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Chongqing University of Technology, Chongqing 
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1. Introduction 

Ammonia is one of the most important contaminants impairing the quality of water 
resource. Ammonia is commonly present in municipal and industrial wastewater, such as 
landfill leachate, coke plant wastewater, and petrochemical and metallurgical wastewater. 
The accumulation of ammonia in water results in eutrophication and the depletion of 
oxygen due to nitrification (Tan et al., 2006). Moreover, wastewaters containing ammonia 
are often toxic, which makes their biological treatment unfeasible (Hung et al., 2003). Such 
adverse effects of ammonia promote the development of various techniques for its removal 
for instance, biological nitrification-denitrification (Calli et al., 2005; Dempsey et al., 2005), 
air stripping (Bonmati & Floatats, 2003; Basakcilardan-kabakci et al., 2007; Marttinen et al., 
2002; Ozturk et al., 2003; Saracco & Genon, 1994), struvite precipitation (Jeong & Hwang, 
2005; Lee et al., 2003; Uludag-Demirer et al., 2005; Rensburg et al., 2003), membrane 
separation (Tan et al., 2006), catalytic liquid-phase oxidation (Huang et al., 2003), and 
selective ion exchange (Jorgensen & Weatherley, 2003). 
The air stripping process with relatively low cost and simple equipment is widely used in 
the removal of ammonia from wastewater, and high rates of ammonia removal can be 
achieved (Ozturk et al., 2003). In addition to this process, other processes like absorption can 
recover ammonia that is transferred from the liquid phase to the air stream (Bonmati & 
Floatats, 2003). Therefore, air stripping is a good method for the removal and recovery of 
valuable ammonia from wastewater. In order to get high process efficiency, air stripping is 
usually operated in a packed tower because it can provide a larger mass transfer area 
(Djebbar & Naraitz, 1998). However, in practice, air stripping in packed towers usually leads 
to scaling and fouling on packing because of reactions between CO2 in air and some metal 
ions in wastewater. In order to reduce cost, slaked lime is usually used to adjust the pH 
value of wastewater, thus forming a suspension. But a packed tower is not suitable for the 
air stripping of this kind of suspension because of the presence of solid particles that are 
seen in the suspension. Additionally, air stripping is a time consuming process when using 
some traditional equipments, because of a lower mass transfer coefficient of ammonia from 
the liquid to gas phase.  
In recent years, some new gas-liquid contactors, with high mass transfer rate but without 
packing, have been used for the gas-liquid operation (Bokotko et al., 2005). Because 
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ammonia is a soluble gas with a small Henry’s law constant, the overall mass transfer 
resistance in the air stripping largely lies on the gas film side (Matter-Muller et al., 1981). 
Therefore, decreasing the gas film resistance and increasing the gas-liquid contact area will 
accelerate the mass transfer of ammonia from the liquid to gas phase. A newly designed gas-
liquid contactor, water-sparged aerocyclone (WSA), was developed in this work. The WSA 
is suitable for the air stripping of wastewater with suspended solids and has a higher mass 
transfer rate than some traditional stripping equipment like packed towers and tanks.  
The overall mass transfer performance of the WSA was investigated using the air stripping 
of ammonia from wastewater. Further, in order to reveal the mass transfer mechanism of 
this new mass transfer equipment, the effects of major parameters on the pressure drop of 
gas phase, liquid side mass transfer coefficient kL and specific mass transfer area a were also 
investigated. As a new gas-liquid mass transfer equipment, the WSA was used to 
simultaneously remove NH3-N, total P and COD from anaerobically digested piggery 
wastewater using cheap Ca(OH)2 as the precipitant for PO43- and some organic acids, and as 
pH adjuster for NH3-N stripping. 

2. Experimental setup and methods 

2.1 Design of the WSA reactor 
The WSA reactor is essential equipment for the air stripping of ammonia from water; its 
configuration is shown in Fig. 1. In operation, the wastewater containing ammonia is 
pumped into the water jacket and then sparged towards the centerline of the WSA through 
the porous section of the inner tube wall, thus forming a large gas-liquid contact area. The 
transfer of ammonia from liquid to air is high because of the very small amount of liquid.  
 

 
 

Fig. 1. The water-sparged aerocyclone reactor (WSA). 1-outer tube; 2-porous section of inner 
tube; 3-central gas tube; 4-water tank; 5-circulating pump; 6-valve. 
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The WSA reactor unit consists of two concentric right-vertical tubes and a conventional 
cyclone header at the top. The inner diameter of the inner tube is 0.09 m, which uses the 
upper section design as a porous structure for the jetting of water. 160 small holes with a 
diameter of 2 mm are arranged in axial symmetry on the porous section (8 holes per circle 
and 20 circles with an interval of 10 mm along each axial direction). The outer tube secures 
even distribution of water through the porous tube. The length of the porous tube section is 
0.3 m and the overall length of the inner tube is 0.6 m. Wastewater is supplied through the 
porous section of the inner tube, and sprayed towards the centerline of the WSA. 
Compressed air is tangentially fed into the aerocyclone at the top header of the inner tube. 
Ammonia containing water is kept in the 100 l water tank, and circulated by a centrifugal 
pump. The water in the tank is heated by an electric heating element when needed, and its 
temperature is controlled by a thermocouple and measured accurately with a temperature 
meter. The pressure drop in the WSA is measured with a manometer. The valves located on 
the pipelines to the aerocyclone are used for the control of the gas and liquid phase flow 
rates.  

2.2 Experimental setup design 
The air stripping of ammonia from water is carried out in a specially designed system 
shown in Fig. 2.  
 

 
 

Fig. 2. The flow diagram of the experimental setup and the WSA configuration. 1- water-
sparged aerocyclone; 2- porous section; 3- water tank; 4- circulating pump; 5- gas-liquid 
separator; 6- rotameters; 7-U type manometers; 8- valves; 9- air pump. 

The primary unit is the WSA reactor, in which the separation of ammonia from water 
occurs. Compressed air is produced by an air compressor and tangentially introduced into 
the top header of the WSA, forming a strong rotating air flow field within it. Ammonia 
containing water is kept in a water tank, and pumped into the water jacket between the two 
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concentric tubes of the WSA by a circulating pump, and finally sprayed into the airflow 
field. Waste gas exits out through the center gas tube in the WSA and tangentially enters the 
gas-liquid separator, in which liquid droplets taken out by the waste gas are separated and 
flow back into the water tank. Volumetric flow rates are measured by means of rotameters, 
whereas manometers measured the pressure. Volumetric flow rates of air and water 
entering the WSA is adjusted by the means of valves. The cyclone header is a part of the 
inner tube and has a hight of 0.02 m over the porous inner tube. A rectangular gas inlet gap 
with 0.003 m width and 0.02 m length is tangentially connected with the cyclone header. The 
gas flow rate was controlled within 1.1~1.9 l/s, which was an equivalent of the gas inlet 
velocity of 18.3 ~ 31.7 m/s. 

2.3 Experimental procedure 
In all the experiments, 10 l fresh aqueous Ca(OH)2 suspensions with different ammonia 
concentrations were prepared just before the experiment. Primary experiments indicate that a 
Ca(OH)2 dosage of 4 g/l can be used for maintaining a constant pH value of the suspension, 
which is always 11~12; and lower than 2 g/l of dosage can not maintain a constant pH value, 
causing an unsteady air stripping process. The ammonia equilibrium in the aqueous solution 
is pH and temperature dependent, and the ratio of free ammonia to total ammonia can be 
calculated out (Bonmati & Floatats, 2003). When the pH value is 11~12, the ammonium 
nitrogen is almost all converted into molecular ammonia in an aqueous solution, ensuring the 
air stripping of ammonia. Under this condition, the overall performance of the WSA reactor is 
dependent on the mass transfer rate of ammonia from water to air. 
The experiments were carried out in a batch mode. Each experiment was repeated to get 
experimental data with an error of less than 5 %, and the averaged value was used. Before 
each run, the water tank was filled with the 10 l fresh aqueous Ca(OH)2 suspension. Then 
the compressed air was allowed to enter the aerocyclone at a prescribed flow rate. When the 
pressure reading reached a steady state, the circulation pump at a certain flow rate pumped 
the suspension in the tank into the WSA. During circulation, the total ammonia 
concentration in the suspension is continuously decreasing and is measured at an interval. 
The suspension samples were taken out from the water tank and centrifuged to get a 
supernatant for the determination of ammonia. The ammonia concentration was measured 
using the Nessler’s Reagent (HgCl2-KI-KOH) Spectrophotometry at 420 nm according to the 
Standards of the People’s Republic of China (GB 7479-87).  
In order to understand the overall performance, the effect of major process parameters on 
the air stripping efficiency and mass transfer coefficient of ammonia was investigated, 
including the flow rate of air and suspension, initial ammonia concentration, and the 
temperature of the suspension. At the same time, the scaling and fouling in the WSA was 
observed. 

2.4 The overall mass transfer coefficient of ammonia stripping in the WSA 
The efficiency of ammonia removal η is defined according to the measured results, as  

 
  - in t

in

C C

C
   (1) 

Where Cin and Ct are the ammonia concentrations in the suspension at the beginning and at 
any time, respectively, mg/l. 
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For an air stripping system, the mass transfer rate of volatile compound A from water in a 
batch stripping unit has been derived by Matter-Muller et al (1981) and is shown as follows: 

 - - - 

0

ln [1 exp( )]tA G A L L

A L A G

c Q H K aV
t

c V H Q
  (2) 

where 
tAc and 

0Ac are the liquid phase concentrations of compound A at any time t and at 

the beginning, g/m3; HA is the dimensionless Henry’s constant; KL is the overall liquid mass 
transfer coefficient, m/min; a  is the interface area per unit volume of liquid, m2/m3; VL is 
the total volume of liquid, l; QG is the gas flow rate, l/min and t is the stripping time, min. 

When 1L L

A G

K aV

H Q
 , equation (2) becomes: 

 -  

0

,

,

ln L At
L

L A

c
K a t

c
   (3) 

This case happens when the exit stripping gas is far from saturation.  
In the present work, ammonia is an easily soluble gas and the exit stripping gas is possibly 
far from saturation because of the very short residence time of the stripping gas in the WSA, 
so the calculation of the mass transfer coefficient of ammonia removal was tentatively made 
according to the Eq.(3). 

2.5 The determination of liquid side film mass transfer coefficient kL and specific 
mass transfer area a 

It is a very important work to determine the mass transfer coefficient kL and specific mass 
transfer area a for the further understanding of the mass transfer characteristics of the WSA.  
Firstly, the determination method of specific mass transfer area has been well established 
using a chemical absorption of CO2 by NaOH solution (Tsai et al., 2009). In this system, 
when the NaOH concentration is high enough, the reaction between CO2 and NaOH could 
be seen as a rapid pseudo first order reaction with respect to CO2, and the CO2 concentration 
in the bulk solution could be regarded as zero approximately. Thus, the a could be 
calculated out from the following equations: 

 ǃA L iG k AC  (4) 

Usually ǃ is called chemical absorption strengthening factor; GA is the absorption rate of 
CO2, mol/s; A is the mass transfer area, m2; Ci is the concentration of CO2 on the gas-liquid 
interface in equilibrium with the CO2 fractional pressure. 
According to the related chemical absorption theory and the Henry’s law,  

 ' 2 2
1ǃ / 1 / 1 ǄL L Lk k Dk k      (5) 

 And i iC Hp  (6) 

And when Ǆ>10, ǃ≈Ǆ, thus, from the equations 4—6, 
1

A

i

G
A

Hp Dk
  and a = A/V, here V is 

the mass transfer volume in the WSA, i.e. the whole inner volume subtracted by that of the 
central gas tube in the WSA. 

www.intechopen.com



 
Hydrodynamics – Optimizing Methods and Tools 

 

378 

After the specific mass transfer area was obtained, the kL could be determined by a CO2 —
H2O absorption system. This is a physical absorption system; the mass transfer resistance 
mainly lies in the liquid side film, thus,  

 A L iG k aVC  (7) 

The parameters a, V, Ci could be obtained through the above-mentioned process. Thus the kL 
could be calculated from Eq. 7, and a = GA/( kLV Ci). 

2.6 The determination of the pressure drop of gas phase through the WSA 
The pressure drop of gas phase through the WSA, i.e. the two points between the inlet and 
outlet of gas phase, was determined using a U-type manometer, as shown in Fig.2, with a 
water-air system as working medium. In order to know the interaction of the gas-liquid 
phases in the WSA, the liquid content εL in the gas phase at the gas outlet was also 
determined using a gas-liquid cyclone separator. 
In the experimental process, the flow rate of the liquid phase should be larger than 1 m3/h, 
which corresponds to the jet velocity of 0.381 m/s, so as to get an even jet distribution of the 
liquid phase in the jet area. The experimental operation process was similar with that for the 
air stripping of ammonia. In order to fully understand the characteristic of hydrodynamics 
in the WSA, the gas phase inlet velocity was controlled within 4—20 m/s, wider than that in 
a traditional cyclone. 

3. Results and discussion 

As mentioned above, the objective of this work is to develop new air stripping equipment of 

industrial interest for the removal of volatile substances such as ammonia. Firstly, to 

understand the overall performance of the WSA and how the major parameters affect the 

performance is very important. And a comparison between the WSA and some traditional 

air stripping equipment should be done to assess its performance. Then the effects of major 

process parameters on the mass transfer coefficient in liquid side film and specific mass 

transfer area were carried out, so as to reveal the mass transfer mechanism in the WSA. 

Thirdly, the pressure drop of gas phase which can reflect the momentum transfer in the 

WSA was also investigated, facilitating the understanding of the mass transfer process. 

3.1 The mass transfer performance of the WSA 
3.1.1 Effect of initial ammonia concentration on ammonia removal efficiency 
The effect of the initial ammonia concentration on the air stripping efficiency of ammonia is 
shown in Fig. 3. It exhibits a very high air stripping efficiency of ammonia in a wide range of 
ammonia concentration (1200 ~ 5459 mg/l). Ammonia removal efficiency higher than 97 % 
was achieved just with 4 h of stripping time. However, using the same volume of the 
suspension, achieving this efficiency of ammonia removal in a traditional stripping tank 
needed more than 24 h. This also illustrates that the mass transfer rate of ammonia from the 
suspension to air in the WSA is very high compared with some traditional stripping 
processes.  
In order to further understand the mass transfer of ammonia in the WSA, the mass transfer 
coefficients under different initial ammonia concentrations could be obtained using Eq. 3, 
i.e. plotting –ln(Ct/Cin) vs. stripping time t and making a linear regression between –
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ln(Ct/Cin) and stripping time t could get the mass transfer coefficients KLa shown in Fig. 3 
with a very good relative coefficient (R2 =0.9975 ~ 0.9991). It clearly indicates that ammonia 
concentration has little effect on the mass transfer coefficients, i.e. the coefficients vary in 
0.019 ~ 0.021 min-1 even though the ammonia concentration varies greatly (from 1200 to 
5459 mg/l). The reasonable explanation for this phenomenon is that the process is surely 
controlled by the diffusion of ammonia through a gas film. 
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Fig. 3. Effect of initial ammonia concentration on ammonia removal efficiency (left) and 
mass transfer coefficients of ammonia (right) in the WSA reactor. Experimental conditions: 
VL=10 l, UL = 0.77 m/s, Qg =1.9 l/s, Temperature 15 oC, Pressure drop 0.2-0.3 MPa. 

As shown in Fig. 3, the air stripping efficiency of ammonia is almost independent of 
ammonia concentration. This could be further explained according to the analysis of the 
mass transfer process. From Eq. 3, the following equation could be easily obtained. 

 - -  ln(1 η) LK a t   (8) 

Applying Eq. 8 for the air stripping process of a higher and lower concentration of ammonia 
suspension, respectively, ln(1-ηL) = ln(1-ηH), i.e. ηL = ηH can be obtained within a same 
period of stripping time because of the almost constant mass transfer coefficients KLa. That is 
to say, the air stripping efficiency for a system controlled by diffusion through a gas film is 
theoretically independent of the concentration of volatile substances. The higher the 
concentration, the bigger the air stripping rate. Increasing ammonia concentration can 
increase the driving force of mass transfer, leading to a higher rate of ammonia removal. 

3.1.2 Effect of jet velocity of the aqueous phase 
Increase of flow rate of the suspension may result in the increase of jet velocity of the 
suspension, UL, thus changing the gas-liquid contact time and area. So, the effect of jet 
velocity of the aqueous phase on air stripping efficiency and mass transfer coefficient of 
ammonia was investigated. The results are shown in Fig. 4. 
It can be seen that jet velocity of the aqueous phase has little effect on ammonia removal 
efficiency, and that the double increase of the jet velocity did not result in an obvious 
increase of the mass transfer coefficient under the experimental conditions. This illustrates 
that the increase of the jet velocity can not obviously increase the contact area of the two 
phases and can not reduce the mass transfer resistance. In the WSA, the contact area of the 
two phases and mass transfer resistance may be mainly determined by the gas flow rate in 
such a strong aerocyclone reactor, which will be investigated in subsequent section. 
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Fig. 4. Effect of jet velocity of aqueous phase on air stripping of ammonia (left) and mass 
transfer coefficient of ammonia removal (riht). Experimental conditions: VL=10 l, Qg=1.9 l/s, 
Cin=3812 mg/l, Pressure drop 0.2-0.3 MPa, Temperature 14 - 15℃. 

3.1.3 Effect of air flow rate 
The effect of air flow rate Qg on air stripping efficiency and on the volumetric mass transfer 

coefficient of ammonia removal is shown in Fig. 5. It seems that there is a critical value for 

air flow rate, which is about 1.4 l/s under the corresponding experimental conditions. When 

air flow rate is below this value, it has less effect on both the efficiency and the mass transfer 

coefficient of ammonia removal; but when air flow rate is over this value, it can result in an 

obvious increase in the two values.  
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Fig. 5. Effect of air flow rate on air stripping of ammonia (left) and mass transfer coefficient 
of ammonia removal (right). Experimental conditions: VL=10 l, UL=0.55 m/s, Cin=2938 mg/l, 
Temperature 14 -15 oC, Pressure drop 0.12-0.3 MPa.  

The phenomenon mentioned above is probably associated with the effect of the air flow on 

the interface of the gas-liquid phases. As mentioned above, the overall mass transfer 

resistance for ammonia removal is mainly present in the gas film side. The mass transfer 

resistance in the gas film side can be reduced by increasing the air flow rate. When the air 

flow rate is within a lower range (< 1.4 l/s in this work), the increase of the air flow rate has 

almost no effect on the mass transfer coefficient (from 0.013 to 0.014 min-1) probably because 
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of the lower shear stress on the surface of the water droplets. Higher gas flow rate (>1.4 l/s 

in this work), produces larger shear stress on the droplet surface, thus clearly reducing the 

gas film resistance and increasing the mass transfer coefficient greatly (from 0.014 to 0.022 

min-1). On the other hand, a higher gas flow rate can produce larger shear stress, which 

exerts on the surface of the water droplets and along the porous tube surface, to cause the 

breakage of water drops into fine drops or even forming mist, thus leading to an obvious 

increase in mass transfer area. Therefore, the obvious increase in the KLa when the air 

flow rate was over 1.4 l/s may be caused by the combinational effect of this two reasons, 

showing clearly the effect of a highly rotating air field enhancing mass transfer between 

phases. 

In fact, from the viewpoint of the dispersed and continuous phases, the gas-liquid mass 

transfer process in the WSA is similar with that in the impinging stream gas-liquid reactor 

(ISGLR), which enhances mass transfer using two opposite impinging streams (Wu et al., 

2007). In the ISGLR, there is also a critical point of impinging velocity, 10 m/s. The effect of 

impinging velocity on the pressure drop increases rapidly before this critical point, and after 

that the effect becomes slower. The reason for this is not quite clear yet, but it is possible that 

a conversion of a flow pattern occurs at this point (Wu et al., 2007). Likely, the rapid increase 

of the mass transfer coefficient in the WSA after the critical point may be also caused by a 

conversion of flow patterns occurring at this point, but this needs to be further investigated. 

Now there are two kinds of devices that can also enhance mass transfer very efficiently, 

i.e. ISGLR (Wu et al., 2007) and the rotating packed bed (RPB) (Chen et al.,1999; Munjal & 

Dudukovic, 1989a; Munjal & Dudukovic, 1989b). Making a comparison among these 

devices, the WSA, ISGLR and RPB, all have essentially the same ability of enhancing the 

mass transfer between the gas and liquid phases. WSA and ISGLR have no moving parts, 

whereas RPB is rotating at a considerably high speed, and needs a higher cost and 

maintenance fee, and possibly has a short lifetime (Wu et al., 2007). In addition, WSA has 

the advantage of a simple structure, easy operation, low cost and higher mass transfer 

efficiency.  

3.1.4 Effect of aqueous phase temperature 
Both ammonia removal efficiency and the mass transfer coefficient increase with the 

aqueous phase temperature, as shown in Fig. 6. Particularly, when the temperature 

increases over 25 ℃, the effect is more obvious. First, the increase of temperature will 

promote the molecular diffusion of ammonia in a gas film, resulting in the increase of the 

KLa. On the other hand, the gas-liquid distribution ratio K is the function of pH and 

temperature, and can be expressed as the following equation (Saracco & Genon, 1994): 

 
-

-

5 3513/

6054/

1.441 10

1 2.528 10

T

pH T

e
K

e

 


  
 (9) 

Calculation indicates that when ambient temperature exceeds 25 ℃, the increase of 

temperature will lead to a more obvious increase of the distribution ratio K. Provided the 

pH is high enough (such as 11), temperature strongly aids ammonia desorption from water. 

This makes the driving force of mass transfer increase largely. These two effects of 

temperature accelerate ammonia removal from water. If possible, the air stripping of 

ammonia should be operated at a higher temperature.  
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Fig. 6. Effect of aqueous phase temperature on air stripping of ammonia (left) and mass 
transfer coefficient of ammonia removal (right). Experimental conditions: VL =10 l, UL =0.55 
m/s, Qg =1.9 l/s, Cin =2910 mg/l, Pressure drop 0.2-0.3 MPa.  

3.1.5 Comprehensive evaluation and comparison with other traditional equipments 
As stated in the introduction, the main goal of the present work is to solve two problems in 

the air stripping of ammonia, i.e. improving process efficiency and avoiding scaling and 

fouling on a packing surface is usually used in packed towers. Compared with a traditionally 

used stirred tank and packed tower, the air stripping efficiency of ammonia in the newly 

developed WSA is very high because of the unique gas-liquid contact mode in the WSA. In 

operation of the WSA, the major parameters are air flow rate and aqueous phase temperature. 

In order to get a higher stripping efficiency, air stripping of ammonia should be operated at a 

higher air flow rate (> 1.4 l/s) and a higher ambient temperature (> 25 ℃). As for scaling and 

fouling, after many experiments, no scale and foul were observed in the inner structure of the 

WSA although there were Ca(OH)2 particles suspended in the aqueous phase. The self 

cleaning effect of the WSA is probably caused by a strong turbulence of fluids in the WSA. 

It is interesting to make a comparison between different air stripping processes of ammonia 

to understand the characteristics of the WSA. Air stripping of ammonia is generally carried 

out in stripping tanks and packed towers. The mass transfer coefficients of some typical 

stripping processes are compared in Table 1. At the same temperature, using the WSA to 

strip ammonia can get a higher mass transfer coefficient than using other traditional 

equipments; in addition, the air consumption is far less than that of the compared processes.  

 

Equipments Stripping conditions 
Air consumption
QG/VL ( l / l.s )

KLa  
( min-1)

References 

WSA 
VL = 10 l , QG = 1.9 l/s, 

temperature 15 ℃ 
0.19 0.016 This work 

Tank 
VL = 50 ml , QG = 0.08l/s,
pH=12.0, temperature 16 ℃ 1.60 0.008 

Basakcilardan 
-kabakci, et al., 

2007 

Packed tower 
VL= 1000 l , QG =416.7l/s,   
pH=11.0,temperature15℃ 

0.42 0.007 Le et al., 2006 

Table 1. The comparison of the air consumption and the mass transfer coefficients of the air 
stripping of ammonia in different equipments. 
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3.2 The mass transfer mechanism within the WSA 
As discussed above, air flow rate is the major parameter affecting the volumetric mass 
transfer coefficient KLa in the WSA from the viewpoint of hydrodynamics. So the effects of 
the gas phase inlet velocity on kL, a and KLa were all further investigated using a CO2—
NaOH rapid pseudo first order reaction system, to further elucidate the mass transfer 
mechanism within this new mass transfer equipment.  
The results were shown in Fig. 7. It is known from Fig. 7(c) that the overall volumetric mass 
transfer coefficient increases almost linearly with the increasing of gas phase inlet velocity 
with a larger slope until the gas phase inlet velocity increases to about 10 m/s, and then 
almost linearly increases with a slightly lower slope, indicating that when Ug is higher than 
10 m/s, the increasing rate of KLa with Ug was slowed down. From Fig. 7(a), it could be seen 
that the kL increases very rapidly and linearly with the increase of Ug until it reaches about 8 
m/s, and then the change of kL with Ug has no remarkable behavior or even is leveled off. In 
contrast, the specific mass transfer area a increases proportionally with the increase of Ug 
almost in the whole experimental range of the gas phase inlet velocity, as shown in Fig. 7(b). 
Therefore, both kL and a simultaneously contribute to the increase of the overall KLa before 
about 8 m/s of Ug making it increase rapidly; after that only a contributes to the increase of 
the KLa, leading to the slowing down of its increase.  
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Fig. 7. Effect of gas phase velocity on the mass transfer coefficient in liquid side film (a), the 
specific mass transfer area (b)and the volumetric mass transfer coefficient (c) within the 
WSA for CO2—NaOH system. Experimental conditions: UL=0.33 m/s, Liquid phase 
temperature 27~29.7 oC.  
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As a result, it appears that the gas cyclone field in the WSA does intensify the mass transfer 

process between gas-liquid phases. There is a critical gas phase inlet velocity. When Ug is 

lower than this value, the increase of the inlet velocity has a double function of both 

intensifying kL and increasing mass transfer area; whereas when Ug is larger than this value, 

the major function of Ug increase is to make the water drops in the WSA broken, mainly 

increasing the mass transfer area of gas-liquid phases. From the viewpoint of 

hydrodynamics, increasing the Ug will intensify the gas cyclone field in the WSA and 

increase the shear stress on the water drops, thus resulting in the thinning of the gaseous 

boundary layer around the water drops and facilitating the increase of kL. However, when 

the thinning of the boundary layer is maximized by the increase of Ug, the change of kL will 

become leveled off with increasing the Ug. So theoretically, there should be a critical value, 

as mentioned above, which could make the kL maximized.  

3.3 The pressure drop characteristic of gas phase through the WSA 
The pressure drop of gas phase ΔP and the liquid content εL through the WSA were 

simultaneous measured in this work, so as to more clearly understand the transport process 

occurring in the WSA. The changes of ΔP and εL with Ug under different water jet conditions 

are shown in Fig. 8. 
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Fig. 8. Effect of inlet gas velocity on pressure drop and liquid holdup at different jet 
velocities. 

It could be seen that when there was no liquid jet in the WSA, i.e. UL = 0, the ΔP increased 

continuously with the increase of Ug, exhibiting the pressure drop characteristic of a 

traditional cyclone. Further it was observed that the data could fit the pressure drop 

formula, Eq.10 very well, and the resistance coefficient ξ= 3.352.  
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2

2

g
g

U
p     (10) 

where ΔP—pressure drop, Pa; ξ—resistance coefficient; Ug —gas phase inlet velocity, m/s; 
ρg —gas phase density, kg/m3. 
Meanwhile, it could be also seen that when there was jet in the WSA, the change of the ΔP 

with Ug was obviously different from that for a traditional cyclone. When Ug＜6.728 m/s, 

εL  ≈0, the ΔP in this area was higher than that for a traditional cyclone; when Ug ≥7.690 

m/s, εL increased rapidly with Ug, and ΔP also increased continuously with the increase of 

Ug but had an additional pressure drop value higher than that for a traditional cyclone 

under a certain Ug. Here it is worthy of noting that the gas inlet velocity for εL rapid 

increase (Ug ≥7.690 m/s) is very close to that for kL maximization (about 8 m/s, as 

mentioned in section 3.2). So this again indirectly indicated that this value should be the 

critical gas inlet velocity at which water drops and jets were broken into a large number of 

small droplets or fog, simultaneously increasing εL and a. Interestingly, it can be seen that 

when Ug =6.728 ~ 7.690m/s, εL increased rapidly from zero and the ΔP jumped from a 

lower to a higher pressure area, the jumped height seems to equal the additional value as 

just stated before. It could be believed that the pressure drop jump was caused by the 

transformation of liquid flow pattern when the Ug increased to a critical value. And this 

could be justified by the abrupt increase of εL at Ug =6.728 m/s. Thus the pressure drop 

within the overall experimental range of Ug could be roughly divided into three areas, 

respectively called low pressure drop area, pressure drop jump area and high pressure 

drop area. In fact, the three pressure drop areas corresponded respectively to the 

observed three kinds of liquid flow pattern, here respectively called steady-state jet (Ug 

＜6.728 m/s), deformed spiral jet (Ug = 6.728~7.690 m/s) and atomized spiral jet (Ug 

≥7.690 m/s).  

Further it could be seen from Fig. 8 that when Ug ＞6.728 m/s, the liquid jet velocity had 

little effect on the ΔP, thus indicating the dominant role of the gaseous cyclone field in the 

WSA. This is in agreement with the conclusion that the gas phase inlet velocity is the major 

process parameter, as stated above. From the experimental results and the related discussion 

mentioned above, the ΔP, KLa and εL all increased with the increase of Ug, this further 

indicated that the mass and momentum transfer processes in the WSA were closely 

interlinked and occurred simultaneously. 

The major factors affecting the ΔP include gas density ρg, gas viscosity μg, gas inlet velocity 

Ug, liquid density ρL, liquid jet velocity UL, the diameter of jet holes d, liquid surface tension 

σL, the inner diameter D. The following dimensionless equation could be obtained using 

dimensional analysis: 

 (Re , , )g g L

d
Eu f We

D
  (11) 

Here, 
2g

g g

p
Eu

U


  is the Euler number; 
0ρ

Re
g g

g
g

U d


  the Reynolds number of gas phase; 

2ρL L
L

L

U d
We


  the Weber number of liquid phase and dimensionless diameter, d/D.  
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Using the experimental data to fit Eq. 11 could obtain the following equations: 

1. For the low pressure area: 0163.02353.14 Re103685.1 Lgg WeEu -
×= , with R2=0.98;  

2. For the high pressure area: 0022.02233.15 Re103131.4 Lgg WeEu -×= , with R2=0.99. 

The dimensionless diameter d/D does not appear in the two equations because it was 

maintained at a constant value in the pressure drop experiments. But this will be further 

investigated in the near future to optimize the structure of the WSA. From these two 

equations, it could be seen that the power of the WeL number is too small to be neglected 

compared with other powers in the same equation, indicating that WeL has little effects on 

the ΔP. This is in agreement with the experimental result mentioned above that the jet 

velocity had little effect on the ΔP, and it was mainly controlled by gas inlet velocity. So 

ignoring the WeL in Eq.11 and using the experimental data to fit it again, the following 

equations could be obtained: 

1. For the low pressure area: -4 1.23531.4111 10 Reg gEu   , with R2=0.98;  

2. For the high pressure area: -5 1.22344.3371 10 Reg gEu   , with R2=0.99.  

These equations apply for 33 107.11~103.2Re ××=g  and 3.98 ~ 10.21LWe  , and the 

relative deviation between the experimental and calculated values using the above 
equations, is less than 7.7 % in the whole range of experimental data, showing a satisfactory 
prediction, as shown in Fig. 9.  
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Fig. 9. Compares of regression values and experimental values, (left) low pressure drop area 
(right) high pressure drop area. 

4. The application of the WSA in wastewater treatment  

As a mixer and stripper, the WSA could be used for the precipitation of some hazardous 

materials and for the stripping of volatile substances in wastewaters. As an example, the 

WSA and the experimental setup as shown in Fig. 2, was used for the treatment of an 

anaerobically digested piggery wastewater (Quan et al., 2010).  
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Pig farms with hundreds to several thousands of animals are in operation in many 
countries without adequate systems for waste treatment and disposal (Nikolaeva et al., 
2002). A large amount of piggery waste is discharged from the cages every day. This 
waste is a mixture of feces, urine and food wastage (Sanchez et al., 2001). Piggery waste is 
characterized by a high content of organic matter and pathogenic microorganisms. 
Anaerobic digestion could be considered as one of the most promising treatment 
alternatives for this kind of waste. In practice, many large scale pig farms in Chongqing 
area collect the liquid and solid fractions of piggery waste separately in pig cages to 
minimize the amount of piggery waste. This collection mode is a water-saving process 
and is beneficial to subsequent treatment. The solid fraction is directly transported to an 
anaerobic digester for fermentation to make organic fertilizer. The liquid fraction, a 
mixture of pig urine, manure leachate and washing wastewater, flows into an anaerobic 
digester after passing through a simple screen mesh. Practice illustrates that anaerobic 
digestion can greatly reduce the COD of piggery wastewater (Nikolaeva et al., 2002) . 
Practical operation of anaerobic digestion in many pig farms in Chongqing area can make 
the COD of piggery wastewater to be reduced to lower than 500 mg/l. But the 
anaerobically digested liquor usually still contains more than 160 mg/l of NH3-N and 
more than 30 mg/l of total P. The national discharge standards of pollutants for livestock 
and poultry breeding stipulated that the COD, NH3-N and total P must be lower than 400 
mg/l, 80 mg/l and 8.0 mg/l, respectively (GB 18596-2001). So the anaerobically digested 
liquor of piggery wastewater needs to be further treated to make its COD, especially NH3-
N and total P to be decreased to lower than the required values stipulated by the national 
standards.  
The further removal of NH3-N and total P from anaerobically digested liquor can be 

conducted using air stripping (Bonmati & Floatats, 2003; Basakcilardan-kabakci et al., 2007; 

Marttinen et al., 2002; Ozturk et al., 2003; Saracco & Genon, 1994) and struvite precipitation 

(Jeong & Hwang, 2005; Lee et al., 2003). Similar with the struvite precipitation, it was 

reported that calcium ions can be also used as a precipitant to form CaNH4PO4.4H2O (Li et 

al., 2007). This work presented an efficient integrated process, which consists of chemical 

precipitation and air stripping, for the simultaneous removal of NH3-N, total P and COD 

from anaerobically digested piggery wastewater. In the process, cheap Ca(OH)2 was chosen 

as the precipitant for NH4+ and PO43-, as pH adjuster for the air stripping of ammonia. The 

WSA was used to validate the large scale application possibility of the suggested 

simultaneous removal process.  

The anaerobically digested liquor of piggery wastewater used in this experiment was taken 

from the effluent of the largest pig farm in Chongqing city, China. The pig farm is located in 

the Rongchang County, the modern animal husbandry area of China, about 100 km 

northwest of Chongqing city. The liquid and solid fractions of piggery waste are separately 

collected in the pig farm. The liquid fraction (a mixture of urine, leachate of manure and 

washing water) flows into an anaerobic digester after passing through a simple plastic 

screen. The effluent generally contains COD 150~500 mg/l, more than 160 mg/l of NH3-N 

and more than 30 mg/l of total P and its pH is 7.3~8.0.  

The simultaneous removal of N, P and COD from the anaerobically digested liquor was 

conducted in the new WSA, as shown in Fig. 2. For every run, 12 l of the digested liquor was 

poured into the water tank in the experimental setup and then added different dosages of 

Ca(OH)2 powder under proper stirring to form a suspension with a pH higher than 11. Then 
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the air was pumped into the aerocyclone at a prescribed flow rate. When the pressure 

reading reached a steady state, the circulation pump at a certain flow rate pumped the 

suspension in the tank into the WSA. During circulation, the concentrations of NH3-N, total 

P and COD in the suspension were continuously decreased because of the chemical 

precipitation reaction, air stripping of residual ammonia and adsorption. The suspension 

samples were taken out from the water tank and centrifuged to get supernatants for the 

determination of NH3-N, total P and COD. All the experiments were carried out at ambient 

temperature (28~30℃). Each experiment was repeated to get experimental data with an 

error of less than 5 %, and the averaged value was used. 

The effects of process parameters, including Ca(OH)2 dosage, air inlet velocity (Ug) and jet 
velocity of liquid phase (UL), on the simultaneous removal of NH3-N, total P and COD 
were investigated for the optimization of operation conditions. All the results were shown 
in Figs. 10-13. 
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Fig. 10. The effects of Ca(OH)2 dosage on NH3-N (a), total P (b) and COD (c) removal. 
Experimental conditions: VL =12 L, Ul = 0.37m/s, Ug = 4.81 m/s , Temperature: 28~30 oC. 
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Fig. 11. The effects of air inlet velocity on NH3-N (a), total P (b) and COD (c) removal. 
Experimental conditions: VL =12 L, Ul = 0.37 m/s, Ca(OH)2 dosage =3 g/l, Temperature 
28~30 oC. 
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Fig. 12. The effects of jet velocity of the suspension on NH3-N (a), total P (b) and COD 
removal (c). Experimental conditions: VL =12 L, Ug = 4.81 m/s, Ca(OH)2 dosage =3g/l, 
Temperature: 28~30 oC.  
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Fig. 13. The effects of stripping time and sedimentation time on NH3-N, total P and COD, 
PO43- removal. Experimental conditions: VL =12 L, Ug = 4.81 m/s, Ul=0.37 m/s, Ca(OH)2 
dosage =3 g/l, Temperature: 28~30 oC. 

It could be seen that the physicochemical process occurring in the gas-liquid-solid 

multiphase system in the integrated process could be conducted and operated very well in 

air stripping equipment without any packing. The WSA could be effectively used for the 

simultaneous removal of NH3-N, total P and COD. 3 g/l of Ca(OH)2 is a proper dosage for 

the simultaneous removal. A higher air inlet velocity is beneficial to the removal rate of 

NH3-N. A higher jet velocity of the liquid phase results in a faster removal of the total P. 

Selecting the air inlet velocity and the liquid jet velocity is needed for a better simultaneous 

b c 
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removal of NH3-N, total P and COD. Nevertheless, in all the cases, the removal efficiencies 

of the NH3-N, total P and COD were over 91 %, 99.2 % and 52 % for NH3-N, total P and 

COD, respectively. 

5. Conclusions 

Air stripping of ammonia is a widely used process for the pretreatment of wastewater. 
Traditionally, this process is carried out in stripping tanks or packed towers. In practice, 
scaling and fouling on a packing surface in packed towers and lower stripping efficiency are 
the two major problems in this process.  
In order to enhance process efficiency and avoid scaling and fouling in long run operations, 

new equipment that is suitable for air stripping of wastewater with suspended solids was 

developed. Air stripping of ammonia from water with Ca(OH)2 was performed in the newly 

designed gas-liquid contactor water-sparged aerocyclone (WSA). WSA exhibited a higher 

air stripping efficiency and an excellent mass transfer performance, and consumed less air 

compared with stripping tanks and packed towers. In addition, no scaling and fouling was 

observed in the inner structure of the WSA. The stripping efficiency and mass transfer 

coefficient in the WSA obviously increases with the liquid phase temperature and air flow 

rate. An efficient air stripping of ammonia should be conducted at a higher ambient 

temperature and a higher air flow rate. 

In order to reveal the mechanism of the mass transfer process in the WSA, the effect of the 

major parameter—gas phase inlet velocity, on the liquid side film mass transfer coefficient 

kL, and specific mass transfer area a was separately investigated using a CO2—NaOH rapid 

pseudo first order reaction system. The results indicated that there is a critical gas phase 

inlet velocity. When Ug is lower than this value, the increase of the inlet velocity has a 

double function of both intensifying kL and increasing mass transfer area; whereas when Ug 

is larger than this value, the major function of Ug increase is to make the water drops in the 

WSA broken, increasing the mass transfer area of gas-liquid phases. 
The pressure drop of gas phase ΔP was also investigated in this work, so as to more clearly 

understand the transport process occurring in the WSA. It was observed that when there 

were jets in the WSA, the change of the ΔP with Ug was obviously different from that for a 

traditional cyclone. And the pressure drop within the overall experimental range of Ug 

could be roughly divided into three areas, which could be called low pressure drop area, 

pressure drop jump area and high pressure drop area, respectively. In fact, the three 

pressure drop areas corresponded respectively to the observed three kinds of liquid flow 

pattern, i.e. the so called steady-state jet (Ug ＜ 6.728 m/s), deformed spiral jet (Ug = 

6.728~7.690 m/s) and atomized spiral jet (Ug ≥ 7.690 m/s). The following equations,  

-4 1.23531.4111 10 Reg gEu    and -5 1.22344.3371 10 Reg gEu   , 

could be used for the prediction of the gas phase pressure drop, respectively, for the low 
pressure area and for the high pressure area, with a satisfactory degree. 
As an example, the WSA was used for the treatment of an anaerobically digested piggery 
wastewater. Practice showed that the WSA could be effectively used for the simultaneous 
removal of NH3-N, total P and COD from the wastewater. 3 g/l of Ca(OH)2 is a proper 
dosage for the simultaneous removal. A higher air inlet velocity is beneficial to the removal 
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rate of NH3-N. A higher jet velocity of the liquid phase results in a faster removal of the total 
P. Selecting the air inlet velocity and the liquid jet velocity is needed for a better 
simultaneous removal of NH3-N, total P and COD. In all the cases, the removal efficiencies 
of the NH3-N, total P and COD exceeded 91 %, 99.2 % and 52 % for NH3-N, total P and 
COD, respectively. 
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