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1. Introduction  

Patients can be exposed to a variety of potentially life threatening acute inflammations 
mainly sepsis, which accounts to 9% of all death in the US. The prevalence of non-alcoholic 
fatty liver disease (NAFLD) is about 30% in the general population. Fatty liver is known to 
be more sensitive to endotoxins. It has been reported that metabolic aspects of sepsis and 
endotoxemia are suppression of the fatty acid beta-oxidation pathway and severe 
hypoglycemia. This can be due to lipotoxic effects following accumulation of free fatty acids 
in the liver and suppression of gluconeogenesis. In this chapter we will review the 
published facts about the development of hypoglycemic effects during sepsis and the 
possible connection of such an effect to the dysregulation of lipid metabolism. Secondly a 
possible redox related antilipotoxic cellular mechanism will be suggested. Such mechanism 
can alleviate the endotoxic hypoglycemic effect and is related to nitric oxide signaling. Nitric 
oxide signaling has been demonstrated to regulate the metabolic status of cells including 
upregulation of mitochondrial biogenesis, promoting liver glucose production and 
depending on the biological setting to protect cells against accumulation of oxidative 
damage, all possibly protect against development of hypoglycemia following liver injury.  

2. Non-alcoholic fatty liver disease 

2.1 Introduction  
Non-alcoholic fatty liver disease NAFLD comprises a spectrum of hepatic pathology, 
ranging from simple steatosis (SS), in which there is an increase of fat accumulation in 
hepatocytes, through steatohepatitis to cirrhosis (Farrell, GC et al., 2008). Primary NAFLD is 
associated with obesity, insulin resistance and metabolic syndrome, diabetes and 
dyslipidemia, while secondary NAFLD is associated with all forms of liver damage 
including viral infections autoimmune and heradetory disease, drugs, toxins and nutrition 

(parenteral nutrition , B12/folic acid deficiency etc.) (Musso, G et al., 2010) (Figure 1). 
Nonalcoholic steatohepatitis (NASH) is a progressive lesion in which steatosis is 
accompanied by hepatocyte injury and death, as well as hepatic infiltration by inflammatory 
cells. NASH-related liver damage often triggers liver fibrosis. In severe cases, NASH may 
progress to cirrhosis and possibly hepatocellular carcinoma (Lim, JH et al., 2006). NAFLD is 
one of the most common liver diseases worldwide, affecting all racial, ethnic, and age 
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groups without sex predilection. The prevalence of NAFLD is around  30 % of the general 
population (Musso, G et al., 2009; Musso, G et al., 2010), NASH affects about 3 percent of the 
lean population (those weighing less than 110 percent of their ideal body weight), 19 percent 
of the obese population, and almost half of morbidly obese people. It is estimated about that 
8.6 million obese adult Americans may have NASH and about 30.1 million may have the 
simple steatosis. Thus, the very high prevalence of fatty liver means that this disorder will 
contribute significantly to an increased burden of ill-health at the present and in the future 
(Farrell, GC et al., 2008). 
NAFLD refers to the presence of hepatic stetosis not associated with a significant intake of 
alcohol (Adams, LA & KD Lindor, 2007) and its incidence is paralleling the increasing 
numbers of overweight and obese individuals worldwide (Yan, E et al., 2007). When fat 
accounts for more than 10% of liver’s weight, then the condition is called fatty liver and it 
can develop more serious complications (American Liver Foundation). Fatty liver may cause 
no damage, but the excess fat leads to inflammation causing liver damage is refered to as 
steatohepatitis (American Liver Foundation). The term nonalcoholic steatohepatitis (NASH) 
was first coined by Ludwig et al at 1980 (Ludwig, J et al., 1980) describing the pathology of 
20 patients histologically similar with alcoholic hepatitis but without the history of alcohol 
abuse. Sometimes, inflammation from a fatty liver is linked to alcohol abuse; this is known 
as alcoholic steatohepatitis (ASH). Otherwise the condition is called NASH (American Liver 
Foundation). NAFLD comprises a spectrum of liver pathology including bland steatosis, 
steatohepatitis, cirrhosis (Yang, L & A Diehl, 2007) and hepatocellular carcinoma (Angulo, P, 
2007) where most liver related morbidity and mortality occur. The histological damage in 
NAFLD is very similar to that seen in patients with alcoholic liver disease (ALD), but 
NAFLD is by definition not alcohol induced (Angulo, P, 2007).  
NAFLD is the most common chronic liver disease in the western world (Adams, LA & KD 
Lindor, 2007). Sedentary lifestyle and poor dietary choices are leading to a weight gain 
epidemic in westernized countries, subsequently increasing the risk for developing the 
metabolic syndrome and NAFLD (Rector, RS et al., 2008). Although, NAFLD may be 
categorized as primary and secondary depending on the underlying pathogenesis both type 
of NAFLD can be interrelated (Figure 1). 
 

 

Fig. 1. Type and causes of NAFLD. Primary and secondary NAFLD may be interrelated. 
Induction of liver damage with may lead to fat accumulation in the liver  may exacerbate  
primary NAFLD under conditions of hyperlipidemic, on the other hand primary NAFLD 
can increase the vulnerability of the liver to different kind of stressors and damaging agents. 
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2.2 Epidemiology 

NAFLD is increasingly being recognized as an important and common condition, affecting 

approximately 20-45% of the general population (Joy, D et al., 2003) in different countries. It 

is estimated to affect approximately 30% of the general US population and is considered the 

hepatic manifestation of the metabolic syndrome (Rector, RS et al., 2008; Zivkovic, AM et al., 

2007). According to (Angulo, P, 2007), NAFLD affects one in three adults and one in 10 

children in the United States. Although NAFLD typically occurs between the fourth and six 

decades of life (Targher, G et al., 2007; Zhou, YJ et al., 2007), it is known to affect children as 

well as adults and is not considered discriminatory to age (Imhof, A et al., 2007; Zhou, YJ et 

al., 2007). Many studies have found a wide discrimination of NAFLD between the sexes 

(Amarapurkar, D et al., 2007; Zelber-Sagi, S et al., 2006).  

Among different ethnic groups, however, the picture becomes a bit more complicated. 

Browning et al (Browning, JD et al., 2004) reported that the prevalence of fatty liver was 

highest in Hispanics (45%) compared to Caucasians (33%) or African Americans (24%) 

which introduced the possibility of race related variability in the susceptibility to NAFLD. 

Furthermore, within specific race, such as Caucasians, sex-related differences in the presence 

of fatty liver (42% in men and 24% in women) had been observed, which indicates the risk 

factors for NAFLD may vary depending on ethnicity and sex (Browning et al, 2004).   

Among 3543 peoples, surveyed in South China, 609 (17.2%) were diagnosed having fatty 

liver disease (FLD, 23.0% in urban and 14.5% in rural) out of which prevalence of NAFLD 

was 15.5% (Zhou, YJ et al., 2007). In the same study, prevalence of FLD among the children 

at the age of 7-18 years was 1.3% with all having NAFLD. The prevalence and incidence of 

NAFLD is expected to increase worldwide as the global obesity epidemic spreads and the 

trend in developing countries toward the western lifestyle continues (Angulo, P, 2007). 

2.3 Clinical aspects of NAFLD 

Most patients with NAFLD have no symptoms or signs of liver disease at the time of 

diagnosis (Angulo, P & KD Lindor, 2002). NAFLD has been characterized with 

asymptomatic elevation of aminotransferases, radiological findings of fatty liver or 

unexplained persistent hepatomegaly (Angulo, P & KD Lindor, 2002). NAFLD patients may 

be complaint of fatigue or a sensation of fullness or discomfort in the right upper abdomen . 

Hepatomegaly is one of the more consistent physical findings, described in up to 75% of 

patients with NAFLD (Yan, E et al., 2007). Other findings on physical examination that may 

suggest NAFLD as the cause of liver abnormalities include those characterizing insulin 

resistance and metabolic syndrome, such as central obesity, hypertriglyceridemia, and 

hypertension (Yan, E et al., 2007).  

The most common and often the only laboratory abnormality found in NAFLD patients, is 

mild to moderate elevation of liver enzymes (Angulo, P, 2007; Angulo, P & KD Lindor, 2002) 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST): defined as ALT>45 

U/L, AST>45 U/L or γ Glutamyl transferase (GGT) >50 U/L (Hickman, I et al., 2008)In the 

patients with FLD, AST/ALT ratio is usually less than one, but this ratio increases as fibrosis 

advances (Angulo, P, 2007). A study on Japanese adults showed that triglycerides, total 

protein albumin, AST and ALT were all significantly higher while high density lipoprotein 

(HDL) cholesterol and AST/ALT ratio were significantly lower in subjects with NAFLD 

than those without fatty liver (Jimba, S et al., 2005).  
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3. Association of fatty liver with hypoglycemia 

3.1 Fatty acid oxidation defects 

Adipocytes have the unique capacity to store excess fatty acids in the form of TGs in lipid 
droplets. Non-adipose tissues, such as hepatocytes, cardiac myocytes and pancreatic beta-cells, 
have a limited capacity for lipid storage. In hyperlipidemic states, the accumulation of excess 
lipid in non-adipose tissues can lead to cellular dysfunction and/or cell death, a phenomenon 
known as lipotoxicity (Listenberger, LL et al., 2003; Unger, RH, 1995; Weinberg, JM, 2006). 
Most studies attribute strong lipiotoxic effects to free fatty acids (FFAs). Lipotoxic effects in the 
liver include disruption of liver-cell function (Alkhouri, N et al., 2009).  
The connection between increased levels of fatty acids to hypoglycemia is known in genetic 
diseases of fatty acid oxidation defects (Figure 2). Inherited defects in mitochondrial fatty- 
acid beta-oxidation comprise a group of at least 12 diseases characterized by distinct enzyme 
or transporter deficiencies. Most of these diseases have a variable age of onset and clinical 
severity. Symptoms are often episodic and associated with mild viral illness, physiologic  
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Fig. 2. Classical theory of how biochemical fatty acid oxidation defects generate 
hypoglycemic phenotype   
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stress, or prolonged exercise that overwhelms the ability of mitochondria to oxidize fatty 
acids. Depending on the specific genetic defect, patients develop fasting hypoketotic 
hypoglycemia, cardiomyopathy, rhabdomyolysis, liver dysfunction, or sudden death 
(Kompare, M & WB Rizzo, 2008). Medium-chain acyl-CoA deshydrogenase (MCAD) 
deficiency is the most frequent disorder of mitochondrial fatty acid oxidation (Baruteau, J et 
al., 2009), The pathophysiology of these diseases is still not completely understood, 
hampering optimal treatment (Houten, SM & RJ Wanders). Hypoglycemia as one major 
clinical sign in all fatty acid oxidation defects and occurs due to a reduced hepatic glucose 
output and an enhanced peripheral glucose uptake (Spiekerkoetter, U & PA Wood). A 
connection of such disorders-phenotype with metabolic derangement that are not 
necessarily related to genetic defected has been demonstrated recently via  the Sirtuins. 
Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation 
levels of metabolic enzymes, including acetyl coenzyme A synthetase 2. Mice lacking SIRT3 
exhibit hallmarks of fatty-acid oxidation disorders during fasting  (Hirschey, MD et al.).  

3.2 Liver regeneration 

The liver is known for its regenerative capacity. It is now well accepted that there are two 
physiological forms of regeneration in the liver as responses to different types of liver injury. 
The first line for regeneration are mature, normally quiescent adult hepatocytes. During mild 
liver injury due to drugs, toxins, resection, or acute viral diseases, hepatocytes are the main cell 
type to proliferate and regenerate the liver. The mature hepatocytes have relatively low 
proliferative capacity. The second line of defense are the progenitor cell population, that are 
activated when injury is severe, or when the mature hepatocytes can no longer regenerate the 
liver due to senescence or arrest (Riehle, KJ et al., 2011). The metabolic requirements of the 
generating liver form Partial hepatectomy (PH) of from liver damage are impressive. There is a 
need to activate Kupffer cells in order to initiate the regenerating cascade. For these reasons  
increased accumulation of insulin independent glucose utilization is needed which may cause 
plasma glucose utilization due to the high metabolic demend. Impaired regenerative capacity 
of fatty livers might promote the progression of nonalcoholic fatty liver disease (NAFLD). 
Partial hepatectomy (PH) activats oxidant-sensitive, growth-regulatory kinase cascades which 
is abnormal in fatty hepatocytes. The normal coordinated induction of Jun N-terminal kinases 
(Jnks) and extracellular regulated kinases (Erks) does not occur after PH in ob/ob mice.  This is 
associated with enhanced activation of Akt, which inhibits phosphoenolpyruvate 
carboxykinase (PEPCK) induction, causing severe hypoglycemia and increased lethality in the 
ob/ob group (Yang, SQ et al., 2001).  

4. Alcoholic liver injury 

4.1 Introduction 

The liver breaks down alcohol so that it can be eliminated from our body. When alcohol is 
over consumed than the liver can process, the resulting imbalance can injure the liver by 
interfering with its normal breakdown of proteins, fats, and carbohydrates (American Liver 
Foundation). ALD is a common consequence of long term alcohol abuse (Zeng, MD et al., 
2008) and represents a major cause of mortality and morbidity worldwide (Albano, E, 2008; 
Bergheim, I et al., 2005). ALD encompasses a broad spectrum of morphological features 
ranging from simple steatosis with minimal injury to more advanced stage liver injury, 
including alcoholic steatohepatitis, alcoholic fibrosis and alcoholic cirrhosis (Albano, E, 2008; 
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Zeng, MD et al., 2008). The risk of steatosis, inflammation and fibrosis are more common in 
alcoholics and increases with time and the amount of ethanol consumed (Vidali, M et al., 
2008).  

4.2 Clinical aspects of ALD 

Fatty liver, the most common syndrome of ALD, is characterized by the excessive 
accumulation of fat inside hepatocytes (Adachi, M & DA Brenner, 2005). Indeed the 
excessive fat accumulation in the hepatocytes is the most common and earliest response of 
the liver to chronic alcohol consumption (Song, Z et al., 2008). Morphological criteria of 
steatohepatitis are steatosis, ballooning of hepatocytes, pericellular fibrosis and 
inflammation (Denk, H et al., 2005). In an animal model of ALD, rats exposed 4 weeks to 
alcohol exhibited a significant increase in liver to body weight ratio, serum ALT levels and 
hepatic TNF- α compared to control group (Song, Z et al., 2008). Tabassum, F et al. 
(Tabassum, F et al., 2001) found that the levels of alkaline phosphate, ALT, protein and 
globulin were significantly increased in alcoholic males compared to control subjects. The 
AST/ALT ratio is significantly higher in ALD patients sometimes even higher than two 
(Adachi, M & DA Brenner, 2005). 

4.3 Ethanol metabolism and role of acetaldehyde 

There are multiple mechanisms for the development and progression of ALD (Figure 3) and 
many of these mechanisms interact to each other (Barve, A et al., 2008).  
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Fig. 3. Mechanisms for the development of non-alcoholic fatty liver disease  

ALD has a complex pathogenesis, in which acetaldehyde; the major ethanol metabolite 

plays a central role (Lieber, CS, 1997). Alcohol is primarily metabolized by the successive 

oxidative activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase 

(ALDH), Figure 4, (Hasse, J & L Matarese, 2004; Lumeng, L & DW Crabb, 2001). Ethanol is 

metabolized mainly in the hepatocytes in three different sites: cytosol, endoplasmic 

reticulum, peroxisome and mitochondria (De Minicis, S & DA Brenner, 2008). According to 

(Lieber, CS, 1997) the main pathway involves cytoplasmic ADH which catalyzes the 

oxidation of ethanol to acetaldehyde then oxidized to acetate by the mitochondrial ALDH. 

Most of acetate is released into the blood (Hasse, J & L Matarese, 2004). According to 

Novitskiy, G et al (Novitskiy, G et al., 2006) acetaldehyde enhances the formation of ROS. 

According to (Lieber, CS, 1997), sever toxic manifestations are produced by an accessory 
inducible pathway, the microsomal ethanol-oxidizing system (MEOS) in endoplasmic 
reticulum involving an ethanol-inducible CYP2E1 in which the oxidation of ethanol to 
acetaldehyde and acetate also leads to generation of ROS [hydroxyethyl free radicals, 
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hydrogen peroxides (H2O2) and super oxide anion (O2-)]. High reduced nicotinamide 
adenine dinucleotide (NADH) is produced due to alcohol metabolism leading to high 
NADH/NAD+ ratio which overrides the cell’s ability to maintain normal redox state (Hasse, 
J & L Matarese, 2004).  
The lactic acid cannot be converted into pyruvate due to lack of NAD+ leading to 
hyperlacticacedemia (Hasse and Matarese, 2004). They also reported that tricarboxylic acid 
cycle (TCA) is also diminished because; in one hand it requires a lot of NAD+ and on the 
other hand the excess NADH inhibits two regulatory enzymes isocitrate dehydrogenase and 
α-ketoglutarate dehydrogenase, as a consequence acetyl coenzyme A (CoA) is accumulated. 
The mitochondria in turn use hydrogen produced from the ethanol metabolism as a fuel 
source and all these activities lead to decreased fatty acid oxidation and accumulation of 
triglycerides in the hepatocytes (Hasse, J & L Matarese, 2004). They also reported that 
malnutrition can also occur in early alcoholic liver disease due to the suppression of TCA 
cycle coupled with decreased gluconeogenesis due to ethanol.  
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Fig. 4. Ethanol metabolism in hepatocytes. These mechanisms are potentially involved in 
oxidative stress production. Ethanol is metabolized in acetaldehyde and then transformed 
into acetate, as shown. 

Chronic ethanol consumption increases fatty acid synthesis by inducing the expression of 
lipogenic enzymes which are regulated by transcription factor SREBP (Adachi, M & DA 
Brenner, 2005). Chronic ethanol consumption significantly inhibits mitochondrial ALDH 
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activity while the rate of ethanol oxidation to acetaldehyde is even enhanced, resulting in 
striking increase in tissue and plasma levels of acetaldehyde which results in metabolic 
disturbances, such as hyperlactacidemia, acidosis, hyperglycemia, hyperuricemia and fatty 
liver (Lieber, CS, 1997). However, in many cases  Alcohol consumption can generate a life 
threatening hypoglycemia.  

5. ALD and hypoglycemia 

Alcohol consumption may have beneficial as well as deadly consequences. It is generally 
considered that alcohol consumption interferes with all three glucose sources and with the 
actions of the regulatory hormones. Chronic heavy drinkers often have insufficient dietary 
intake of glucose. Without eating, glycogen stores are exhausted in a few hours (Gordon, 
GG & CS Lieber, 1992). In addition, the body's glucose production is inhibited while alcohol 
is being metabolized (Sneyd, JGT, 1989). The combination of these effects can cause severe 
hypoglycemia 6 to 36 hours after the drinking episode (1).  Even in well-nourished people, 
alcohol can disturb blood sugar levels. Acute alcohol consumption, especially in 
combination with sugar, augments insulin secretion and causes temporary hypoglycemia 
(O'Keefe, SJ & V Marks, 1977). In addition, studies in healthy subjects and insulin-dependent 
diabetics  have shown that acute alcohol consumption can impair the hormonal response to 
hypoglycemia. Alcohol consumption can be especially harmful in people with a 
predisposition to hypoglycemia, such as patients who are being treated for diabetes. Alcohol 
can interfere with the management of diabetes in different ways. Acute as well as chronic 
alcohol consumption can alter the effectiveness of hypoglycemic medications. Treatment of 
diabetes by tight control of blood glucose levels is difficult in alcoholics, and both 
hypoglycemic and hyperglycemic episodes are common. In a Japanese study, alcoholics 
with diabetes had a significantly lower survival rate than other alcoholics (Judith Fradkin, 
MD, 1994). A recent meta analysis indicated beneficial effect of moderate alcohol 
consumption reduces the incidence of type 2 diabetes (T2D), however, binge drinking seems 
to increase the incidence. Acute intake of alcohol does not increase risk of hypoglycemia in 
diet treated subjects with T2D, only when sulphonylurea is co-administered. Long-term 
alcohol use seems to be associated with improved glycemic control in T2D probably due to 
improved insulin sensitivity (Pietraszek, A et al., 2010). The capacity of alcohol to shift its 
activity from beneficial to deleterious could be related to other factors that are related to 
impairment in lipid metabolism. 
ALD has been suspected known to generate the sudden death syndrome in alcoholic 
individuals. Two major factors have been considered contributory to ethanol-induced 
hypoglycaemia (Arky, RA & N Freinkel, 1966; Madison, LL, 1968) suppression of hepatic 
gluconeogenesis resulting from an increase in the NADH/NAD+ ratio accompanied by 
enhanced ethanol metabolism, and depletion of hepatic glycogen storage secondary to 
starvation. In cases of alcohol-related sudden deaths hydroxybutyrate levels are 
significantly elevated. Platia and Hsu (Platia, EV & TH Hsu, 1979)) described five non-
diabetic alcohol abusers with hypoglycaemic coma and ketoacidosis and contended that the 
combination of alcohol-related hypoglycaemia and ketoacidosis may be common.  
Part of the pathogenesis of the widely known syndrome of sudden death with hepatic fatty 
metamorphosis observed in alcohol abusers was described by Yuzuriha et al. (Yuzuriha, T et 
al., 1997), 11 subjects who died under such circumstances between 1987 and 1993 were 
scrutinized both for clinical and pathological data. Death occurred followed several days of 
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uninterrupted drinking often with little dietary intake. Most of these individuals suffered 
from severe hypoglycemia. The common hepatic pathology was the extensive appearance of 
numerous microvesicular fatty droplets in the hepatocytes together with varying degrees of 
macrovesicular fatty change; four subjects had an underlying cirrhosis. Death undoubtedly 
results from a variety of metabolic disturbances triggered by the combination of massive 
ethanol intake and starvation. The appearance of extensive microvesicular fatty change 
superimposed on macrovesicular fatty change was considered to be an associated 
phenomenon. The most striking findings in the liver were extensive microvesicular fatty 
change within hepatocyte and the presence of megamitochondria. 

6. Ischemic hepatitis 

Ischemic hepatitis also known Hypoxic hepatitis or shock liver, can be characterized by 
necrosis of the zone 3 hepatocytes and significant increase in serum aminotransferase levels. 
It is the consequence of multiorgan injury. Outcome is influenced by the severity of liver 
impairment and the etiology and severity of the basic disease (Fuhrmann, V et al., 2009).The 
syndrome occurs under conditions of clinical setting of cardiac, circulatory or respiratory 
failure. It is recognized as the most frequent cause of acute liver injury with a reported 
prevalence of up to 10% in the intensive care unit (Fuhrmann, V et al., 2010). Patients with 
ischemic hepatitis and vasopressor therapy have a significantly increased mortality risk in 
the medical intensive care unit population. Ischemic hepatitis causes several complications 
including spontaneous hypoglycemia which can be considered secondary to impairment of 
gluconeogenic response in the exhausted liver (Fuhrmann, V et al., 2010; Fuhrmann, V et al., 
2009; Nomura, T et al., 2009). 

7. Sepsis  

7.1 Introduction 
Definition "Systemic Inflammatory Response Syndrome or (SIRS) is evidence of the body's 
ongoing inflammatory response. When SIRS is suspected or known to be caused by an 
infection, this is sepsis. Severe sepsis occurs when sepsis leads to organ dysfunction, such as 
trouble breathing, coagulation or other blood abnormalities, decreased urine production, or 
altered mental status. If the organ dysfunction of severe sepsis is low blood pressure 
(hypotension), or insufficient blood flow (hypoperfusion) to one or more organs (causing, 
for example, lactic acidosis), this is septic shock. Sepsis can lead to multiple organ 
dysfunction syndrome (MODS) (formerly known as multiple organ failure), and death. 
Organ dysfunction results from local changes in blood flow, from sepsis-induced 
hypotension (< 90 mmHg or a reduction of ≥ 40 mmHg from baseline) and from diffuse 
intravascular coagulation, among other things. 
Sepsis can be defined as the body's response to an infection. An infection is caused by 
microorganisms or bacteria invading the body and can be limited to a particular body 
region or can be widespread in the bloodstream. Sepsis is acquired quickest with infections 
developed in surgery and physical contact with someone with sepsis. 
Bacteremia is the presence of viable bacteria in the bloodstream. Likewise, the terms viremia 
and fungemia simply refer to viruses and fungi in the bloodstream. These terms say nothing 
about the consequences this has on the body. For example, bacteria can be introduced into 
the bloodstream during toothbrushing. This form of bacteremia almost never causes 
problems in normal individuals. However, bacteremia associated with certain dental 
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procedures can cause bacterial infection of the heart valves (known as endocarditis) in high-
risk patients. Conversely, a systemic inflammatory response syndrome can occur in patients 
without the presence of infection, for example in those with burns, polytrauma, or the initial 
state in pancreatitis and chemical pneumonitis" (wikipedia). 
Severe sepsis is a significant cause of mortality worldwide. Current research estimates that 
more than 9% of all deaths in the US can be attributed to severe sepsis. Experimental 
evidence shows that the liver is an important target organ in the development of multiple 
organ dysfunction during sepsis (Koo, DJ et al., 1999; Koo, DJ et al., 2000). Due to its major 
role in metabolism and host-defense mechanisms, the liver is pivotal in participating in the 
systemic response to severe infection, because it contains the largest mass of resident 
macrophage Kupffer cells (KC) in the body, making up approximately 15% of the liver cells 
(Szabo, G et al., 2002). KC are highly relevant in the inflammatory response to bacterial 
infection and non-bacterial inflammation by 1) playing a major role in both clearance and 
detoxification, e.g. removal of LPS from the circulation (especially the portal vein) and 2) 
producing inflammatory mediators (Van Amersfoort, ES et al., 2003).  

8. Sepsis and hypoglycemia 

8.1 The use of intensive insulin therapy (IIT) to maintain normal blood glucose levels 
in septic patients 

At 2001 van den Berghe and colleagues published the clinical implications of tight 
euglycemic control (van den Berghe, G et al., 2001). This observation significantly and 
rapidly changed intensive care unit (ICU) practice. It has been suggested that insulin 
administered to maintain glucose at levels below 110 mg/dl decreased mortality, the 
incidence of infections, sepsis, and sepsis-associated multiorgan failure in surgical patients, 
reduced kidney injury, and accelerated weaning from mechanical ventilation and discharge 
from the ICU in medical patients. However, current evidences suggest that the tight 
euglycemic control which is implemented in intensive care units around the world could be 
detrimental. Increasing evidence suggest that tight euglycemic control is which is associated 
with development of hypoglycemia has detrimental outcomes (Brunkhorst, FM et al., 2008; 
Jeschke, MG et al., 2010).Therefore, In practice regulating blood glucose levels  is 
recommended to target glucose level below 8.3 mmol/L. This is indicated for the 
management of severe sepsis by the Surviving Sepsis guidelines (Orford, NR, 2006) 
The main problem with IIT is the risk of development of hypoglycemia. The recent trials 
reporting reduced morbidity and mortality in critically ill patients treated with IIT require 
careful examination, including the subsequent post-hoc analyses. An understanding of the 
molecular and metabolic mechanisms by which IIT may be beneficial and the evidence that 
it benefits patients with severe sepsis, and a review of the risks of hypoglycaemia are also 
necessary when deciding whether to implement IIT in severe sepsis. Patients with severe 
sepsis are likely to benefit from IIT based on metabolic effects and their prolonged stays in 
the intensive care unit. All together, The current evidence suggests IIT should be 
implemented, aiming for the lowest glycaemic range that can be safely achieved while 
avoiding hypoglycaemia. 

8.2 Development of hypoglycemia in septic patients without IIT 

The severity of sepsis is shown to correlate with the risk of sustaining hyperglycemia as well 

as critical hypoglycemia (Krinsley, JS, 2008). Hypoglycemia during hospitalization occurs in 
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patients with and without diabetes. In elderly hospitalized patients a predicted increase in-

hospital 3- and 6-month cumulative mortality has been documented (Kagansky, N et al., 

2003).  In addition, sepsis is 10 times more common in these patients than in non-

hypoglycemic patients. Previously, it has been shown that features of hepatitis and steatosis 

are the primary histological findings in the liver of patients dying from sepsis (Koskinas, J et 

al., 2008). The hypoglycemic effect due to fatty liver is also a known phenomenon in 

alcoholic patients and is related to the fatty liver sudden death syndrome (Denmark, LN, 

1993; Randall, B, 1980; Yuzuriha, T et al., 1997). Altogether, the accumulated data suggest 

that although fatty liver and inflammation can generate a phenotype of insulin resistance, it 

can also lead to severe hypoglycemic life-threatening situations in patients with steatosis 

and acute inflammation due to an increase in hepatic insulin sensitivity (Thompson, BT, 

2008; van der Crabben, SN et al., 2009). The mechanism(s) for hypoglycemia with sepsis is 

not well defined. Depleted glycogen stores, impaired gluconeogenesis and increased 

peripheral glucose utilization may all be contributing factors. Incubation of bacteria in fresh 

blood at room temperature does not increase the normal rate of breakdown of glucose 

suggesting that the hypoglycemia occurs in vivo by increased glucose utilization or by a 

decrease in glucose production. Hypoglycemia is an important sign of overwhelming sepsis 

(Miller, SI et al., 1980).  Fischer et al” have reported that hypoglycemic episodes in 

nondiabetics were associated with infection and septic shock. The majority of cases of 

hypoglycemia reported in their study were related to liver disease, infections, shock, 

pregnancy, neoplasia, or burns. Hypoglycemia was not the apparent cause of death in any 

patient, but the overall hospital mortality was 27 percent and was related to the degree of 

hypoglycemia and the number of risk factors for hypoglycemia (Fischer, KF et al., 1986).  

In 1991 Charles et al have studied the mechanism by which infection can lead to 

hypoglycemia. A hypermetabolic septic state was produced in rats by subcutaneous 

injections of live Escherichia coli.  Sepsis increased whole body glucose disposal by 53% 

under basal euglycemic conditions and this increase resulted from an enhanced rate of 

glucose removal by liver, spleen, lung, ileum, and skin.  In sepsis, the rate of non-insulin-

mediated glucose uptake (NIMGU) was46% higher than in nonseptic animals. Severe 

hypoglycemia (2 mmol/L) produced a relative insulin deficiency and decreased whole body 

glucose disposal in both septic and nonseptic animals by 53% to 56%. Compared with 

euglycemic insulinopenic animals. The decrease in blood glucose decreased glucose uptake 

by all tissues examined, except brain and heart. However, sepsis still increased glucose 

uptake by liver, spleen, lung, ileum, and skin (25% to SO%), compared with hypoglycemic 

nonseptic rats. Therefore, the conclusion of the study was that sepsis increases NIMGU 

under basal conditions due to an increased glucose uptake by macrophage-rich tissues, and 

that this enhanced rate is maintained during hypoglycemia (Lang, CH & C Dobrescu, 1991). 

It is therefore suggested that during sepsis there is increased glucose utilization by 
macrophages-rich tissues, which may lead to hypoglycemia. However, there is also a strong 
connection between the liver capacity to generate glucose and the development of 
hypoglycemia. A case report which connect hypoglycemia with sepsis and liver disease was 
reported at 1994 in Japan. A 78-year-old woman that was admitted to a hospital because of 
disturbance of consciousness. On admission, the body temperature was 35.5 degrees C and 
systolic blood pressure was 50 mmHg. Ascites and semicomatose consciousness were 
detected. Laboratory evaluation demonstrated the following values: leukocyte count 
38800/microliters, blood sugar 3 mg/l and arterial blood pH 6.9. Therapy with 
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catecholamine and antibiotics was started, but she expired 10 hours after admission. 
Bacteroides ovatus was detected from her blood. Autopsy findings disclosed the connection 
to advance liver disease  and indicated abscess and perforation of the uterus, and liver 
cirrhosis (Suzuki, A et al., 1994). It is known that Sepsis suppresses fatty acid oxidation, It 
has been reported that fatty acid oxidation is significantly suppressed under conditions of 
sepsis and endotoxemia. During the acute-phase response, fatty acid oxidation decrease is 
associated with hypertriglyceridemia. LPS was demonstrated to suppress FFAs oxidation, 
and consequently contributes to elevated plasma levels of FFAs and TGs. LPS suppresses 
FFAs oxidation through decreasing the expression levels of key FFA oxidative genes 
including CPT-1 and MCAD in both liver and kidney tissues. LPS has been shown to 
selectively suppress the levels of PPARalpha and PGC-1alpha in tissues (Maitra, U et al., 
2009). The decrease was rapid and occurred at very low doses of LPS. Similar decreases in 
levels of these genes occurred during zymosan- and turpentine-induced inflammation, 
indicating that suppression of the PGC-1alpha, and medium chain acyl coA dehydrogenase 
pathway is a general response during infection and inflammation (Kim, MS et al., 2005). We 
have demonstrated in a model of liver steatosis and endotoxemia that the expression of 
gluconeogenic enzymes and gluconeogenesis are strongly suppressed. This was 
accompanied with lowered blood glucose levels. The treated mice had a phenotype of 
insulin sensitivity with decreased blood insulin levels (Tirosh, O et al., 2010). Therefore, the 
effect of free fatty acids and triglycerids on expression of key gluconeogenic enzymes was 
studied. The effect of exposing hepatocytes to free fatty acids was to suppress the inducible 
expression of gluconeogenic enzymes Figure 5 and Figure 6. 
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Fig. 5. Inhibition of gluconeogenic response by free FAs in FaO cells. FaO cells were 

cultured and pre-treated with FAs mixture (2:1 oleate/palmitate with 1% BSA) or with FAs-

Br mixture (2:1 oleate/2-Bromopalmitate with 1% BSA) to final concentration of 1mM FAs. 

After that, dexamethasone (1μM) was added to cells media for 6 hours. mRNA expression 

levels of PEPCK was measured by quantitative real-time RT-PCR. Means with different 

letters differ at P<0.05. 
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Fig. 6. Fat accumulation in FaO cultures. FaO cells were cultured and exposed to FAs 
mixture (2:1 oleate/palmitate with 1% BSA) at different concentrations for 18 hours (A) or to 
final concentration of 1mM FAs for different times (B). Alternatively, FaO cells were 
cultured and exposed to FAs mixture (2:1 oleate/palmitate with 1% BSA) or to FAs-Br 
mixture (2:1 oleate/2-Bromopalmitate with 1% BSA) to final concentration of 1mM FAs (C). 
After that, cells were stained with Nile-Red and fluorescence was examined by FACS 
analysis. Means with different letters differ at P<0.05.  
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The mechanism for the development of hypoglycemia during sepsis and the lipid 
connection can be therefore explained by the following figure 7: 
 

 

Fig. 7. LPS and bacteria facilitate 1 ) non-insulin-mediated glucose uptake 2) release of 
triglycerides and suppression of beta-oxidation in hepatocytes therefore elevating the FFA 
levels. This results in suppression of liver glucose output capacity. The results is 
hypoglycemia. 

9. Nitric oxide as a potential antihypoglycemic agent 

9.1 Nitric oxide involvement in liver damage and sepsis 

One of the main effects of the inflammatory response in the liver is an increase in the levels 

of inducible nitric oxide synthase (iNOS). Therefore, it has been postulated that nitric oxide 

(NO) would contribute to hepatotoxicity through inhibition of ATP synthesis, increased 

reactive oxygen species (ROS), and the inability to adapt to hypoxic stress (Mantena, SK et 

al., 2008). Other studies imply that decreased production of NO from endothelial nitric 

oxide synthase (eNOS) contributes to liver pathology via dysregulation of blood flow and 

oxygen delivery (Liu, J & MP Waalkes, 2005). Furthermore, in iNOS knockout mice, 

hepatocytes undergo necrosis and apoptosis after PH, indicating that the production of NO 

is essential to protect hepatocytes from death after liver resection (Rai, RM et al., 1998).  We 

have demonstrated that a decreased in eNOS expression precedes formation of liver damage 
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following intensive blood infusion of triglycerides (TGs) in rats (Tirosh, O et al., 2009). Thus, 

it appears that NO can be both toxic or protective, depending on the acute physicological 

environment in the liver. 

In the case of sepsis, there are also contractory reports concerning the role of NO.  Although 
it has been suggested that NO is a mediator of organ dysfunction, different opinions suggest 
a protective role of NO in sepsis. Indeed, numerous reports of benefits associated with NO 
donor administration in clinical and preclinical studies of sepsis have been published 
(Lamontagne, F et al., 2008). Obesity increases sensitivity to endotoxin liver injury. It is 
known that fatty liver sensitivity to acute inflammation injury is much higher compared to 
normal livers (Yang, SQ et al., 1997). Our published studies in a mouse model of fatty liver 
and endotoxemia demonstrated a significant protective role for iNOS expression. iNOS(-/-) 
mice were found to be more sensitive to liver damage thereby supporting the hypothesis 
that iNOS has a protective effect.  Additionally, iNOS(-/-) mice with fatty liver suffered 
from severe fatal hypoglycemia after endotoxic treatment (Tirosh, O et al., 2010).  

9.2 Hyperglycemia or hypoglycemia: A paradox of inflammation, and the involvement 
of nitric oxide  

Along with a rising prevalence of non-alcoholic fatty liver disease (NAFLD), there is a 

marked increase in individuals suffering from metabolic impairments.  One widespread 

imbalance is the insulin resistance syndrome or metabolic syndrome which refers to a 

constellation of symptoms, including glucose intolerance, obesity, dyslipidemia, and 

hypertension. This syndrome is known to promote the development of type 2 diabetes, 

cardiovascular disease, cancer, and other disorders. The liver plays a major role in the 

regulation of glucose, lipid and energy metabolism, which are tightly regulated by insulin 

(Leclercq, IA et al., 2007; Raddatz, D & G Ramadori, 2007). In addition, insulin resistance is 

now recognized as a pathological factor in the development of NAFLD (Leclercq, IA et al., 

2007; Raddatz, D & G Ramadori, 2007). It has been suggested that prolonged elevation of the 

levels of sterol regulatory element binding proteins (SREBPs) is responsible for inhibition of 

insulin signaling in fatty liver (Shimano, H, 2007) and that the intracellular accumulation of 

lipids-namely, diacylglycerol-triggers activation of novel protein kinases C(PKC ) with 

subsequent impairments in insulin signaling (Samuel, VT et al.). Hepatic insulin resistance 

can be defined as the failure of insulin to adequately suppress hepatic glucose production 

(Weickert, MO & AF Pfeiffer, 2006). 

Several studies indicate the involvement of inflammatory activation in the development of 

hepatic and peripheral insulin resistance (Cai, D et al., 2005). On the other hand, acute 

inflammation induced by lipopolysaccharides (LPS) facilitates a hypoglycemic effect and 

impairment of hepatic Glucose-6 phosphatase (G6Pase) expression (Lo, YC et al., 2004; 

Maitra, SR et al., 1999; Oguri, S et al., 2002). Indeed, as metioned above in critically ill 

patients, sepsis-induced hypoglycemia is a well known event (van der Crabben, SN et al., 

2009). We showed by temporal kinetics that the rapid induction of iNOS played a role in 

counteracting hypoglycemic effect of LPS and lipids rather than exacerbating it (Tirosh, O et 

al.). NO had a direct stimulatory effect promoting liver glucose production, making iNOS 

expression necessary for survival. Experiments performed with the NO donor DETA-

NONOate in cultured hepatocytes showed a positive effect of NO on expression of 

gluconeogenic enzymes.  Our data indicate that NO generated by the iNOS protein can 

support the expression of PGC 1alpha and liver gluconeogenic genes during acute 
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inflammation. We believe that this effect is mediated by NO’s capacity to promote the 

removal of free fatty acids (FFAs). Indeed, NO was found to act as a signaling molecule that 

can activate the transcription factor co-activator PGC 1alpha facilitating mitochondrial 

biogenesis (Nisoli, E & MO Carruba, 2006; Nisoli, E et al., 2007).  

Our results that nitric oxide produced during the acute inflammatory process in fatty liver 
promotes PGC1 expression and liver glucose production supports the hypothesis that it acts 
as an antihypoglycemic factor. The lipotoxicity during acute inflammation in the fatty liver 
is manifested by increased oxidative stress and lipid peroxidation and therefore NO also 
function as an antioxidant (Kanner, J et al., 1991; Kanner, J et al., 1992; Volk, J et al., 2009) 
protecting the liver. Therefore, NO derived from inducible nitric oxide synthase (iNOS) may 
paradoxically function as an antioxidant protecting fatty liver during acute inflammation.  
This phenomenon is probably quite the reverse of the reactive nitrogen species and ROS 
effect in long term chronic inflammation which leads to liver cirrhosis (Wei, CL et al., 2005).   

10. Acknowledgment 

I would like to thank My Ph.D. Student Noga Budick-Harmelin for performing the 
experiments with FaO hepatocytes treated with fatty acid mix (Fig. 5 and 6). I thank also my 
student khem Bahadur Adhikari for his writing help. 

11. References 

Adachi, M., & Brenner, D.A. 2005. Clinical syndromes of alcoholic liver disease. Dig Dis. 

23:255-63. 

Adams, L.A., & Lindor, K.D. 2007. Nonalcoholic fatty liver disease. Ann Epidemiol. 17:863-9. 

Albano, E. 2008. Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol 

Aspects Med. 29:9-16. 

Alkhouri, N., Dixon, L.J., & Feldstein, A.E. 2009. Lipotoxicity in nonalcoholic fatty liver 

disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol. 3:445-51. 

Amarapurkar, D., Kamani, P., Patel, N., Gupte, P., Kumar, P., Agal, S., Baijal, R., Lala, S., 

Chaudhary, D., & Deshpande, A. 2007. Prevalence of non-alcoholic fatty liver 

disease: population based study. Ann Hepatol. 6:161-3. 

Angulo, P. 2007. Obesity and nonalcoholic fatty liver disease. Nutr Rev. 65:S57-63. 

Angulo, P., & Lindor, K.D. 2002. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 17 

Suppl:S186-90. 

Arky, R.A., & Freinkel, N. 1966. Alcohol hypoglycemia. V. Alcohol infusion to test 

gluconeogenesis in starvation, with special reference to obesity. N Engl J Med. 

274:426-33. 

Baruteau, J., Levade, T., Redonnet-Vernhet, I., Mesli, S., Bloom, M.C., & Broue, P. 2009. 

Hypoketotic hypoglycemia with myolysis and hypoparathyroidism: an unusual 

association in medium chain acyl-CoA desydrogenase deficiency (MCADD). J 

Pediatr Endocrinol Metab. 22:1175-7. 

Barve, A., Khan, R., Marsano, L., Ravindra, K.V., & McClain, C. 2008. Treatment of alcoholic 

liver disease. Ann Hepatol. 7:5-15. 

Bergheim, I., McClain, C.J., & Arteel, G.E. 2005. Treatment of alcoholic liver disease. Dig Dis. 

23:275-84. 

www.intechopen.com



 
Inflammation and Hypoglycemia: The Lipid Connection 

 

111 

Browning, J.D., Szczepaniak, L.S., Dobbins, R., Nuremberg, P., Horton, J.D., Cohen, J.C., 

Grundy, S.M., & Hobbs, H.H. 2004. Prevalence of hepatic steatosis in an urban 

population in the United States: impact of ethnicity. Hepatology. 40:1387-95. 

Brunkhorst, F.M., Engel, C., Bloos, F., Meier-Hellmann, A., Ragaller, M., Weiler, N., Moerer, 

O., Gruendling, M., Oppert, M., Grond, S., Olthoff, D., Jaschinski, U., John, S., 

Rossaint, R., Welte, T., Schaefer, M., Kern, P., Kuhnt, E., Kiehntopf, M., Hartog, C., 

Natanson, C., Loeffler, M., & Reinhart, K. 2008. Intensive insulin therapy and 

pentastarch resuscitation in severe sepsis. N Engl J Med. 358:125-39. 

Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., & Shoelson, S.E. 2005. 

Local and systemic insulin resistance resulting from hepatic activation of IKK-beta 

and NF-kappaB. Nat Med. 11:183-90. 

De Minicis, S., & Brenner, D.A. 2008. Oxidative stress in alcoholic liver disease: role of 

NADPH oxidase complex. J Gastroenterol Hepatol. 23 Suppl 1:S98-103. 

Denk, H., Stumptner, C., Fuchsbichler, A., & Zatloukal, K. 2005. [Alcoholic and non-

alcoholic steatohepatitis]. Verh Dtsch Ges Pathol. 89:137-43. 

Denmark, L.N. 1993. The investigation of beta-hydroxybutyrate as a marker for sudden 

death due to hypoglycemia in alcoholics. Forensic Sci Int. 62:225-32. 

Farrell, G.C., Teoh, N.C., & McCuskey, R.S. 2008. Hepatic microcirculation in fatty liver 

disease. Anat Rec (Hoboken). 291:684-92. 

Fischer, K.F., Lees, J.A., & Newman, J.H. 1986. Hypoglycemia in hospitalized patients. 

Causes and outcomes. N Engl J Med. 315:1245-50. 

Fuhrmann, V., Jager, B., Zubkova, A., & Drolz, A. 2010. Hypoxic hepatitis - epidemiology, 

pathophysiology and clinical management. Wien Klin Wochenschr. 122:129-39. 

Fuhrmann, V., Kneidinger, N., Herkner, H., Heinz, G., Nikfardjam, M., Bojic, A., 

Schellongowski, P., Angermayr, B., Kitzberger, R., Warszawska, J., Holzinger, U., 

Schenk, P., & Madl, C. 2009. Hypoxic hepatitis: underlying conditions and risk 

factors for mortality in critically ill patients. Intensive Care Med. 35:1397-405. 

Gordon, G.G., & Lieber, C.S. 1992. Alcohol, hormones, and metabolism. New York: Plenum 

Publishing Corp. 55-90 pp. 

Hasse, J., & Matarese, L. 2004. Medical nutrition therapy for liver, biliary system, and 

exocrine pancreas disorders. Elsevier, Philadelphia, . 738-67 pp. 

Hickman, I., Russell, A., Prins, J., Macdonald, G., & 2008. Should patient with type 2 

diabetes and raised liver enzymes be referred for further evaluation of liver 

disease? Diabetes. In Res and Clin Prac [serial online]. Vol. .Available at 

www.sciencedirect.com . ;80:e10-e12. 

Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, 

C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., Stevens, R.D., Li, Y., Saha, A.K., 

Ruderman, N.B., Bain, J.R., Newgard, C.B., Farese, R.V., Jr., Alt, F.W., Kahn, C.R., & 

Verdin, E. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible 

enzyme deacetylation. Nature. 464:121-5. 

Houten, S.M., & Wanders, R.J. 2010. A general introduction to the biochemistry of 

mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 

www.intechopen.com



 
Diabetes – Damages and Treatments 

 

112 

Imhof, A., Kratzer, W., Boehm, B., Meitinger, K., Trischler, G., Steinbach, G., Piechotowski, 

I., & Koenig, W. 2007. Prevalence of non-alcoholic fatty liver and characteristics in 

overweight adolescents in the general population. Eur J Epidemiol. 22:889-97. 

Jeschke, M.G., Kraft, R., Emdad, F., Kulp, G.A., Williams, F.N., & Herndon, D.N. 2010. 

Glucose control in severely thermally injured pediatric patients: what glucose range 

should be the target? Ann Surg. 252:521-7; discussion 527-8. 

Jimba, S., Nakagami, T., Takahashi, M., Wakamatsu, T., Hirota, Y., Iwamoto, Y., & Wasada, 

T. 2005. Prevalence of non-alcoholic fatty liver disease and its association with 

impaired glucose metabolism in Japanese adults. Diabet Med. 22:1141-5. 

Joy, D., Thava, V.R., & Scott, B.B. 2003. Diagnosis of fatty liver disease: is biopsy necessary? 

Eur J Gastroenterol Hepatol. 15:539-43. 

Judith Fradkin, M.D. 1994. Alcohol Alert. Vol. (National Institute on Alcohol Abuse and 

Alcoholism Health, N.I.o.A.A.a.A.o.t.N.I.o., editor. 

Kagansky, N., Levy, S., Rimon, E., Cojocaru, L., Fridman, A., Ozer, Z., & Knobler, H. 2003. 

Hypoglycemia as a predictor of mortality in hospitalized elderly patients. Arch 

Intern Med. 163:1825-9. 

Kanner, J., Harel, S., & Granit, R. 1991. Nitric oxide as an antioxidant. Arch Biochem Biophys. 

289:130-6. 

Kanner, J., Harel, S., & Granit, R. 1992. Nitric oxide, an inhibitor of lipid oxidation by 

lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 27:46-9. 

Kim, M.S., Shigenaga, J.K., Moser, A.H., Feingold, K.R., & Grunfeld, C. 2005. Suppression of 

estrogen-related receptor alpha and medium-chain acyl-coenzyme A 

dehydrogenase in the acute-phase response. J Lipid Res. 46:2282-8. 

Kompare, M., & Rizzo, W.B. 2008. Mitochondrial fatty-acid oxidation disorders. Semin 

Pediatr Neurol. 15:140-9. 

Koo, D.J., Chaudry, I.H., & Wang, P. 1999. Kupffer cells are responsible for producing 

inflammatory cytokines and hepatocellular dysfunction during early sepsis. J Surg 

Res. 83:151-7. 

Koo, D.J., Chaudry, I.H., & Wang, P. 2000. Mechanism of hepatocellular dysfunction during 

sepsis: the role of gut-derived norepinephrine (review). Int J Mol Med. 5:457-65. 

Koskinas, J., Gomatos, I.P., Tiniakos, D.G., Memos, N., Boutsikou, M., Garatzioti, A., 

Archimandritis, A., & Betrosian, A. 2008. Liver histology in ICU patients dying 

from sepsis: a clinico-pathological study. World J Gastroenterol. 14:1389-93. 

Krinsley, J.S. 2008. The severity of sepsis: yet another factor influencing glycemic control. 

Crit Care. 12:194. 

Lamontagne, F., Meade, M., Ondiveeran, H.K., Lesur, O., & Robichaud, A.E. 2008. Nitric 

oxide donors in sepsis: a systematic review of clinical and in vivo preclinical data. 

Shock. 30:653-9. 

Lang, C.H., & Dobrescu, C. 1991. Sepsis-induced increases in glucose uptake by 

macrophage-rich tissues persist during hypoglycemia. Metabolism. 40:585-93. 

Leclercq, I.A., Da Silva Morais, A., Schroyen, B., Van Hul, N., & Geerts, A. 2007. Insulin 

resistance in hepatocytes and sinusoidal liver cells: Mechanisms and 

consequences>. J Hepatol. 47:142-56. 

Lieber, C.S. 1997. Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta. 257:59-84. 

www.intechopen.com



 
Inflammation and Hypoglycemia: The Lipid Connection 

 

113 

Lim, J.H., Lee, J.C., Lee, Y.H., Choi, I.Y., Oh, Y.K., Kim, H.S., Park, J.S., & Kim, W.K. 2006. 

Simvastatin prevents oxygen and glucose deprivation/reoxygenation-induced 

death of cortical neurons by reducing the production and toxicity of 4-hydroxy-2E-

nonenal. J Neurochem. 97:140-50. 

Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Jr., Ory, D.S., & Schaffer, J.E. 

2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. 

Proc Natl Acad Sci U S A. 100:3077-82. 

Liu, J., & Waalkes, M.P. 2005. Nitric oxide and chemically induced hepatotoxicity: beneficial 

effects of the liver-selective nitric oxide donor, V-PYRRO/NO. Toxicology. 208:289-

97. 

Lo, Y.C., Wang, C.C., Shen, K.P., Wu, B.N., Yu, K.L., & Chen, I.J. 2004. Urgosedin inhibits 

hypotension, hypoglycemia, and pro-inflammatory mediators induced by 

lipopolysaccharide. J Cardiovasc Pharmacol. 44:363-71. 

Ludwig, J., Viggiano, T.R., McGill, D.B., & Oh, B.J. 1980. Nonalcoholic steatohepatitis: Mayo 

Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 55:434-8. 

Lumeng, L., & Crabb, D.W. 2001. Alcoholic liver disease. Curr Opin Gastroenterol. 17:211-20. 

Madison, L.L. 1968. Ethanol-induced hypoglycemia. Adv Metab Disord. 3:85-109. 

Maitra, S.R., Gestring, M.L., El-Maghrabi, M.R., Lang, C.H., & Henry, M.C. 1999. Endotoxin-

induced alterations in hepatic glucose-6-phosphatase activity and gene expression. 

Mol Cell Biochem. 196:79-83. 

Maitra, U., Chang, S., Singh, N., & Li, L. 2009. Molecular mechanism underlying the 

suppression of lipid oxidation during endotoxemia. Mol Immunol. 47:420-5. 

Mantena, S.K., King, A.L., Andringa, K.K., Eccleston, H.B., & Bailey, S.M. 2008. 

Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and 

obesity-induced fatty liver diseases. Free Radic Biol Med. 44:1259-72. 

Miller, S.I., Wallace, R.J., Jr., Musher, D.M., Septimus, E.J., Kohl, S., & Baughn, R.E. 1980. 

Hypoglycemia as a manifestation of sepsis. Am J Med. 68:649-54. 

Musso, G., Gambino, R., & Cassader, M. 2009. Non-alcoholic fatty liver disease from 

pathogenesis to management: an update. Obes Rev. 

Musso, G., Gambino, R., & Cassader, M. 2010. Non-alcoholic fatty liver disease from 

pathogenesis to management: an update. Obes Rev. 11:430-45. 

Nisoli, E., & Carruba, M.O. 2006. Nitric oxide and mitochondrial biogenesis. J Cell Sci. 

119:2855-62. 

Nisoli, E., Clementi, E., Carruba, M.O., & Moncada, S. 2007. Defective mitochondrial 

biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? 

Circ Res. 100:795-806. 

Nomura, T., Keira, N., Urakabe, Y., Naito, D., Nakayama, M., Kido, A., Kanemasa, H., 

Matsubara, H., & Tatsumi, T. 2009. Chronic pericardial constriction induced severe 

ischemic hepatitis manifesting as hypoglycemic attack. Circ J. 73:183-6. 

Novitskiy, G., Traore, K., Wang, L., Trush, M.A., & Mezey, E. 2006. Effects of ethanol and 

acetaldehyde on reactive oxygen species production in rat hepatic stellate cells. 

Alcohol Clin Exp Res. 30:1429-35. 

O'Keefe, S.J., & Marks, V. 1977. Lunchtime gin and tonic a cause of reactive hypoglycaemia. 

Lancet. 1:1286-8. 

www.intechopen.com



 
Diabetes – Damages and Treatments 

 

114 

Oguri, S., Motegi, K., Iwakura, Y., & Endo, Y. 2002. Primary role of interleukin-1 alpha and 

interleukin-1 beta in lipopolysaccharide-induced hypoglycemia in mice. Clin Diagn 

Lab Immunol. 9:1307-12. 

Orford, N.R. 2006. Intensive insulin therapy in septic shock. Crit Care Resusc. 8:230-4. 

Pietraszek, A., Gregersen, S., & Hermansen, K. 2010. Alcohol and type 2 diabetes. A review. 

Nutr Metab Cardiovasc Dis. 

Platia, E.V., & Hsu, T.H. 1979. Hypoglycemic coma with ketoacidosis in nondiabetic 

alcoholics. West J Med. 131:270-6. 

Raddatz, D., & Ramadori, G. 2007. Carbohydrate metabolism and the liver: actual aspects 

from physiology and disease. Z Gastroenterol. 45:51-62. 

Rai, R.M., Lee, F.Y., Rosen, A., Yang, S.Q., Lin, H.Z., Koteish, A., Liew, F.Y., Zaragoza, C., 

Lowenstein, C., & Diehl, A.M. 1998. Impaired liver regeneration in inducible nitric 

oxide synthasedeficient mice. Proc Natl Acad Sci U S A. 95:13829-34. 

Randall, B. 1980. Fatty liver and sudden death. A review. Hum Pathol. 11:147-53. 

Rector, R.S., Thyfault, J.P., Wei, Y., & Ibdah, J.A. 2008. Non-alcoholic fatty liver disease and 

the metabolic syndrome: an update. World J Gastroenterol. 14:185-92. 

Riehle, K.J., Dan, Y.Y., Campbell, J.S., & Fausto, N. 2011. New concepts in liver regeneration. 

J Gastroenterol Hepatol. 26 Suppl 1:203-12. 

Samuel, V.T., Petersen, K.F., & Shulman, G.I. 2010. Lipid-induced insulin resistance: 

unravelling the mechanism. Lancet. 375:2267-77. 

Shimano, H. 2007. SREBP-1c and TFE3, energy transcription factors that regulate hepatic 

insulin signaling. J Mol Med. 85:437-44. 

Sneyd, J.G.T. 1989. Interactions of ethanol and carbohydrate metabolism. Boca Raton, FL: 

CRC Press, . 115-124 pp. 

Song, Z., Zhou, Z., Deaciuc, I., Chen, T., & McClain, C.J. 2008. Inhibition of adiponectin 

production by homocysteine: a potential mechanism for alcoholic liver disease. 

Hepatology. 47:867-79. 

Spiekerkoetter, U., & Wood, P.A. 2010. Mitochondrial fatty acid oxidation disorders: 

pathophysiological studies in mouse models. J Inherit Metab Dis. 

Suzuki, A., Uno, M., Arima, K., Obana, M., Matsuoka, Y., Irimajiri, S., & Fukuda, J. 1994. [A 
case report: sepsis associated with hypoglycemia]. Kansenshogaku Zasshi. 68:986-9. 

Szabo, G., Romics, L., Jr., & Frendl, G. 2002. Liver in sepsis and systemic inflammatory 

response syndrome. Clin Liver Dis. 6:1045-66, x. 

Tabassum, F., Khurshid, R., Karim, S., & Akhtar, M.S. 2001. Metabolic effects of alcoholism 

and its relationship with alcoholic liver disease. J Ayub Med Coll Abbottabad. 13:19-

21. 

Targher, G., Bertolini, L., Padovani, R., Rodella, S., Tessari, R., Zenari, L., Day, C., & Arcaro, 
G. 2007. Prevalence of nonalcoholic fatty liver disease and its association with 
cardiovascular disease among type 2 diabetic patients. Diabetes Care. 30:1212-8. 

Thompson, B.T. 2008. Glucose control in sepsis. Clin Chest Med. 29:713-20, x. 

Tirosh, O., Artan, A., Aharoni-Simon, M., Ramadori, G., & Madar, Z. 2010. Impaired liver 

glucose production in a murine model of steatosis and endotoxemia: protection by 

inducible nitric oxide synthase. Antioxid Redox Signal. 13:13-26. 

www.intechopen.com



 
Inflammation and Hypoglycemia: The Lipid Connection 

 

115 

Tirosh, O., Ilan, E., Budick-harmelin, N., Ramadori, G., & Madar, Z. 2009. Down regulation 

of eNOS in a nutritional model of fatty liver. e-SPEN. 4(2):e101-e104. 

Unger, R.H. 1995. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic 

and clinical implications. Diabetes. 44:863-70. 

Van Amersfoort, E.S., Van Berkel, T.J., & Kuiper, J. 2003. Receptors, mediators, and 

mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 

16:379-414. 

van den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., 

Vlasselaers, D., Ferdinande, P., Lauwers, P., & Bouillon, R. 2001. Intensive insulin 

therapy in the critically ill patients. N Engl J Med. 345:1359-67. 

van der Crabben, S.N., Blumer, R.M., Stegenga, M.E., Ackermans, M.T., Endert, E., Tanck, 

M.W., Serlie, M.J., van der Poll, T., & Sauerwein, H.P. 2009. Early endotoxemia 

increases peripheral and hepatic insulin sensitivity in healthy humans. J Clin 

Endocrinol Metab. 94:463-8. 

Vidali, M., Stewart, S.F., & Albano, E. 2008. Interplay between oxidative stress and 

immunity in the progression of alcohol-mediated liver injury. Trends Mol Med. 

14:63-71. 

Volk, J., Gorelik, S., Granit, R., Kohen, R., & Kanner, J. 2009. The dual function of nitrite 

under stomach conditions is modulated by reducing compounds. Free Radic Biol 

Med. 47:496-502. 

Wei, C.L., Hon, W.M., Lee, K.H., & Khoo, H.E. 2005. Temporal expression of hepatic 

inducible nitric oxide synthase in liver cirrhosis. World J Gastroenterol. 11:362-7. 

Weickert, M.O., & Pfeiffer, A.F. 2006. Signalling mechanisms linking hepatic glucose and 

lipid metabolism. Diabetologia. 49:1732-41. 

Weinberg, J.M. 2006. Lipotoxicity. Kidney Int. 70:1560-6. 

Yan, E., Durazo, F., Tong, M., & Hong, K. 2007. Nonalcoholic fatty liver disease: 

pathogenesis, identification, progression, and management. Nutr Rev. 65:376-84. 

Yang, L., & Diehl, A. 2007. Role of immune response in nonalcoholic fatty liver disease: 

evidence in human and animal studies. Totowa: Humana Press. 337-45 pp. 

Yang, S.Q., Lin, H.Z., Lane, M.D., Clemens, M., & Diehl, A.M. 1997. Obesity increases 

sensitivity to endotoxin liver injury: implications for the pathogenesis of 

steatohepatitis. Proc Natl Acad Sci U S A. 94:2557-62. 

Yang, S.Q., Lin, H.Z., Mandal, A.K., Huang, J., & Diehl, A.M. 2001. Disrupted signaling and 

inhibited regeneration in obese mice with fatty livers: implications for nonalcoholic 

fatty liver disease pathophysiology. Hepatology. 34:694-706. 

Yuzuriha, T., Okudaira, M., Tominaga, I., Hori, S., Suzuki, H., Matsuo, Y., Shoji, M., 

Yokoyama, A., Takagi, S., & Hayashida, M. 1997. Alcohol-related sudden death 

with hepatic fatty metamorphosis: a comprehensive clinicopathological inquiry 

into its pathogenesis. Alcohol Alcohol. 32:745-52. 

Zelber-Sagi, S., Nitzan-Kaluski, D., Halpern, Z., & Oren, R. 2006. Prevalence of primary non-

alcoholic fatty liver disease in a population-based study and its association with 

biochemical and anthropometric measures. Liver Int. 26:856-63. 

www.intechopen.com



 
Diabetes – Damages and Treatments 

 

116 

Zeng, M.D., Li, Y.M., Chen, C.W., Lu, L.G., Fan, J.G., Wang, B.Y., & Mao, Y.M. 2008. 

Guidelines for the diagnosis and treatment of alcoholic liver disease. J Dig Dis. 

9:113-6. 

Zhou, Y.J., Li, Y.Y., Nie, Y.Q., Ma, J.X., Lu, L.G., Shi, S.L., Chen, M.H., & Hu, P.J. 2007. 

Prevalence of fatty liver disease and its risk factors in the population of South 

China. World J Gastroenterol. 13:6419-24. 

Zivkovic, A.M., German, J.B., & Sanyal, A.J. 2007. Comparative review of diets for the 

metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin 

Nutr. 86:285-300. 

www.intechopen.com



Diabetes - Damages and Treatments

Edited by Prof. Everlon Rigobelo

ISBN 978-953-307-652-2

Hard cover, 348 pages

Publisher InTech

Published online 09, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Over the last few decades the prevalence of diabetes has dramatically grown in most regions of the world. In

2010, 285 million people were diagnosed with diabetes and it is estimated that the number will increase to 438

million in 2030. Hypoglycemia is a disorder where the glucose serum concentration is usually low. The

organism usually keeps the serum glucose concentration in a range of 70 to 110 mL/dL of blood. In

hypoglycemia the glucose concentration normally remains lower than 50 mL/dL of blood. Hopefully, this book

will be of help to many scientists, doctors, pharmacists, chemicals, and other experts in a variety of disciplines,

both academic and industrial. In addition to supporting researcher and development, this book should be

suitable for teaching.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Oren Tirosh (2011). Inflammation and Hypoglycemia: The Lipid Connection, Diabetes - Damages and

Treatments, Prof. Everlon Rigobelo (Ed.), ISBN: 978-953-307-652-2, InTech, Available from:

http://www.intechopen.com/books/diabetes-damages-and-treatments/inflammation-and-hypoglycemia-the-

lipid-connection



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


