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1. Introduction 

DNA, the genetic material of cells, is constantly exposed to a range of endogenous and 
environmental damaging agents (Jungmichel & Stucki, 2010). DNA molecule is the target of 

endogenous cellular metabolites such as reactive oxygen species (ROS) (Ciccia & Elledge, 
2010; Poehlmann & Roessner, 2010). ROS may cause different alterations in a genome, e.g. 

simple DNA mutations, DNA single and double strand breaks (SSBs and DSBs, 
respectively), or more complex changes, including deletions, translocations and fusions 

(Poehlmann & Roessner, 2010). Alterations may be generated spontaneously due to dNTP 
misincorporation during DNA replication, interconversion between DNA bases caused by 

deamination, loss of DNA bases following DNA depurination or depyrimidination and 
modification of DNA bases by alkylation. Hydrolytic deamination (loss of an amino group) 

can directly convert one base to another. For example, deamination of cytosine results in 
uracil and with much lower frequency converts adenine to hypoxanthine. In depurination 

or depyrimidination, purine or pyrimidine bases are completely removed, leaving 
deoxyribose sugar depurinated or depyrimidinated that may cause breakage in the DNA 

backbone (Ciccia & Elledge, 2010; Rastogi et al., 2010). Altogether, it has been estimated that 
every cell could experience up to 105 spontaneous DNA lesions per day (Ciccia & Elledge, 

2010). Environmental DNA damage can be produced by physical or chemical sources, such 
as ionizing radiation (IR), ultraviolet (UV) light from sunlight and organic and inorganic 

chemical substances (Muniandy et al., 2010; Rastogi et al., 2010; Su et al., 2010). Exposure to 
ionizing radiation from, e.g. cosmic radiation and medical treatments employing X-rays or 

radiotherapy inflicts DNA single and double strand breaks, oxidation of DNA bases and 
DNA-protein crosslinks in the genomic DNA (Ciccia & Elledge, 2010; Su et al., 2010). 

Ionizing radiation provokes DNA damage directly by energy deposit on the DNA double 
helix and indirectly by reactive oxygen/nitrogen species (ROS/RNS) (Corre et al., 2010). 

Ultraviolet radiation (mainly UV-B) is a powerful agent that may lead to the formation of 
three major classes of DNA lesions, such as cyclobutane pyrimidine dimmers (CPDs), 

pyrimidine 6-4 pyrimidone photoproducts (6-4 PPs) and their Devar isomers (Rastogi et al., 
2010). Cells may become transiently exposed to external sources of DNA damage, such as 

cigarette smoke or various toxic chemical compounds (Jungmichel & Stucki, 2010). Many 
antineoplastic drugs currently used in cancer treatment express their cytotoxic effects 

through their ability to directly or indirectly damage DNA and thus resulting in cell death. 
Major types of DNA damage induced by anticancer treatment include single and double 

strand breaks, interstrand, intrastrand and DNA-protein crosslinks, as well as interference 

www.intechopen.com



 
DNA Repair 

 

282 

with nucleotide metabolism and DNA synthesis (Pallis & Karamouzis, 2010). Alkylating 
agents, such as methyl methanesulphonate (MMS), tenozalamide, streptozotocin, 

procarbazine, dacarbazine, ethylnitrosourea, diethylnitrosamine and nitrosoureas attach 
alkyl groups to DNA bases, while crosslinking agents such as mitomycin (MMC), cisplatin, 

psoralen and nitrogen mustard induce covalent links between bases of the same DNA 
strand (intrastrand crosslinks) or of different DNA strands (interstrands crosslinks) (Ciccia 

& Elledge, 2010; Muniandy et al., 2010; Pallis & Karamouzis, 2010). Other chemical agents, 
such as topoisomerase inhibitors induce the formation of single or double strand breaks by 

trapping topoisomerase-DNA covalent complexes (Ciccia & Elledge, 2010). Camptothecin 
and novel noncamptothecins in clinical development target eukaryotic IB type 

topoisomerase (Topo I), whereas human IIA type topoisomerases (Topo IIǂ and Topo IIǃ) 
are the targets of widely used anticancer agents, such as etoposide, anthracyclines 

(doxorubicin, daunorubicin) and mitoxantrone (Pommier et al., 2010).  
The biochemical consequences of DNA lesions are diverse and range from obstruction of 

fundamental cellular pathways like transcription and replication to fixation of mutations. 

Cellular misfunctioning, cell death, aging and cancer are the phenotypical consequences of 

DNA damage accumulation in the genome. To counteract DNA damage, repair mechanisms 

specific for many types of lesions have evolved. Mispaired DNA bases are replaced with 

correct bases by mismatch repair (MMR) (Ciccia & Elledge, 2010). The bases excision repair 

(BER) exerts its biological role by removing bases that have been damaged by alkylation, 

oxidation, ring saturation, as well as a short strand that contains the damaged bases. BER also 

plays an important role in the repair of DNA single strand breaks generated spontaneously or 

induced by exogenous DNA-damaging factors such as cytotoxic anticancer agents (Pallis & 

Karamouzis, 2010). DNA single strand breaks may be also repaired by single strand break 

repair (SSBR) (Ciccia & Elledge, 2010). Nucleotide excision repair (NER) is a highly conserved 

pathway that repairs DNA damage caused by UV radiation, mutagenic chemicals or 

chemotherapeutic drugs that form bulky DNA adducts (Pallis & Karamouzis, 2010). The most 

toxic lesions in DNA are double strand breaks where the phosphate backbones of the two 

complementary DNA strands are broken simultaneously (Hiom, 2010). Double strand breaks 

are repaired by two major repair pathways depending on the context of DNA damage, i.e. 

homologous recombination (HR) and nonhomologous end-joining (NHEJ) (Hiom, 2010; Pallis 

& Karamouzis, 2010). While NHEJ promotes potential inaccurate relegation of double strand 

breaks, HR precisely restores genomic sequence of the broken DNA ends by using sister 

chromatids as template for repair (Ciccia & Elledge, 2010). Additionally, some specialized 

polymerases can temporarily take over lesion-arrested DNA polymerases during S phase, in a 

mutagenic mechanism called translesion synthesis (TLS). Such polymerases only work if a 

more reliable system, such as homologous recombination, cannot avoid stumbled DNA 

replication (Essers et al., 2006). 

DNA repair is carried out by the plethora of enzymatic activities that chemically modify 

DNA to repair DNA damage, including nucleases, helicases, polymerases, topoisomerases, 

recombinases, ligases, glycosylases, demethylases, kinases and phosphatases. These repair 

tools must be precisely regulated, because each in its own right can wreak havoc on the 

integrity of DNA if misused or allowed to gain access to DNA at the inappropriate time or 

place (Ciccia & Elledge, 2010). The DNA repair mechanisms function in conjunction with an 

intricate machinery of damage sensors, responsible of a series of phosphorylations and 

chromatin modifications that signal to the rest of the cell the presence of lesions on DNA. 
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Together DNA repair mechanisms and DNA damage signaling system form a molecular 

shield against genomic instability. 

2. DNA damage checkpoints 

To maintain genomic integrity and faithful transmission of fully replicated and undamaged 
DNA during cell division, eukaryotic organisms evolved a complex DNA surveillance 
program (Reihardt & Yaffe, 2009). Apart from DNA repair mechanisms mentioned above, 
DNA damage response represents a complex network of multiple signaling pathways 
involving cell cycle checkpoints, transcriptional regulation, chromatin remodeling and 
apoptosis (Dai & Grant, 2010; Danielsen et al., 2009). In response to DNA damage, 
eukaryotic cells activate a complex protein kinase-based signaling network to arrest 
progression through the cell cycle. Activation of signaling cascade recruits repair machinery 
to the site of DNA damage, provides time for repair or if the genotoxic insult exceeds repair 
capacity, additional signaling pathways leading to cell death, presumably via apoptosis, are 
activated (Reinhardt et al., 2010; Reinhardt & Yaffe, 2009). When DNA damage occurs, 
distinct, albeit overlapping and cooperating checkpoint pathways are activated, which block 
S phase entry (the G1/S phase checkpoint), delay S phase progression (the S phase 
checkpoints) or prevent mitotic entry (the G2/M phase checkpoint). The primary G1/S cell 
cycle checkpoint controls the commitment of eukaryotic cells to transition through G1 phase 
and enter DNA synthesis phase. In G1 phase, cells have to make a decision between 
continuing proliferation or exiting the cell cycle to become quiescent differentiated, 
senescent or apoptotic (Dijkstra et al., 2009). The S phase checkpoints are activated when 
DNA damage occurs during DNA synthesis, or when DNA replication intermediates 
accumulate. Depending on the type and magnitude of damage, cells activate one of three 
distinct S phase checkpoint pathways: an intra-S phase checkpoint induced by double 
strand breaks, a replication checkpoint by the stalled replication fork and the S/M 
checkpoint blocking premature mitosis. The S/M checkpoint differs from the well-defined 
G2/M checkpoint. The S/M checkpoint is ATM-independent, it is measurable only several 
hours after DNA damage and is initiated in cells that were in S phase at the time of insult 
(Hurley & Bunz, 2009; Rodriguez-Bravo et al., 2007). When cells encounter DNA damage in 
G2, the G2/M checkpoint stops the cell cycle to prevent the cell from entering mitosis. 
Defects in cell cycle arrest at the respective checkpoint are associated with genome 
instability and oncogenesis (Houtgraaf et al., 2006). 

3. Checkpoint signaling cascade 

Proteins of checkpoint signaling pathways are classified as sensors, transducers and 

effectors (Fig. 1). Following DNA damage, sensor multiprotein complexes, e.g. MRN 

(MRE11-Rad50-NBS1) or 9-1-1 (Rad9-Rad1-Hus1) recognize damage and recruit proximal 

transducers, i.e. ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) 

kinases to lesions where they are initially activated. ATM and ATR transduce signals to 

distal transducer, i.e. checkpoint kinases Chk1 and Chk2 (Dai & Grant, 2010; Niida & 

Nakanishi, 2006). Chk1 and Chk2 kinases, distal transducers, transfer the signal of DNA 

damage to effectors, such as Cdks (cyclin-dependent kinases), Cdc25 (cell division cycle 25) 

and p53 (Dai & Grant, 2010; Houtgraaf et al., 2006; Nakanishi, 2009; Nakanishi et al., 2009). 

The key difference between ATM and ATR is the signal that activates them. ATM is 
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activated exclusively by DSBs, which can arise from endogenous (ROS, eroded telomeres, 

intermediates of immune and meiotic recombination) or exogenous (IR, genotoxic drugs) 

sources (Lopez-Contreras & Fernandez-Capetillo, 2010). In contrast, ATR responds to many 

types of DNA damage and replication stress including breaks, crosslinks and base adducts. 

ATR senses abnormally long stretches of single strand DNA that arise from the functional 

uncoupling of helicase and polymerase activities at replication forks or from the processing 

of DNA lesions such as the resection of DSBs (Mordes & Cortez, 2008). ATR but not ATM is 

essential for viability. The early embryonic death in ATR knockout mice shows that ATR is 

essential for cell growth and differentiation at an early stage of development (Smits et al., 

2010). In addition, disruption of ATR in mouse or human cells results in cell cycle arrest or 

death, even without exogenous DNA damage (Cortez et al., 2001; Smits et al., 2010). 

Although complete inactivation of ATR is lethal, a hypomorphic mutation was found in 

humans suffering from the rare autosomal recessive disorder, Seckel syndrome, 

characterized by growth retardation and microcephaly. In homozygosity, that mutation 

affects ATR splicing which results in the reduction of ATR protein levels to almost 

undetectable, yet the remaining protein is sufficient for viability (Kerzendorfer & O’Driscoll, 

2009; O’Driscoll et al., 2004; Smits et al., 2010).  

 

 

Fig. 1. Signal transduction of DNA damage response (DDR) 

www.intechopen.com



 
TopBP1 in DNA Damage Response 

 

285 

In addition to damage sensors and signal transducers, many other proteins called mediators 
are involved in DNA damage response. Mediators are mostly cell cycle specific proteins 
associated with damage sensors and signal transducers at particular phases of the cell cycle 
and, as a consequence, help provide signal transduction specificity. ATM and ATR 
phosphorylate most of these mediators. Well-known examples of mediators are 53BP1 (p53 
binding protein 1), MDC1 (mediator of DNA damage checkpoint 1), BRCA1 (breast cancer 
1), SMC1 (structural maintenance of chromosomes 1), FANCD2 (Fanconi anemia, 
complementation group D2), Claspin, Timeless, Tipin and histone H2AX (Dai & Grant, 2010; 
Houtgraaf et al., 2006; Yang et al., 2010). This group of regulators involves also TopBP1 
protein (topoisomerase IIǃ binding protein 1) (Cimprich & Cortez, 2008). Certain molecules 
may have multiple functions in this signal transduction pathway. For example ATM and 
ATR can simultaneously act as a sensor and a transducer. Consequently, signal transduction 
in DNA damage response is not one-dimensional but a complex network of interacting 
molecules (Poehlmann & Roessner, 2010). 

4. Structure of TopBP1 and its similarity to BRCA1 

Topoisomerase IIǃ binding protein 1 (TopBP1) has been identified as a protein interacting 
with topoisomerase IIǃ in a yeast two-hybrid screen (Morishima et al., 2007; Yamane et al., 
1997). Interaction with topoisomerase IIǃ is mediated by carboxyl-terminal region (aa 862-
1522) of TopBP1 in vitro (Honda et al., 2002; Yamane et al., 1997). TopBP1 shares sequence 
and structural homologies with Saccharomyces cerevisiae Dpb11, Schizosaccharomyces pombe 
Cut5/Rad4, Drosophila melanogaster Mus101 and Xenopus levis Xmus101 (Araki et al., 1995; 
Garcia et al., 2005; Morishima et al., 2007; Ogiwara et al., 2006; Parrilla-Castellar & Karnitz, 
2003; Taricani & Wand, 2006; van Hatten et al., 2002).  
TopBP1 protein seems to be essential for maintenance of chromosomal integrity and cell 
proliferation. This protein appeared to be involved in DNA damage response, DNA 
replication checkpoint, chromosome replication and regulation of transcription (Bang et al., 
2011; Garcia et al., 2005; Jeon et al., 2011). TopBP1 knockout mouse exhibits early embryonic 
lethality at the peri-implantation stage and TopBP1 deficiency induces cellular senescence in 
primary cells (Bang et al., 2011; Jeon et al., 2011). 
TopBP1 gene comprising 28 exons is located on chromosome 3q22.1 and encodes a 1522 
amino acid protein (180 kDa) (Karppinen et al., 2006; Xu & Leffak, 2010; Yan & Michael, 
2009a,b). The structure of protein is characterized by the presence of interspersed 
throughout the whole molecule eight copies of the BRCT domain (C-terminal domain of 
BRCA1), originally identified as a tandemly repeated sequence motif in carboxyl-terminal 
region of BRCA1 (Fig. 2) (Glover, 2006; Lelung et al., 2010; Wright et al., 2006; Yamane et al., 
1997; Yamane & Tsuruo, 1999). BRCT domains, about 90 amino acids in length, are 
hydrophobic and are involved in an interaction with other proteins and phosphorylated 
peptides, as well as in an interaction with single- and double-stranded DNA (Glover, 2006; 
Rodriquez et al., 2003; Wright et al., 2006). A sequence analysis has shown that BRCT 
repeats are present in a large family of proteins that are implicated in the cellular response 
to DNA damage. Next to BRCA1 and TopBP1, members of this family include several 
proteins that are directly linked to DNA repair and cell cycle checkpoints, such as XRCC1 
(X-ray cross complementing protein 1), DNA ligase III and IV, MDC1, BARD1 (BRCA1 
associated RING domain protein 1), Rad9, MCPH1 (microcephalin 1) (Glover, 2006; Glover 
et al., 2004; Hou et al., 2010; Yamane et al., 2002; Yamane & Tsuruo, 1999; Yang et al., 2008).  
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Fig. 2. TopBP1 functional domains and sites of interacting proteins 

The carboxyl-terminal region of TopBP1 containing two BRCT domains shows considerable 
similarity to the corresponding part of BRCA1 (Going et al., 2007; Karppinen et al., 2006; 
Makiniemi et al., 2001; Morris et al., 2009; Yamane et al., 1997, 2003). Apart from structural 
similarity TopBP1 shares many other common features with BRCA1. The expression of both 
proteins is the highest in S phase cells. TopBP1 and BRCA1 are phosphorylated by ATM in 
response to DNA damage and DNA replication stress and they both colocalize with PCNA 
(proliferating cell nuclear antigen) at stalled replication forks (Makiniemi et al., 2001; 
Yamane et al., 2003). The localization patterns of TopBP1 and BRCA1 have similarities also 
during late mitosis, as well as in meiotic prophase I (Karppinen et al., 2006; Reini et al., 
2004). Furthermore, the two proteins have been shown to possess overlapping functions in 
G2/M checkpoint regulation (Karppinen et al., 2006). Yamane et al. (2003) demonstrated 
that a BRCA1-mutant or a TopBP1-reduced background results in only partial abrogation at 
G2/M checkpoint, whereas the combined TopBP1-reduced and BRCA-mutant background 
result in the nearly complete abrogation. In response to ionizing radiation TopBP1 and 
BRAC1 colocalize with Rad50, ATM, Rad9, BLM (Bloom syndrome protein), PCNA, NBS1 
(Nijmegen breakage syndrome 1) and ǄH2AX in IR-induced nuclear foci (Germann et al., 
2010; Xu et al., 2003).  
TopBP1 protein possesses transcriptional-activation domain and two surrounding repressor 
domains and can play a role in regulating transcription directly (Fig. 2). A transcriptional-
activation domain is located between amino acids 460 - 591 and partly contains BRCT4 
domain. This region essential for transactivation is rich in hydrophobic amino acids 
interspersed with acidic residues, typical of identified transcriptional domains. On amino-
terminal side of the transcriptional activation domain, Wright et al., (2006) identified a 
repressor domain involving BRCT2 that is able to repress the TopBP1 transcriptional 
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activation domain. Additionally, another repressor domain exists on the C terminus of the 
activation domain, which requires amino acids 586 – 675. TopBP1 protein exerts its function 
in the nucleus and the carboxyl-terminal region of TopBP1 contains two putative nuclear 
localization signals (Going et al., 2007; Liu et al., 2003; Sokka et al., 2010). Liu et al. (2003) 
showed that deletion of the BRCT7-8 and NLS region of TopBP1 induces cytoplasmic 
localization of the protein. Aberrant expression and intracellular localization of TopBP1 is 
observed immunohistochemically in breast cancer (Going et al., 2007). 

5. TopBP1 as multifunctional protein 

TopBP1 protein has been proposed as a transcriptional repressor of E2F1 and transcriptional 
co-activator with HPV16 E2 (Liu et al., 2004; Wright et al., 2006; Yoshida & Inoue, 2004). The 
E2F transcription factors E2F1 to E2F6 bind to E2F sites in promoters and regulate the 
expression of a large array of genes that encode proteins important for DNA replication and 
cell cycle progression. In response to growth signals, activated G1 cycline-dependent kinase 
phosphorylate retinoblastoma protein (Rb) and release E2F from Rb binding. This event is 
critical in controlling G1/S transition. Among the E2F family members, E2F1, E2F2 and E2F3 
are transcriptional activators and are induced in response to growth stimulation, with peak 
accumulation at G1/S. Together, they are essential for cellular proliferation since a combined 
mutation of E2F1, E2F2 and E2F3 completely blocks cellular proliferation. In contrary, E2F4 
and E2F5 act mainly as transcriptional repressors (Chen et al., 2009; Liu et al., 2003; Poznic, 
2009). TopBP1 protein interacts with E2F1 through the sixth BRCT motif of TopBP1 and N 
terminus of E2F1 (Fig. 2) (Lelung et al., 2010; Liu et al., 2003). This interaction is induced by 
ATM-mediated phosphorylation of E2F1 at Ser31 during DNA damage. By this interaction, the 
transcriptional activity of E2F1 is repressed and E2F1 is recruited to DNA damage induced 
nuclear foci (Liu et al., 2003). Moreover, the interaction between TopBP1 protein and E2F1, as 
well as the repression of E2F1 activity, are specific for E2F1 but are not seen in E2F2, E2F3 and 
E2F4, suggesting that TopBP1 is E2F1 exclusive regulator (Liu et al., 2004). Liu et al. (2004) 
showed that E2F1 is also regulated by a novel Rb-independent mechanism, in which TopBP1 
protein recruits Brg1/BRM (Brahma-related gene 1/Brahma protein), a central subunit of the 
SWI/SNF (SWItch/sucrose nonfermentable) chromatin modeling complex, to specifically 
inhibit E2F1 transcriptional activity. This regulation appeared to be critical for E2F1-dependent 
apoptosis control during S phase and DNA damage. On the other hand, TopBP1 is induced by 
E2F1 and interacts with E2F1 during G1/S transition. Thus, E2F1 and TopBP1 form a feedback 
regulation to prevent apoptosis during DNA replication (Liu et al., 2003).  
Human papillomaviruses (HPVs) are causative agents in a number of human diseases the 
most common of which is cervical cancer. More than 95% of cervical carcinomas harbor 
HPV sequences and HPV16 is most frequently detected. The HPV16 E2 protein is a 43 kDa 
phosphoprotein that binds as a homodimer to 12 bp palindromic DNA sequences in the 
transcriptional control region of the viral genome. After binding, E2 can either upregulate or 
repress transcription from the adjacent promoter depending on cell type and protein levels 
and this regulation controls the expression of viral oncoproteins E6 and E7. The carboxyl-
terminal portion of TopBP1 interacts with E2 and TopBP1 protein can enhance the ability of 
E2 to activate transcription and replication (Fig. 2) (Boner et al., 2002). 
TopBP1 protein also interacts with SPBP (stromelysin-1 platelet-derived growth factor 
(PDGF) responsive element binding protein) and enhances the transcriptional activity of 
Ets1 on the Myc and MMP-3 promoters in vitro and in vivo (Sjottem et al., 2007). This 
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interaction is mediated by ePHD (extended plant homeodomain) domain of SPBP and the 
BRCT6 domain of TopBP1 (Sjottem et al., 2007). SPBP a 220 kDa ubiquitously expressed 
nuclear protein is shown to intensify or repress the transcriptional activity. Originally SPBP 
was identified as a protein involved in transcriptional activation of matrix 
metalloproteinase-3 (MMP3), stromelysin-1 promoter via the specific sequence element 
SPRE (stromelysin-1 PDGF responsive element) (Rekdal et al., 2000; Sonz et al., 1995). Later 
SPBP was found to act as a transcriptional coactivator since it enhanced the transcriptional 
activity of the positive cofactor and RING finger protein SNURF/RNF4 (small nuclear RING 
finger protein/RING finger protein 4) and of certain transcription factors, such as Sp1 
(specificity protein 1), Ets (E-twenty-six specific), Pax6 (paired box gene 6) and Jun (Lyngso 
et al., 2000; Rekdal et al., 2000; Sjottem et al., 2007). On the other hand, SPBP appears to act 
as phosphoserine-specific repressor of estrogen receptor ǂ (ERǂ) (Gburick et al., 2005; 
Sjottem et al., 2007).  
In unstressed cells TopBP1 protein associates with Miz-1 (Myc interacting zinc finger 
protein 1). BRCT6 and BRCT7 of TopBP1 are required and largely sufficient to mediate the 
interaction with Miz-1 (Fig. 2) (Herold et al., 2002, 2008; Wenzel et al., 2003). This zinc finger 
protein that contains an amino-terminal POZ (poxvirus and zinc finger) was initially 
described as a protein that interacts with C terminus of Myc oncoprotein (Courapied et al., 
2010; Herold et al., 2008). Miz-1 protein activates transcription of genes encoding the cell 
cycle inhibitors p15INK46 and p21Cip1, leading to cell cycle arrest. Miz-1 can also repress 
transcription when it forms complexes with Myc and other transcription factors (Herold et 
al., 2002, 2008; Wenzel et al., 2003). In response to UV irradiation Miz-1 is released from an 
inhibitory complex formed with TopBP1 and binds to the start site of p21Cip1 promoter. Thus 
the dissociation of TopBP1 from Miz-1 may facilitate the induction of p21Cip1 (Herold et al., 
2002, 2008; Wenzel et al., 2003). On the other hand, Miz-1 is required for the binding of 
TopBP1 to chromatin and to protect TopBP1 from proteasomal degradation. TopBP1 protein 
that is not bound to chromatin is ubiquitilated by HECTH9 (HUWE1) ligase. Expression of 
Myc leads to dissociation of TopBP1 from chromatin and reduces the amount of total 
TopBP1 (Herold et al., 2008). Furthermore, TopBP1 has been shown to be ubiquitilated by 
ubiquitin ligase EDD/hHYD (E3 identified by differential display/ human hyperplastic 
discs), another HECT (homologous to E6-AP C-terminus) domain E3 enzymes. The HECT 
E3 ubiquitin-protein ligases have been found from yeast to humans. They are characterized 
by the HECT domain. EDD/hHYD interacts with the minimal region of the amino acids 661 
– 1080 including BRCT5 and BRCT6 of TopBP1 protein. TopBP1 was found to be usually 
ubiqitilated and degraded by the proteasome in intact cells. X-irradiation seems to abolish 
TopBP1 degradation and induce the stable complex formation of TopBP1 with other 
molecules in DNA double strand breaks (Honda et al., 2002; Scheffrer & Staub, 2007). 
Binding of the transcription factor Miz-1 and TopBP1 protein is also regulated by TopBP1 
ADP-ribosylation (Table 1). ADP-ribosylation is one of the post-translational protein 
modifications. Polymers of ADP-ribose are formed from donor NAD+ molecules and 
covalently attached to glutamic acid, aspartic acid or lysine residues of a target protein. The 
process is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of proteins. The 
best known of these proteins is PARP1 which is implicated in transcription, chromatin 
remodeling, apoptosis and DNA repair (Sokka et al., 2010; Woodhouse & Dainov, 2008). 
TopBP1 and PARP-1 interact both in vitro and in vivo. The interaction depends on sixth 
BRCT domain of TopBP1 and on the fact that this domain is ADP-ribosylated by PARP-1. 
The post-translational ADP-ribosylation of TopBP1 by PARP1 may support the release of 
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Miz-1 from the complex with TopBP1 (Wollmann et al., 2007; Yamane et al., 1997; Yamane & 
Tsuruo, 1999).  
 

Site(s) Modification Enzyme Reference 

Y in BRCT1-4 
region 

phosphorylation c-Abl Zeng et al., 2005 

S214 phosphorylation ATM/ATR Matsuoka et al., 2007 

S492 phosphorylation ATM Sokka et al., 2010 

S405 phosphorylation ATM/ATR Matsuoka et al., 2007 

S409 phosphorylation ATM/ATR Matsuoka et al., 2007 

S554 phosphorylation ATM Sokka et al., 2010 

K581 acetylation N/D Choudhary et al., 2010 

S766 phosphorylation ATM Sokka et al., 2010 

S805 phosphorylation N/D 
Beausoleil et al., 2006; 

Wang et al., 2008 

T848 phosphorylation N/D Dephoure et al., 2008 

S860 phosphorylation N/D Dephoure et al., 2008 

S861 phosphorylation N/D Dephoure et al., 2008 

S864 phosphorylation N/D Dephoure et al., 2008 

S888 phosphorylation N/D 
Beausoleil et al., 2006; 
Dephoure et al., 2008; 

Wang et al., 2008 

900-991 
(BRCT6) 

ADP-ribosylation PARP-1 
Wollmann et al., 2007; 

Yamane et al., 1997; 
Yamane & Tsuruo, 1999 

T975 phosphorylation ATM/ATR Matsuoka et al., 2007 

S1002 phosphorylation N/D 
Dephoure et al., 2008; 

Wang et al., 2008 

S1051 phosphorylation ATM/ATR Matsuoka et al., 2007 

T1062 phosphorylation ATM Sokka et al., 2010 

T1086 phosphorylation ATM/ATR Matsuoka et al., 2007 

S1138 phosphorylation ATM Yoo et al., 2007 

S1159 phosphorylation Akt Liu et al., 2006 

Table 1. Post-translation modifications of the human TopBP1 protein (N/D – not determined) 

Apart from the mentioned above ADP-ribosylation, TopBP1 undergoes other post-
translational modifications, such as acetylation and phosphorylation (Table 1). Lysine 
acetylation is a reversible post-translational modification, which neutralizes the positive 
charge of this amino acid changing protein function. Lysine acetylation preferentially targets 
large macromolecular complexes involved in diverse cellular processes, such as chromatin 
remodeling, cell cycle, splicing, nuclear transport and actin nucleation. Acetylation of 
TopBP1 protein occurs at position 581 but the exact role of this modification remains to be 
resolved (Choudhary et al., 2010).  
TopBP1 is a phosphoprotein and is phosphorylated in response to DNA damage 
(Makiniemi et al., 2001; Yamane et al., 2003). After DNA damage, TopBP1 protein 
localizes at IR-induced nuclear foci and is phosphorylated by ATM kinase (Yamane et al., 
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2003). Human TopBP1 is phosphorylated at several S/TQ sites, which are consensus 
sequences of PIKK (phosphatidylinositol 3-kinase-related kinase) targets (Hashimoto et 
al., 2006; Matsuoka et al., 2007). However, the phosphorylation of TopBP1 protein occurs 
mostly on serine and to a lesser extent on threonine (Makiniemi et al., 2001). TopBP1 
protein is also phosphorylated by Akt in vitro and in vivo on Ser1159. Phosphorylation by 
Akt kinase induces oligomerization of TopBP1 through its seventh and eighth BRCT 
domains. The Akt-dependent oligomerization is crucial for TopBP1 to interact with E2F1 
and repress its activity. TopBP1 phosphorylation by Akt is also required for interaction 
between TopBP1 and Miz-1 or HPV16 E2 and repression of Miz-1 transcriptional activity, 
suggesting a general role for TopBP1 oligomerization in the control of transcription 
factors (Liu et al., 2006a).  
The other TopBP1 interacting proteins are PML (promyelocytic leukemia protein), TICRR 
(TopBP1-interacting, checkpoint and replication regulator) and p53. PML is a 
multifunctional protein that plays essential roles in cell growth regulation, apoptosis, 
transcriptional regulation and genome stability. PML tumor suppressor gene is consistently 
disrupted by t(15;17) in patients with acute promyelocytic leukemia. PML colocalizes and 
associates in vivo with TopBP1 in response to ionizing radiation and both proteins colocalize 
with Rad50, BRCA1, ATM, Rad9 and BLM. PML plays a role in regulation of TopBP1 
functions by association and stabilization of the protein in response to IR-induced DNA 
damage (Xu et al., 2003). TICRR is required to prevent mitotic entry after treatment with 
ionizing radiation. TICRR deficiency is embryonic-lethal in the absence of exogenous DNA 
damage because it is essential for normal cell cycle progression. Specifically, the loss of 
TICRR impairs DNA replication and disrupts the S/M checkpoint, leading to premature 
mitotic entry and mitotic catastrophe. TICRR associates with TopBP1 in vivo and this 
interaction requires the two N-terminal BRCT domains. Sansam et al. (2010) showed that 
interaction between TICRR and TopBP1 is essential for replication preinitiation complex. 
TopBP1 is also involved in regulation of p53 activity. The regulation is mediated by an 
interaction between the seventh and eighth BRCT domains of TopBP1 and the DNA binding 
domain of p53, leading to inhibition of p53 promoter binding activity. Thus, TopBP1 may 
inhibit expression of several canonic p53 target genes including GADD45 (growth arrest and 
DNA damage protein 45), p21Cip1, PUMA (p53 upregulated modulator of apoptosis), NOXA, 
BAX (Bcl-2 associated X protein), IGFBP3 (insulin-like growth factor binding protein 3). The 
repression of p53 proapoptotic genes such as NOXA, PUMA and BAX suggests that TopBP1 
can inhibit p53-mediated apoptosis during DNA damage. Deregulation of this control may 
have pathological consequences (Liu et al., 2009). 
TopBP1 also plays a role in DNA replication and S phase progression. Expression of TopBP1 
mRNA and protein is induced concomitantly with S phase entry (Makiniemi et al., 2001). 
Neutralizing TopBP1 with a polyclonal antiserum raised against the sixth BRCT domain 
inhibits replicative DNA synthesis in HeLa cell nuclei in vitro. This may indicate that the 
sixth BRCT domain is critical for replication activity, possibly via interaction with crucial 
replication factors (Makiniemi et al., 2001; Schmidt et al., 2008). The physical interaction 
between TopBP1 and polymerase ε also implies an involvement of TopBP1 in replication 
(Makiniemi et al., 2001). The loading of Cdc45 (cell division cycle 45) onto chromatin is 
critical for loading various replication proteins, including DNA polymerase ǂ, DNA 
polymerase ε, RPA (replication protein A) and PCNA. Human TopBP1 recruits Cdc45 to 
origins of DNA replication and is required for the formation of the initiation complex of 
replication in human cells. The first, second and sixth BRCT domains of TopBP1 interact 
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with Cdc45 and this interaction inhibits transcriptional activity of TopBP1 (Schmidt et al., 
2008; Sokka et al., 2010). Both proteins interact exclusively at the G1/S boundary of cell 
cycle. Only weak interaction could be found at the G2/M boundary (Schmidt et al., 2008). 

6. TopBP1 and activation of ATR pathway 

The major regulators of DNA damage response are the phosphoinositide 3-kinase (PI3K)-
related proteins kinases (PIKKs), including ataxia telangiectasia mutated (ATM) and ATM 
and Rad3-related (ATR) (Cimprich & Cortez, 2008; Lopez-Contreras & Fernandez-Capetillo, 
2010; Takeishi et al., 2010). Other members of this family comprise mTOR (mammalian 
target of rapamycin), which coordinates protein synthesis and cell growth, DNA-PKcs 
(DNA-dependent protein kinase catalytic subunit), which promotes DNA double strand 
break repair by nonhomologous end-joining and SMG1, which regulates nonsense-mediated 
mRNA decay (Cimprich & Cortez, 2008; Mordes et al., 2008). PIKKs are large proteins  
(2549 – 4128 amino acids) with common domain architecture. All of them contain a large 
region of repeated HEAT (Huntington, elongation factor 3, PR65/A, TOR) domains in the N 
terminus, highly conserved C-terminal kinase domain flanked by FAT (FRAP, ATM, TRAP 
/FKBP-rapamycin associated protein, ATM, trp RNA binding attenuation protein) and 
FATC (FAT C terminus) and PIKK regulatory domain (PRD) between the kinase and FATC 
domains (Cimprich & Cortez, 2008; Lopez-Contreras & Fernandez-Capetillo, 2010; Mordes 
et al., 2008). PRD, poorly conserved between family members but highly conserved within 
orthologous present in different organisms, is not essential for basal kinase activity but plays 
a regulatory role in at least ATM, ATR and mTOR (Cimprich & Cortez, 2008). PRD of ATM 
and mTOR is targeted for post-translational modifications that regulate their activity 
(Cimprich & Cortez, 2008; Mordes et al., 2008). The N-terminal regions of the kinases 
mediate interaction with the protein cofactors (Cimprich & Cortez, 2008). ATM and ATR are 
proteins of about 300 kDa, with a conserved C-terminal catalytic domain that preferably 
phosphorylates serine or threonine residues followed by a glutamine, i.e. SQ or TQ motif 
(Choi et al., 2009; Smits et al., 2010). 
The initial step in ATR activation is recognition of DNA structures that are induced by the 
damaging agents (Smits et al., 2010). As mentioned, ATR responds to a wide variety of DNA 
damage that results in the generation of single-stranded DNA (ssDNA) (Takeishi et al., 
2010). In eukaryotes, DNA damage-induced ssDNA is first detected by ssDNA binding 
protein complex RPA (Fig. 3) (Smits et al., 2010). RPA is a heterotrimeric protein complex 
composed of three subunits with a size of 70, 30 and 14 kDa, which are known as RPA70, 
RPA32 and RPA14 or alternatively RPA1, RPA2 and RPA3, respectively (Binz et al., 2004; 
Broderick et al., 2010; Fanning et al., 2006). RPA is identified to be a crucial component in 
DNA replication, DNA recombination and DNA repair (Ball et al., 2007; Broderick et al., 
2010; Cimprich & Cortez, 2008). After binding to ssDNA either during DNA replication or in 
response to DNA damage, RPA is phosphorylated and this is thought to be an important 
event in DNA damage response (Binz et al., 2004; Broderick et al., 2010). Recent observations 
have shown the involvement of ATR in the RPA2 phosphorylation in response to stalled 
replication fork in S phase generated by genotoxic agents such as UV (Broderick et al., 2010; 
Olson et al., 2006).  
RPA-coated ssDNA is necessary for ATR activation, but it is not sufficient, as at least several 
additional factors are also required. This kinase forms a stable complex with ATRIP (ATR-
interacting protein) which regulates the localization of ATR to sites of replication stress and 
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DNA damage. Apart from ATRIP, activation of ATR requires the activator protein TopBP1 
which plays dual role in the initiation of DNA replication and DNA damage response 
(Mordes & Cortez, 2008). ATRIP was identified as a 85 kDa an ATR binding partner that 
interacts directly with RPA to dock the ATR-ATRIP complex onto ssDNA (Ball et al., 2007; 
Choi et al., 2010; Kim et al., 2005; Warmerdam & Kanaar, 2010; Yan & Michael, 2009a,b). 
Independently, the Rad17-RFC complex is loaded onto these sites of damage in RPA-
dependent manner (Burrows & Elledge, 2008; Lee & Dunphy, 2010). The Rad17-RFC 
complex consists of the Rad17 subunit and four additional subunits of replication factor C 
named from RFC2 to RFC5. During normal replication the RFC complex, containing RFC1 
instead of Rad17, plays a role in the loading of PCNA onto DNA. PCNA is a processivity 
factor for DNA polymerases. Both the Rad17 and RFC complexes require RPA for their 
loading onto DNA (Majka et al., 2006; Medhurst et al., 2008; Warmerdam & Kanaar, 2010). 
However, Rad17-RFC requires 5’ dsDNA-ssDNA junctions, rather than the 3’ ended 
junctions preferred by PCNA. These types of structures are specifically created by the 
resection of DSBs, stalled replication forks and UV-induced ssDNA gaps. The Rad17-RFC 
protein complex facilitates the loading of the Rad9-Rad1-Hus1 (9-1-1) sliding clamp onto the 
DNA (Choi et al., 2010; Lopez-Contreras & Fernandez-Capetillo, 2010; Van et al., 2010; 
Warmerdam & Kanaar, 2010; Yan & Michael, 2009a). The necessity of the 9-1-1 complex in 
the ATR branch was explained by showing that Rad9 recruits the ATR-activator TopBP1 
protein near sites of DNA damage, which was consistent with earlier reports showing 
interaction between Rad9 and TopBP1 protein (Greer et al., 2003; Makiniemi et al., 2001; 
Smits et al., 2010). The amino-terminal region of TopBP1 protein comprising BRCT1 and 
BRCT2 binds the C terminus of Rad9. More precisely, the interaction between Rad9 and 
TopBP1 depends on Ser373 phosphorylation in the C-terminal tail of Rad9 (Delacroix et al., 
2007; Kumagai et al., 2006; Lee et al., 2007; Rappas et al., 2011; Smits et al., 2010; Takeishi et 
al., 2010). Then, TopBP1 protein binds ATR through its ATR activation domain (AAD), 
located between the sixth and seventh BRCT repeats, in an ATRIP-dependent manner and 
this interaction is required for ATR stimulation (Kumagai et al, 2006; Mordes et al., 2008; 
Smits et al., 2010; Takeishi et al., 2010). ATRIP contains a conserved TopBP1 interacting 
region, required for the association of TopBP1 and ATR and the subsequent TopBP1-
mediated triggering of ATR activity (Mordes et al., 2008; Smits et al., 2010).  
ATR-mediated activation of Chk1 in response to genotoxic stress requires another protein 
that binds independently of ATR or Rad17/9-1-1 named Claspin (Kumagai et al., 2004; Liu 
et al., 2006b; Scorah & McGowan, 2009; Smits et al., 2010). Claspin is proposed to function as 
adaptor molecule bringing ATR and Chk1 together (Kumagai & Dunphy, 2000; Smits et al., 
2010). The Claspin-Chk1 interaction depends on ATR-mediated phosphorylation of Claspin 
and is required for Chk1 phosphorylation by ATR. Subsequent studies identified repeated 
phosphopeptide motifs in Claspin, which are required for association with phosphate 
binding sites in the N-terminal kinase domain of Chk1, resulting in full activation of Chk1 
(Smits et al., 2010). In response to DNA damage or replication stress activated ATR and its 
effectors such as Chk1 ultimately slow origin firing and induce cell cycle arrest, as well as 
stabilize and restart stalled replication forks (Cimprich & Cortez, 2008). 
The mechanism by which TopBP1 binding activates ATR is poorly defined. The primary 
binding site for the activation domain of TopBP1 on the ATR complex is within ATRIP and 
mutations in this region of ATRIP block activation (Cimprich & Cortez, 2008; Mordes et al., 
2008). In addition, activation involves amino acids that are located between the ATR kinase 
domain and the FATC domain, of PIKK regulatory domain - PRD of ATR. Mutations in this 
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region have no effect on the basal activity of ATR, although they prevent ATR activation by 
TopBP1 protein and cause checkpoint defects and mimic a complete deletion of ATR in human 
somatic cells (Cimprich & Cortez, 2008; Mordes et al., 2008). Thus, efficient activation of ATR 
by TopBP1 protein may be required to achieve sufficient signal amplification for the proper 
execution of cellular response to DNA damage (Sokka et al., 2010). 
 

 

Fig. 3. Role of TopBP1 in activation of ATR pathway in response to replication stress and 
UV-induced DNA damage 
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7. Role of TopBP1 in DSB repair 

TopBP1 protein also plays a direct and essential role in the pathway that connects ATM to 
ATR, specifically in response to the occurrence of DSBs in a genome (Yoo et al., 2007). DNA 
double strand breaks are among the most deleterious DNA lesions that threaten genomic 
integrity. DSBs are generated not only by exogenous DNA-damaging agents, but also by 
normal cellular processes, such as V(D)J recombination, meiosis and DNA replication. 
Furthermore, increased amounts of DSBs are induced by oncogenic stresses during the early 
stage at tumorigenesis (O’Driscoll & Jeggo, 2005; Shiotani & Zou, 2009; Williams et al., 2007). 
Two major forms of DSB repair are found within eukaryotic cells: nonhomologous end-
joining (NHEJ) and homologous recombination (HR). NHEJ requires several 
complementary bases for repair and is the predominant form of DSB repair in G0/G1 cells. 
During NHEJ DNA ends are minimally processed to reveal short stretches of 
complementarity on either side of the break. NHEJ pathway is inherently mutagenic. In 
contrast, HR pathway predominates during S and G2 phases and repairs DNA with high 
fidelity by employing homologous chromosomal or sister chromatid DNA as a template to 
synthesize new error-free DNA (Williams et al., 2007). The main PIKK that responds to 
DSBs is ATM, the protein that is defective in the hereditary disorder ataxia telangiectasia 
(O’Driscoll & Jeggo, 2005). DSBs are recognized by the MRE11-RAD50-NBS1 complex, 
which promotes the activation of ATM and the preparation of DNA ends for homologous 
recombination (Fig. 4) (Ciccia & Elledge, 2010; O’Driscoll & Jeggo, 2005; Williams et al., 
2007). RAD50 contains ATPase domains that interact with MRE11 (meiotic recombination 
11) and associates with the DNA ends. MRE11 has endonuclease and exonuclease activities 
important for the initial step of DNA end resection that is essential for homologous 
recombination (Ciccia & Elledge, 2010; Williams et al., 2007). The third subunit of the MRN 
complex, NBS1, interacts with MRE11 and contains additional protein-protein interaction 
domains important for MRN function in DNA damage response. NBS1 associates with ATM 
via its C-terminal region, which promotes the recruitment of ATM to DSBs, where ATM is 
activated by the MRN complex (Ciccia & Elledge, 2010; Jazayeri et al., 2008; Kanaar & 
Wyman, 2008; Rupnik et al., 2010). Mutations in the human NBS1 gene result in Nijmegen 
breakage syndrome (NBS), a rare disorder with abnormal responses to ionizing radiation 
that resemble those in patients with ataxia telangiectasia (Horton et al., 2011). DNA end 
resection is regulated by ATM through CtIP (C-terminal binding protein/CtBP interacting 
protein), which interacts with BRCA1 and MRN (Ciccia & Elledge, 2010). In addition, Exo1 
(exonuclease 1), which is involved in the processive stage of DSB resection together with BLM 
following the initial resection carried out by CtIP, is also stimulated by ATM phosphorylation 
(Bolderson et al., 2010; Ciccia & Elledge, 2010; Shiotani et al., 2009; Smits et al., 2010). DSB 
resection and formation of 3’ ssDNA ends leads to RPA accumulation. RPA-ssDNA complexes 
play a critical role in activation of ATR pathway, as described in detail above.  
TopBP1 protein appeared to be involved in ATR-dependent DSB repair. In human cells, DSB 

induces formation of distinct TopBP1 foci that colocalize with BRCA1, PCNA, NBS1, 53BP1 

and ǄH2AX (Germann et al., 2011). In vitro studies showed that in nuclear foci, TopBP1 

protein physically associates with NBS1. Several of TopBP1 foci increased and colocalized 

with NBS1 after ionizing radiation, whereas these nuclear foci were not observed in 

Nijmegen breakage syndrome cells. The association between TopBP1 and NBS1 involves the 

first pair of BRCT repeats in TopBP1. In addition the two tandem BRCT repeats of NBS1 are 

required for this binding. Functional studies with mutated forms of TopBP1 and NBS1 
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Fig. 4. Role of TopBP1 in ATR activation in response to DNA double strand breaks 

suggest that the BRCT-dependent association of these proteins is critical for normal 
checkpoint response to DSB (Morishima et al., 2007; Yoo et al., 2009). The MRN complex is a 
crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of 
ATR-ATRIP in response to DSBs (Morishima et al., 2007; Yoo et al., 2009). In Xenopus egg 
extracts, ATM associates with TopBP1 protein and phosphorylates it on Ser1131. This 
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phosphorylation enhances the capacity for TopBP1 protein to activate ATR-ATRIP (Yoo et 
al., 2009). Yoo et al. (2009) showed that ATM can no longer interact with TopBP1 protein in 
NBS1-depleted egg extracts. Thus, the MRN complex helps to bridge ATM and TopBP1 
together. ATM contributes to the activation of ATR through two collaborating mechanisms. 
First, ATM helps to create appropriate DNA structures that trigger activation of ATR. 
Second, ATM strongly stimulates the function of TopBP1 protein via its phosphorylation 
that directly carries out the ATR activation (Yoo et al., 2007). 

8. Conclusion 

DNA is continuously exposed to a range of damaging agents, including reactive cellular 
metabolites, environmental chemicals, ionizing radiation and UV light. To prevent loss or 
incorrect transmission of genetic information and development of abnormalities and 
tumorigenesis all cells have evolved DNA damage response pathways to maintain their 
genome integrity. The DNA damage response involves the sensing of DNA damage signal 
to a network of cellular pathways, including cell cycle checkpoint, DNA repair and 
apoptosis. TopBP1 protein was first identified as an interacting partner for topoisomerase 
IIǃ. This protein shares structural and functional similarities with BRCA1 and plays a critical 
role in the DNA damage response and checkpoint control. TopBP1 is essential for ATR 
activation in response to replication stress and UV-induced damage and also plays a direct 
role in the pathway that connects ATM to ATR in response to DSBs. The biological functions 
of TopBP1 protein, as well as its close relation with BRCA1 suggest a crucial role of TopBP1 
in the maintenance of genome integrity and cell cycle regulation. 
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