig. 2. Control results for system (41) with uncertainties and with time varying-delay
τ(t) = 0.25 + 0.15sin(t)

From the simulation results in figure 2, it can be clearly seen that our method offers a
new approach to stabilize nonlinear systems represented by uncertain T-S fuzzy model with
time-varying delay.
The second example illustrates the validity of the design method in the case of slow time
varying delay (β < 1)

4.2 Example 2: Application to control a truck-trailer

In this example, we consider a continuous-time truck-trailer system, as shown in Fig. 3.
We will use the delayed model given by (Chen & Liu, 2005a). It is assumed that τ(t) = 1.10 +
0.75 sin(t). Obviously, we have τ = 1.85, β = 0.75. The time-varying delay model with
uncertainties is given by

ẋ(t) =
2

∑
i=1

hi(x1(t))[(Ai + ∆Ai)x(t) + (Aτi + ∆Aτi)x(t − τ(t)) + (Bi + ∆Bi)u(t)] (43)

where

A1 =

⎡
⎢⎢⎣

−a vt
Lt0

0 0

a vt
Lt0

0 0

a v2t
2

2Lt0

vt
t0

0

⎤
⎥⎥⎦ , Aτ1 =

⎡
⎢⎢⎣

−(1 − a) vt
Lt0

0 0

(1 − a) vt
Lt0

0 0

(1 − a) v2t
2

2Lt0
0 0

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣

−a vt
Lt0

0 0

a vt
Lt0

0 0

a dv2t
2

2Lt0

dvt
t0

0

⎤
⎥⎥⎦ , Aτ2 =

⎡
⎢⎢⎣

−(1 − a) vt
Lt0

0 0

(1 − a) vt
Lt0

0 0

(1 − a) dv2t
2

2Lt0
0 0

⎤
⎥⎥⎦
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x0

x3(+)

x3(−)

x2

x0

u

u

x1

lL

Fig. 3. Truck-trailer system

B1 = B2 =
[

vt
lt0

0 0
]T

∆A1 = ∆A2 = ∆Aτ1 = ∆Aτ2 = MF(t)E

with
M =

[
0.255 0.255 0.255

]T
, E =

[
0.1 0 0

]

∆B1 = ∆B2 = MbF(t)Eb

with
Mb =

[
0.1790 0 0

]T
, Eb1 = 0.05, Eb2 = 0.15

where

l = 2.8, L = 5.5, v = −1, t = 2, t0 = 0.5, a = 0.7, d =
10t0

π
The membership functions are defined as

h1(θ(t)) = (1 −
1

1 + exp(−3(θ(t)− 0.5π))
)× (

1

1 + exp(−3(θ(t) + 0.5π))
)

h2(θ(t)) = 1 − h1

where

θ(t) = x2(t) + a(vt/2L)x1(t) + (1 − a)(vt/2L)x1(t − τ(t))

By using theorem 3, with the choice of λ = 5, we can obtain the following feasible solution:

P =

⎡
⎣

0.2249 0.0566 −0.0259
0.0566 0.0382 0.0775
−0.0259 0.0775 2.7440

⎤
⎦ , S =

⎡
⎣

0.2408 −0.0262 −0.1137
−0.0262 0.0236 0.0847
−0.1137 0.0847 0.3496

⎤
⎦
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Z =

⎡
⎣

0.0373 0.0133 −0.0052
0.0133 0.0083 0.0202
−0.0052 0.0202 1.0256

⎤
⎦ , T =

⎡
⎣

0.0134 0.0053 0.0256
0.0075 0.0038 −0.0171
0.0001 0.0014 0.0642

⎤
⎦

Y =

⎡
⎣
−0.0073 −0.0022 0.0192
−0.0051 −0.0031 0.0096
0.0012 −0.0012 −0.0804

⎤
⎦

ǫA1 = 0.1087, ǫA2 = 0.0729, ǫA12 = 0.1184

ǫAτ1 = 0.0443, ǫAτ2 = 0.0369, ǫAτ12 = 0.0432

ǫB1 = 0.3179, ǫB2 = 0.3383, ǫB12 = 0.3250

K1 =
[

3.7863 −5.7141 0.1028
]

K2 =
[

3.8049 −5.8490 0.0965
]

The simulation was carried out for an initial condition x(t) =
[
−0.5π 0.75π −5

]T
, t ∈[

−1.85 0
]
.
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Fig. 4. Control results for the truck-trailer system (41)

The third example is presented to illustrate the effectiveness of the proposed main result for
fast time-varying delay system.

4.3 Example 3: Application to an inverted pendulum

Consider the well-studied example of balancing an inverted pendulum on a cart (Cao et al.,
2000).

ẋ1 = x2 (44)

ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2 − a cos(x1)u

4l/3 − aml cos2(x1)
(45)
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(M)
u(t)

θ

(m)

Fig. 5. Inverted pendulum

where x1 is the pendulum angle (represented by θ in Fig. 5), and x2 is the angular velocity (
θ̇) . g = 9.8m/s2 is the gravity constant , m is the mass of the pendulum, M is the mass of the
cart, 2l is the length of the pendulum and u is the force applied to the cart. a = 1/(m + M).
The nonlinear system can be described by a fuzzy model with two IF-THEN rules:

Plant Rule 1: IF x1 is about 0, Then

ẋ(t) = A1x(t) + B1u(t) (46)

Plant rule 2: IF x1 is about ± π
2 , Then

ẋ(t) = A2x(t) + B2u(t) (47)

where

A1 =

[
0 1

17.2941 0

]
, A2 =

[
0 1

12.6305 0

]

B1 =

[
0

−0.1765

]
, B2 =

[
0

−0.0779

]

The membership functions are

h1 = (1 −
1

1 + exp(−7(x1 − π/4))
)× (1 +

1

1 + exp(−7(x1 + π/4))
)

h2 = 1 − h1

In order to illustrate the use of theorem (3), we assume that the delay terms are perturbed
along values of the scalar s ∈ [0, 1], and the fuzzy time-delay model considered here is as
follows:

ẋ(t) =
r

∑
i=1

hi[((1 − s)Ai + ∆Ai)x(t) + (sAτi + ∆Aτi)x(t − τ(t)) + Biu(t)] (48)

where

A1 =

[
0 1

17.2941 0

]
, A2 =

[
0 1

12.6305 0

]

B1 =

[
0

−0.1765

]
, B2 =

[
0

−0.0779

]

∆A1 = ∆A2 = ∆Aτ1 = ∆Aτ2 = MF(t)E
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with

M =

[
0.1 0
0 0.1

]T

, E =

[
0. 0
0 0.1

]

Let s = 0.1 and uncertainty F(t) =

[
sin(t) 0

0 cos(t)

]
. We consider a fast time-varying delay

τ(t) = 0.2 + 1.2 |sin(t)| (β = 1.2 > 1).
Using LMI-TOOLBOX, there is a set of feasible solutions to LMIs (29).

K1 =
[

159.7095 30.0354
]

, K2 =
[

347.2744 78.5552
]

Fig. 4 shows the control results for the system (48) with time-varying delay τ(t) = 0.2 +

1.2 |sin(t)| under the initial condition x(t) =
[

2 0
]T

, t ∈
[
−1.40 0

]
.
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Fig. 6. Control results for the system (48) with time-varying delayτ(t) = 0.2 + 1.2 |sin(t)|.

5. Conclusion

In this chapter, we have investigated the delay-dependent design of state feedback stabilizing
fuzzy controllers for uncertain T-S fuzzy systems with time varying delay. Our method is
an important contribution as it establishes a new way that can reduce the conservatism and
the computational efforts in the same time. The delay-dependent stabilization conditions
obtained in this chapter are presented in terms of LMIs involving a single tuning parameter.
Finally, three examples are used to illustrate numerically that our results are less conservative
than the existing ones.
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