
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322401669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0

SmoothViz: Visualization of Smoothed Particles
Hydrodynamics Data

Lars Linsen1, Vladimir Molchanov1, Petar Dobrev1, Stephan Rosswog1,
Paul Rosenthal2 and Tran Van Long3

1Jacobs University, Bremen
2Chemnitz University of Technology

3University of Transport and Communication, Hanoi
1,2Germany

3Vietnam

1. Introduction

Smoothed particle hydrodynamics (SPH) is a completely mesh-free method to simulate
fluid flow (Gingold & Monaghan, 1977; Lucy, 1977). Rather than representing the physical
variables on a fixed grid, the fluid is represented by freely moving interpolation centers
(“particles”). Apart from their position and velocity these particles carry information about
the physical quantities of the considered fluid, such as temperature, composition, chemical
potentials, etc. As the method is completely Lagrangian and particles follow the motion of the
flow, the particles represent an unstructured data set at each point in time, i.e., the particles do
not exhibit a regular spatial arrangement nor a fixed connectivity. For a recent detailed review
of modern formulations of the SPH method see Rosswog (2009).
For the analysis of the simulation results, data visualization plays an important role.
However, visualization methods need to account for the highly adaptive, unstructured data
representation in SPH simulations. Reconstructing the entire data field over a regular grid is
not an option, as it would either use grids of immense sizes that cannot be handled efficiently
anymore or it inevitably would introduce significant interpolation errors. Such errors should
be avoided, especially as they would occur most prominently in areas of high particle density,
i.e., areas of highest importance are undersampled. Adaptive grids may be an option as
interpolation errors can be kept low, but the adaptivity requires special treatments during
the visualization process.
In this chapter, we introduce visualization methods that operate directly on the particle
data, i.e., on unstructured point-based volumetric data. Section 3 introduces an approach
to directly extract isosurfaces from a scalar field of the SPH simulation. Isosurfaces extraction
is a common visualization concept and is suitable for SPH data visualization, as one is often
interested in seeing boundaries of certain features.
Because of the use of radial kernel functions in SPH computations (which is crucial for
exact conservation of energy, momentum, and angular momentum) together with a poor
a resolution, one can observe that the extracted isosurfaces may be bumpy, especially in
regions of low particle density. We approach this issue by introducing level-set methods for
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scalar field segmentation that include a smoothing term and extracting isosurfaces from the
smooth level-set function. Again, the level-set method is only operating on the positions of
the particles and does not use any auxiliary grid to perform the computations. In Section 4,
we describe the general approach of smooth isosurface extraction from SPH data based on
level-set segmentation and in Section 5, we detail methods for improving the speed of the
level-set approach narrow-band processing, a local isosurface extraction approach based on
variational level sets, and a non-iterative second-order approximation of the signed distance
function which is needed throughout the level-set processing.
The surfaces that are extracted from particle data are in form of a point cloud representation.
Point-based rendering methods that display such surfaces without the necessity to first
generate a triangular mesh from the point clouds have become popular in computer
graphics within the last decades. We have developed an approach that uses image-space
operations to create desired renderings of large point clouds at interactive rates without
any pre-computations, i.e., not even computing neighborhoods of points. This property is
desirable, as we want to interactively extract different surfaces and display them immediately.
Section 6 provides the description of our approach including rendering features such as
transparency and shadows.
Since SPH simulations include a multitude of fields, it is of interest to investigate them
simultaneously and to explore their correlations. In Section 7, we investigate how multi-field
features can be detected and visualized. Detection is based on a clustering in the
multi-dimensional attribute space. The hierarchy of density clusters can be investigated using
coordinated views of the cluster tree, parallel coordinates of the multi-dimensional attribute
space, and a visualization of the volumetric physical space. The features are displayed in
physical space using surface extraction and rendering.
Finally, in Section 8, we explain how multiple scalar and volume fields can be explored
interactively using a visual system based on the methods described in this chapter. In
addition to the methods already mentioned, we support some further common visualization
functionality for scalar and vector fields.

2. Related work

In the astrophysics SPH community, visualization of slices through the volume, isosurface
extraction, direct volume rendering techniques, and particle rendering as color-mapped
points are most commonly used for the display of single scalar fields (Navratil et al., 2007;
Walker et al., 2005). A tool that provides such functionality (except for isosurfaces) is the freely
available visualization tool SPLASH (Price, 2007). The direct volume rendering is executed
by a ray casting approach, where integration along the rays is performed by integrating the
SPH kernel function. The high adaptivity of the SPH data forces one to use many rays to
not lose details in densely populated regions, which makes this purely software-based direct
volume rendering approach slow. Rotation, zooming, and similar desired features cannot
be achieved at interactive framerates (requiring about 20 frames per second). Navratil et al.
(2007) apply an inverse-distance-based interpolation for resampling the data to a regular grid
prior to isosurface extraction. Also, volume rendering approaches tend to resample over a
regular grid (Cha et al., 2009). However, due to the highly varying particle density (commonly
ten orders of magnitude), the precision of these approaches that resample over a static grid is
limited.

4 Hydrodynamics – Optimizing Methods and Tools
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The generation of tetrahedral meshes from particle data also has a long tradition.
Du & Wang (2006) give an overview over various approaches. Widely accepted are the
results given by Delaunay tetrahedrization (Delaunay, 1934), whose implementation is
also included into the Computational Geometry Algorithms Library (CGAL, 2011). More
recent approaches try to improve existing Delaunay tetrahedrization algorithms with
respect to robustness, quality, and efficiency. Robustness against numerical errors during
Delaunay insertion (Pav & Walkington, 2004) or for boundary recovery (Sapidis & Perucchio,
1991) is desired. Quality criteria with respect to some design goals are often
ensured by post-processing steps (Maur & Kolingerová, 2001). The incremental insertion
method (Borouchaki et al., 1995; George et al., 1991) is one of the most efficient
implementations. Still, computational costs are high. Co & Joy (2005) presented an
approach for isosurface extraction from point-based volume data that uses local Delaunay
triangulations, which keeps the number of points for each Delaunay triangulation step low
and thus improves the overall performance. An approach that also operates locally, but is
not based on tetrahedral meshes is given by Rosenberg & Birdwell (2008). They presented
an approach based on extracting isosurfaces while marching through slices, which works
at interactive rates for smaller number of particles. Our approach (Rosenthal & Linsen,
2006) was the first to extract isosurfaces directly from SPH data, which still outperforms the
algorithms listed above.
In terms of volume rendering approaches, splatting of transparent particle sprites is a popular
technique (Fraedrich et al., 2009; Hopf & Ertl, 2003; Hopf et al., 2004). A slice-based approach
was presented by Biddiscombe et al. (2008). The approach that is closest to the volume
rendering approach we propose in here is the work by Fraedrich et al. (2010). Instead of
reconstructing the field on a static grid, they use a view-dependent grid. Hence, when the
viewing parameters change, the reconstruction is recomputed, which allows for application
to the highly adaptive structure of SPH data.
For the visualization of flow fields, direct and 2D streamline visualization methods are
supported by the SPH data visualization tool SPLASH (Price, 2007). Other flow visualization
methods for SPH data rely on reconstructing over a grid or on extracting and displaying
integral lines using the SPH kernel. Schindler et al. (2009) make use of the SPH kernel
by presenting a method for vortex core line extraction which operates directly on the SPH
representation. It generates smoother and more spatially and temporally coherent results.
The underlying predictor-corrector scheme is specialized for several variants of vortex core
line definitions.

3. Direct isosurface extraction

Isosurface extraction is a standard visualization method for scalar volume data and has been
subject to research for decades. We proposed a method that directly extracts surfaces from
SPH simulation data without 3D mesh generation or reconstruction over a structured grid
(Rosenthal, 2009; Rosenthal & Linsen, 2006; Rosenthal et al., 2007). It is based on spatial
domain partitioning using a kd-tree and an indexing scheme for efficient neighbor search.
In every point in time, the result of an SPH simulation is an unstructured point-based volume
data set. More precisely, it is a set of trivariate scalar fields f : R

3 → R, whose values are given
for a large, finite set of sample points xi, whose positions are unstructured, i.e., they are not
arranged in a structured way, nor are any connectivity or neighborhood informations known
for the sample point locations. To visualize such a scalar field, our intention is to extract an
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isosurface Γiso = {x ∈ R
3 : f (x) = viso} with respect to a real isovalue viso out of the range

of f .
Our approach consists of a geometry extraction and a rendering step. The geometry extraction
step computes points pk ∈ R

3 on the isosurface, i.e., f (pk) = viso, by linearly interpolating
between neighbored pairs of samples. The neighbor information is retrieved by partitioning
the 3D domain into cells using a kd-tree. The cells are merely described by their index and
bit-wise index operations allow for a fast determination of potential neighbors. We use an
angle criterion to select appropriate neighbors from the small set of candidates. The output of
the geometry step is a point cloud representation of the isosurface. The final rendering step
uses point-based rendering techniques to visualize the point cloud.
In the following, all integers indexed with d, such as ad or 100d denote binary numbers. The
operator ⊕ denotes the bitwise Boolean exclusive-or operator. Finally, the operators ≪ and
≫ denote the bit-shift operators, which are recursively defined by

0. ad ≪ 0 = ad and ad ≫ 0 = ad.

1. ad ≪ j = (ad ≪ (j − 1)) ∗ 2.

2. ad ≫ j = (ad ≫ (j − 1)) div 2.

The indexing scheme of the kd-tree represents its construction. The father of node with binary
index bd has index bd ≫ 1 and its children have indices bd ≪ 1 and (bd ≪ 1)⊕ 1d. Figure 1
shows a 2D example. Thus, we can navigate through the tree using fast binary operations.
Moreover, qualitative propositions about the locations of cells can be made. For instance
the cells with index 1111d and 1000d lie in diagonally distant corners of the kd-tree. Thus,
most information is implicitly saved in the indexing scheme. We exploit this property for fast
neighbor search.

Fig. 1. Indexing scheme for two-dimensional kd-tree.

For validation, we have applied our approach to a sphere data set, which consists of randomly
distributed sample points in a 200 × 200 × 200 cube. The sample values describe the distance
to the center of a sphere. We extract an isosurface from the distance field using isovalue 70.
The generated and rendered sphere can be seen in Figure 2. Our direct isosurface extraction
algorithm for scattered data produces results of quality close to the results from standard
isosurface extraction algorithms for gridded data (like marching cubes). In comparison to
3D mesh generation algorithms (like Delaunay tetrahedrization), our algorithm is about one
order of magnitude faster for our examples.

4. Smooth isosurface extraction

SPH uses radial smoothing kernels since they ensure the exact conservation of the physically
conserved quantities (Rosswog, 2009). This has as a side effect that the particles are constantly
re-adjusting their positions which can lead to “noise” in the particle velocities. Moreover,

6 Hydrodynamics – Optimizing Methods and Tools
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Fig. 2. Isosurface extracted from an example 16M particles.

in particular in sparsely sampled regions the radial kernels can produce some “bumpiness”
when direct isosurface extraction from SPH scalar fields is applied. Figure 3(a) shows the
result of direct isosurface extraction from SPH data. Here, points on the extracted isosurface
are rendered as circular splats to show the noise issue. Hence, it is desirable to add a
controllable smoothing term to the isosurface extraction procedure. Smooth surface extraction
using partial differential equations (PDEs) is a well-known and widely used technique for
visualizing volume data. Existing approaches operate on gridded data and mainly on regular
structured grids. When considering unstructured point-based volume data, where sample
points do not form regular patterns nor are they connected in any form, one would typically
resample the data over a grid prior to applying the known PDE-based methods. We proposed
an approach that directly extracts smooth surfaces from unstructured point-based volume
data without prior resampling or mesh generation (Rosenthal & Linsen, 2008b).
When operating on unstructured data one needs to quickly derive neighborhood information,
which we retrieve from the kd-tree. We exploit neighborhood information to estimate
gradients and mean curvature at every sample point using a four-dimensional least-squares
fitting approach. This procedure finally results in a closed formula for the gradient
approximation. For a one-dimensional function ϕ, represented through the points
(x1, ϕ1), . . . , (xn , ϕn), we get

dϕ

dx
=

n
n

∑
i=1

xi ϕi −
n

∑
i=1

xi

n

∑
i=1

ϕi

n
n

∑
i=1

x2
i −

(

n

∑
i=1

xi

)2 . (1)

It can be shown that this scheme is a generalization of common finite differencing schemes.
Having gradients ∇ϕ of the level-set function ϕ and mean curvature κϕ computed, one can
apply a PDE-based method that combines hyperbolic advection to an isovalue of a given
scalar field and mean curvature flow. A time step is performed with respect to the equation

∂ϕ

∂t
=

(

a ( f − fiso − ϕ) + bκϕ
)

|∇ϕ| , (2)

which models hyperbolic normal advection, weighted with factor a > 0, and mean curvature
flow, weighted with factor b > 0. This leads to a level-set segmentation algorithm. Since we
are solving a partial differential equation by means of an explicit time integration scheme, the
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time step is restricted by the Courant-Friedrichs-Lewy (CFL) stability criterion Courant et al.
(1928). Due to different conditions in different parts of the fluid, the allowed time steps can
vary considerably between different particles. In order to avoid the computational burden
of advancing all particles globally on the shortest allowed time step, one can also advance
different elements on their own individual time steps, a technique that is commonly used in
expensive SPH simulations.
We extract a smooth surface by successively fitting a smooth level-set function to the data set.
This level-set function is initialized as a signed distance function. For each sample and for
every time step we compute the respective gradient, the mean curvature, and a stable time
step. With this information the level-set function is manipulated using an explicit Euler time
integration. The process successively continues with the next sample point in time. If the
norm of the level-set function gradient in a sample exceeds a given threshold at some time,
the level-set function is reinitialized to a signed distance function. After convergence of the
evolution, the resulting smooth surface is obtained by extracting the zero isosurface from the
level-set function using direct isosurface extraction from unstructured point-based volume
data (as described above) and rendering the extracted surface using point-based rendering
methods. Figure 3(b) shows the result of our smooth isosurface extraction for the same data
set as in Figure 3(a) and using the same splat-based rendering method. It can be observed that
the objective of extracting a smooth version of an isosurface has been achieved (especially in
the zoomed-in view).

(a) (b)

Fig. 3. Comparison between (a) direct isosurface extraction and (b) smooth isosurface
extraction for an SPH simulation data set.

5. Acceleration of smooth isosurface extraction

5.1 Narrow-band processing

The global processing of the level-set function can be slow when dealing with unstructured
point-based volume data sets containing several million data points. We developed an
improved level-set approach that performs the process of the level-set function locally

8 Hydrodynamics – Optimizing Methods and Tools
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(Rosenthal et al., 2010). Since for isosurface extraction we are only interested in the zero
level set, values are only updated in regions close to the zero level set. In each iteration
of the level-set process, the zero level set is extracted using direct isosurface extraction
from unstructured point-based volume data and a narrow band around the zero level set
is constructed. The band consists of two parts: an inner and an outer band. The inner band
contains all data points within a small area around the zero level set. These points are updated
when executing the level-set step. The outer band encloses the inner band providing all those
neighbors of the points of the inner band that are necessary to approximate gradients and
mean curvature. As before, neighborhood information is obtained using an efficient kd-tree
scheme, gradients and mean curvature are estimated using a four-dimensional least-squares
fitting approach.
The construction of the two-layer band around the zero level set is shown in Figure 4. The zero
level set (colored blue) is extracted in form of a point cloud representation. Then, all sample
points with distance to the zero level set less than a distance dα are marked as belonging to
the inner layer of the band (green). Thereafter, all additional sample points needed for the
gradient computations within the level-set process are marked as belonging to the outer layer
of the band (red points). All other sample points (grey) are not used for the current level-set
step. The distance dα can be estimated using the CFL condition that bounds the level-set step.

Fig. 4. Narrow-band construction for more efficient level-set processing.

How the level-set function is updated after having executed a level-set iteration on the
narrow band with size dα is shown in Figure 5: Points (green) with minimum distance to
the zero-level-set points (blue) smaller than dα

4 have been in the α-band in the preceding time
step and, thus, their level-set function values have been updated in the level-set iteration step.
Points (red) in the outer band or with distance to the zero level set greater than dα

2 might have
not be included in the computations of the last level-set iteration step. We assign their level-set
function value to the signed distance to the zero-level-set points. For all points in the α-band

with a distance to the zero level set in the range
[

dα
4 , dα

2

]

, the new level-set function value is

interpolated between the level-set function value from the preceding level-set step and their
signed distance to the zero-level-set points.
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$\fr

$\fr

dα
4

dα
2

Fig. 5. Narrow-band update during level-set procedure (dα denotes the size of the narrow
band).

For performance analysis we applied it to an unstructured point-based volume data set with
eight million randomly distributed samples. The data set was generated by resampling the
regular Hydrogen data set of size 128 × 128 × 128 to the random points. Illustrations of the
evolution process for this data set are shown in Figure 6 (Data set courtesy of Peter Fassbinder
and Wolfgang Schweizer, SFB 382 University Tübingen.). For each time step, a splat-based
ray tracing of the zero level set is shown on the right-hand side. On the left-hand side, a point
rendering of a slab of the data set is shown illustrating the narrow band. Extracted surface
points of the zero level set are colored black, sample points in the α-band are colored green,
and sample points in the outer band are colored red. Sample points not belonging to the
narrow band are not rendered.
The whole local level-set process for extracting a smooth isosurface from the Hydrogen data
set with eight million sample points and given nearest neighbors needed 24 steps and was
performed in 6 minutes. For the four million version of the data set, the overall computation
time for the entire level-set approach including pre-computations dropped to 84 seconds.
This is a significant speed-up in comparison to the time of 13 minutes needed without
the narrow-band processing. Still, it produces equivalent results in terms of quality and
correctness.

5.2 Variational level-set detection of local isosurfaces

Another acceleration of the level-set approach can be achieved by only operating locally on a
region of interest. We derived a variational formulation for smooth local isosurface extraction
using an implicit surface representation in form of a level-set approach, deploying a moving
least-squares (MLS) approximation, and operating on a kd-tree (Molchanov et al., 2011). The
locality of our approach has two aspects: First, our algorithm extracts only those components
of the isosurface, which intersect a subdomain of interest. Second, the action of the main
term in the governing equation is concentrated near the current isosurface position. Both
aspects reduce the computation times per level-set iteration. As for most level-set methods
a reinitialization procedure is needed, but we also consider a modified algorithm where this
step is eliminated. The final isosurface is extracted in form of a point cloud representation.

10 Hydrodynamics – Optimizing Methods and Tools

www.intechopen.com



SmoothViz: Visualization of Smoothed Particles Hydrodynamics Data 9

Step 9 Step 15

Step 21 Step 24

Fig. 6. Narrow-band level-set evolution.

We also presented a novel point completion scheme that allows us to handle highly adaptive
point sample distributions.
A variational approach is used to derive the local level-set updates. We start with a
construction of an error functional E, which is the target function that we want to minimize.
The error depends on the given data f , the constant fiso representing the isovalue, and a
level-set function ϕ together with its derivatives of first order, i.e., E = E(ϕ,∇ϕ; f , fiso). The
total error consists of two weighted terms

E = E1 + λE2, (3)

measuring accuracy and smoothness of the solution, respectively. We propose to use

E1 =
1
4

∫

D
(sgn(ϕ(x))− sgn( f (x)− fiso))

2 dx, (4)

and
E2 =

∫

D
δ(ϕ(x)) |∇ϕ(x)|dx. (5)

Here, we use the standard definitions of the sign function sgn(x) and the Dirac function δ(x)
and the derivative is used in the sense of distributions.
A function ϕ∞ minimizing some functional of the form

∫

L(ϕ,∇ϕ)dx should satisfy the
Euler-Lagrange equation

(

∂L

∂ϕ
− ∑

i

∂

∂xi

∂L

∂ϕi

)

∣

∣

∣

∣

ϕ=ϕ∞

= 0, (6)
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where ϕi is the i-th component of ∇ϕ. We derive the Euler-Lagrange equations for functionals
E1 and E2. The idea of a level-set approach is to detect ϕ∞ as a fixed point of an evolution
equation for ϕ = ϕ(x, t) minimizing E. Here, t is an artificial time parameterizing the
minimization process ϕ(x, t) → ϕ∞(x) as t → ∞. To construct the PDE, one equates the
left-hand side of Euler-Lagrange Equation with −∂ϕ/∂t. For the functional E, it reads

∂ϕ

∂t
= δ(ϕ) (sgn( f − fiso)− sgn(ϕ)) + λ δ(ϕ) ∇ ·

(

∇ϕ

|∇ϕ|

)

. (7)

Subsequently, this equation is regularized and discretized in space and time leading to an
iterative process for the value of ϕ at each sample point. Using an explicit Euler time
integration, we obtain the iteration step

ϕk+1 = ϕk + ∆t

[

δǫ(ϕk) (sgn( f − fiso)− sgnǫ(ϕk)) + λ δǫ′ (ϕk) ∇ ·

(

∇ϕk

|∇ϕk|

)]

(8)

which is applied to all sample points xi, where the upper index k stands for the k-th layer
in time. This update rule can be applied locally. Figure 7 shows how smooth isosurface
components are extracted locally within a given region of interest.

(a) (b) (c)

Fig. 7. Local level-set evolution of isosurfaces within a region of interest for multi-component
data sets: (a) selecting region of interest; (b) extracted isosurface components; (c) same
procedure applied to extract one component of an isosurface from the density field of an SPH
simulation of a white dwarf.

5.3 Non-iterative second-order approximation of signed distance function

Signed distance functions are an obligatory ingredient to the level-set methods. When
assuming that the underlying function is a signed distance function, several simplifications
and speed-ups of the level set approach can be achieved. Usual approaches for the
construction of signed distance functions to a surface are either based on iterative solutions of
a special partial differential equation or on marching algorithms involving a polygonization
of the surface. We propose a novel method for a non-iterative approximation of a signed
distance function and its derivatives in a vicinity of a manifold. We use a second-order scheme
to ensure higher accuracy of the approximation (Molchanov et al., 2010).
The manifold is defined (explicitly or implicitly) as an isosurface of a given scalar field, which
may be sampled at a set of irregular and unstructured points. We use a spatial subdivision in
form of a fast kd-tree implementation to access the samples and perform transformations on

12 Hydrodynamics – Optimizing Methods and Tools
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the data. We derive a novel moving least-squares (MLS) approach for a second-order algebraic
fitting to locally reconstruct the isosurface. Stability and reliability of the algorithm is achieved
by a proper scaling of the MLS weights, accurate choices of neighbors, and appropriate
handling of degenerate cases. We obtain the solution in an explicit form, such that no iterative
solving is necessary, which makes our approach fast. The accuracy relies on second-order
algebraic fitting.
We propose to perform the following steps to construct a signed distance field around an
implicitly given isosurface:

1. Given a scalar field f (x) on samples xi, extract a set of isopoints pj corresponding to the
isovalue fiso; estimate normals on isopoints nj using kd-tree and MLS technique. Skip this
step if the isosurface is given explicitly.

2. For a given α > 0 mark all samples xi lying in α-neighborhood of the isosurface; jointly
establish lists of neighboring isopoints for the marked samples.

3. For each sample yk in the band find its neighbors and check two angles to detect a layer
sheet.

4. If the sample lies between isosurface components, compute the distances to both of them
as in the next step, compare the values found and take the minimal one.

5. If the criterion for a layer is not fulfilled:
• perform a local sphere fitting to reconstruct a part of the isosurface close to yk,
• if the sphere degenerates to a plane, compute a distance between the sample and the

surface (taking into consideration its orientation),
• if the sphere is not degenerated, use the isopoint normals to analyse its convexity and

compute the distance between the sample and the sphere.

An accurate computation of the distance between a sample and an isosurface is hard if the
isosurface is represented as a sparse set of isopoints. Therefore a (local) reconstruction of
the smooth surface is required. In our approach we find an implicit algebraic surface to fit
the discrete data which includes isopoints positions and associated normals. We consider
algebraic spheres of the form

s(x) = a0 + a · x + a4x · x, (9)

where a = (a1, a2, a3) and x = (x1, x2, x3). The solution may naturally degenerate to a plane as
a4 vanishes and therefore is exact for flat surfaces. However, a direct enrichment of the class is
problematic: there exist no analytic formula for distance to algebraic ellipsoids. We utilize an
approach of algebraic sphere fitting using positional and derivative constraints. First, we find
m + 1 isopoints nearest to the point of interest y. Let h be the distance from y to the farthest
neighbor. This parameter will define the support size of the weighting function

ωy(p) = max

{

(

1 −
‖y − p‖2

h2

)4

, 0

}

. (10)

Now we look for the optimal algebraic sphere, whose zero-isosurface {x ∈ R
3 : s(x) = 0}

optimally fits the positions of the isopoints, i.e., s(pj) = 0, and their normals, i.e., ∇s(pj) = nj.
The best fit is defined by parameters a0, . . . , a4 minimizing the cost function

E(a0, . . . , a4) =
m

∑
j=1

ωj

[

|s(pj)|
2 + β‖∇s(pj)− nj‖

2
]

(11)
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with ωj = ωy(pj). The minimization problem

sopt(x; a0, . . . , a4) = arg min E (12)

has the following explicit solution

a4 =
β

2
∑ ωjpj · nj − ∑ ωjpj · ∑ ωjnj/Ω

∑ ωjpj · pj − ∑ ωjpj · ∑ ωjpj/Ω
, (13)

a = ∑ ωjnj/Ω − 2a4 ∑ ωjpj/Ω, (14)

a0 = a · ∑ ωjpj/Ω − a4 ∑ ωjpj · pj/Ω, (15)

where Ω = ∑ ωj.
Figure 8 shows the result when extracting different isosurfaces from a signed distance field
to a surface in explicit point cloud representation. Isosurfaces for different isovalues fiso of
the signed distance function field constructed for the bunny data set with 35k surface points,
(Data set courtesy of the Stanford University Computer Graphics Laboratory.).

fiso = 4.0 fiso = 2.0 fiso = 0.0 fiso = −3.5

Fig. 8. Isosurfaces extracted from a non-iterative second-order approximation of the signed
distance function to a surface in point cloud representation.

We proposed a novel method for the efficient computation of a signed distance function
to a surface in point cloud representation. This allows us to develop a fast level-set
approach for extracting smooth isosurfaces from point-based volume data, as we can use
any point cloud surface as initial zero level set. Since for most applications a rough
estimate of the desired surface can be obtained quickly, the overall level-set process can
be shortened significantly. Additionally, we can avoid the computational overhead and
numerical difficulties of PDE-based reinitialization.
In summary, putting all acceleration methods together we achieved to reduce the computation
costs for the entire level-set approach including all components by about two orders of
magnitude. For data sets with 16 million particles, the processing time dropped from tenths
of minutes to tenths of seconds.

6. Image-space point cloud surface rendering

The extracted surfaces are given in point cloud surface representation, i.e., points on the
surfaces with no structure or neighborhood known. Reconstructing a triangular mesh from
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these point clouds can be very time consuming. Instead, point-based rendering approaches
have gained a major interest in recent years, basically replacing global surface reconstruction
with local surface estimations using, for example, splats or implicit functions. Crucial to
their performance in terms of rendering quality and speed is the representation of the local
surface patches. We presented a novel approach that goes back to the original ideas of
Grossman & Dally (1998) to avoid any object-space operations and compute high-quality
renderings by only applying image-space operations (Rosenthal & Linsen, 2008a).
Starting from a point cloud including normals (obtained from gradients of the underlying
scalar field), we render a lit point cloud to a texture with color, depth, and normal information.
Subsequently, we apply several filter operations. In a first step, we use a mask to fill
background pixels with the color and normal of the adjacent pixel with smallest depth.
The mask assures that only the desired pixels are filled. We use the eight masks shown in
Figure 9, where the white pixels indicate background pixels and the dark pixels could be both
background or non-background pixels. For each background pixel, we test whether the 3 × 3
neighborhood of that pixel matches any of the cases. In case it does, the pixel is not filled.
Otherwise, it is filled with the color and depth information of the pixel with smallest depth
out of the 3 × 3 neighborhood.

Fig. 9. Filters with size 3 × 3 for detecting whether a background pixel is beyond the
projected silhouette of the object. If one of the eight masks matches the neighborhood of a
background fragment, it is not filled. White cells indicate background pixels, dark cells may
be background or non-background pixels.

Similarly, in a second pass, we fill the pixels that display occluded surface parts. The resulting
piecewise constant surface representation does not exhibit holes anymore and is smoothed
by a standard smoothing filter in a third step. The same three steps can also be applied to
the depth channel and the normal map such that a subsequent edge detection and curvature
filtering leads to a texture that exhibits silhouettes and feature lines. Anti-aliasing along the
silhouettes and feature lines can be obtained by blending the textures. When highlighting
the silhouette and feature lines during blending, one obtains illustrative renderings of the
3D objects. The GPU implementation of our approach achieves interactive rates for point
cloud renderings without any pre-computation. Figure 10 shows the individual steps of the
proposed pipeline including illustrative rendering. Figure 13(a) shows such another rendering
result for a data set with 883k surface points. The rendering is performed at 52 frames per
second (fps).
For a realistic visualization of the models, transparency and shadows are essential features.
We propose extensions to our method for point cloud rendering with transparency and
shadows at interactive rates (Dobrev et al., 2010a;b). Again, our approach does not require
any global or local surface reconstruction method, but operates directly on the point cloud.
All passes are executed in image space and no pre-computation steps are required. The
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Image-space point cloud surface rendering pipeline applied to the Dragon data set
(Data set courtesy of Stanford University Computer Graphics Lab.): (a) Lit points; (b) after
filling background pixel; (c) after filling occluded pixels; (d) after smoothing; (e) extracted
feature lines; (f) illustrative rendering.

underlying technique for our approach is a depth peeling method for point cloud surface
representations. The idea of depth peeling is to successively remove the front layer to extract
hidden layers. Hence, one virtually renders the object and all visible parts represent the first
layer. This is removed and the process is iterated to successively extract all hidden layers. For
surfaces in point cloud representation, another challenge arises, as shown in Figure 11. When
projecting the first layer (blue) in point cloud representation to the screen, the layer exhibits
holes such that hidden layers (red) or the background (grey) become visible. To overcome
the problem we use, again, the image-space masks presented above to produce layers without
holes. Figure 12 shows four different layers of the Blade data set that are extracted using depth
peeling.

Fig. 11. Depth peeling for point cloud surfaces.

Having detected a sorted sequence of surface layers, they can be blended front to back with
given opacity values to obtain renderings with transparency. These computation steps achieve
interactive frame rates. Figure 13(b) shows a rendering with transparency. The rendering is
performed at 17.5 fps.
To determine which parts of a surface are directly lit by a light source and which parts fall into
the shadow of the light source, we determine and mark all points that are visible from the light
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(a) (b) (c) (d)

Fig. 12. Four successive layers extracted using depth peeling on point cloud surface
representations.

source similar to “pre-baking” irradiance textures for polygonal mesh scenes. We use point
cloud shadow textures, which are basically Boolean arrays that store which points are lit. Once
the shadow texture is determined, lit points are drawn properly illuminated with ambient,
diffuse, and specular reflection components using Phong’s illumination model (Phong, 1975),
while unlit points are only drawn using the ambient reflection component. This illumination
creates the effect of shadows, as only those points are marked unlit where the light source is
occluded by other surface parts.
To determine which points are visible from the light source, we render the scene with the
light source’s position being the viewpoint with depth testing enabled. All visible points are
marked in an array. However, we observe that, due to the high point density, it is not unusual
that several adjacent points of one surface layer project to the same fragment position. The
suggested procedure would only mark the closest point for each fragment as lit, which would
lead to an inconsistent shadow textures. Again, depth peeling is the key to solve this problem,
but we apply it differently. While for transparent surface rendering our goal was to extract
different surface layers, now we use it to find all the points that belong to a single surface
layer, namely the closest one.
For the shadow texture computation, we also apply a Monte-Carlo integration method to
approximate light from an area light source, leading to soft shadows. Shadow computations
for point light sources are executed at interactive frame rates. Shadow computations for area
light sources are performed at interactive or near-interactive frame rates depending on the
approximation quality. Figure 13(c) shows a rendering with shadows using the Monte-Carlo
approach. The rendering with 5 Monte Carlo samples is performed at 9 fps, while the
rendering without Monte-Carlo sampling, i.e., with 1 sample, is performed at 25 fps.

(a) (b) (c)

Fig. 13. (a) Image-space point cloud surface rendering applied to the Blade data set (courtesy
of Visualization Toolkit). (b) Rendering with transparency using depth-peeling approach. (c)
Rendering with shadows using Monte-Carlo integration.
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We also investigated the use of ray tracing techniques for high-quality rendering based on
splat representations, but the complexity of this approach impedes interactivity (Linsen et al.,
2007).

7. Surface extraction from multiple fields

As the data sets resulting from SPH simulations typically contain a multitude of physical
variables, it is desirable that visualization methods take into account the entire multi-field
volume data rather than concentrating on one variable. We presented a visualization approach
based on surface extraction from multi-field particle volume data (Linsen et al., 2008). The
surfaces segment the data with respect to the underlying multi-variate function. Decisions
on segmentation properties are based on the analysis of the multi-dimensional attribute
space. The attribute space exploration is performed by an automated multi-dimensional
hierarchical clustering method, whose resulting density clusters are shown in the form of
density level sets in a 3D star coordinate layout (Long, 2010; Long & Linsen, 2011). In the star
coordinate layout, the user can select clusters of interest. A selected cluster in attribute space
corresponds to a segmenting surface in object space. Based on the segmentation property
induced by the cluster membership, we extract a surface from the volume data. We directly
extract our surfaces from the SPH data without prior resampling or grid generation. The
surface extraction computes individual points on the surface, which is supported by an
efficient neighborhood computation. The extracted surface points are, again, rendered using
point-based rendering operations. Our approach combines methods in scientific visualization
for object-space operations with methods in information visualization for attribute-space
operations.

7.1 Attribute space visualization

Given the multi-dimensional attribute space with a large number of d-dimensional points
lying in that attribute space, each point corresponds to one sample of the volumetric data field
and each dimension represents one data attribute (typically one scalar value) stored at that
sample. In order to understand the distribution of the points in attribute space, we propose to
compute a density function and to determine the number of clusters as well as the high density
region of each cluster. Given a multivariate density function f (x) in d dimensions, modes of
f (x) are positions where f (x) has local maxima. Thus, a mode of a given distribution is more
dense than its surrounding area. We want to find the attraction regions of modes. To do
so, we choose various values for constants λ (0 < λ < supx f (x)) and consider regions of
the particle space where values of f (x) are greater than or equal to λ. The λ-level set of the
density function f (x) denotes a set S( f , λ) = {x ∈ R

d : f (x) ≥ λ} . The set S( f , λ) consists of
a number q of connected components Si( f , λ) that are pairwise disjoint. The subsets Si( f , λ)
are called λ-density clusters (λ-clusters for short). A cluster can contain one or more modes
of the respective density function. Let the domain of the data set be given in the form of a
d-dimensional hypercube, i. e., a d-dimensional bounding box. To derive the density function,
we spatially subdivide the domain of the data set into cells of equal shape and size. Thus,
the spatial subdivision provides a binning into d-dimensional cells. For each cell we count the
number of points lying inside. The multivariate density function f (x) is given by the number
of points per cell divided by the cell’s area and the overall number of data points. As the
area is equal for all cells, the density of each cell is proportional to the number of data points
lying inside the cell. The cell should be small enough such that local changes of the density
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function can be detected but also large enough to contain a large number of points such that
averaging among points is effective. Because of the curse of dimensionality, there will be many
empty cells. We do not need to store empty cells such that the amount of cells we are storing
and dealing with is (significantly) smaller than the number of the d-dimensional points. The
λ-clusters can be computed by detecting regions of connected cells with densities larger than
λ. As we identify density with point counts, the densities are integer values. Hence, we start
by computing density clusters for λ = 1. Subsequently, we process each detected λ-cluster
individually by iteratively removing those cells with minimum density, where the minimum
density increases in steps of 1. If this process causes a cluster to fall into two subclusters,
the subclusters represent higher-density clusters within the original cluster. If a cluster does
not fall into subclusters during the process, it is a mode cluster. This process generates a
hierarchical structure, which is summarized by the high density cluster tree (short: cluster
tree). The root of the cluster tree represents all points. Figure 14(a) shows a cluster tree with
4 mode clusters represented by the tree’s leaves. Cluster tree visualization provides a method
to understand the distribution of data by displaying the attraction regions of modes of the
multivariate density function. Each cluster contains at least one mode.

(a) (b) (c)

Fig. 14. (a) Cluster tree of density visualization with four modes shown as leaves of the tree.
(b) Nested density cluster visualization based on cluster tree using 3D star coordinates. (c)
Right-most cluster in (b) is selected and its homogeneity is evaluated using parallel
coordinates.

Having computed the d-dimensional high density clusters, we need to project them into a
three-dimensional space for visualization purposes. In order to visualize the high density
clusters in a way that allows clusters to be correlated with the d dimensions, we need to use
a coordinate system that incorporates all d dimensions. Such a coordinate system can be
obtained by using star coordinates. When projecting the d-dimensional high density clusters
into a three-dimensional star coordinate representation, clusters should remain clusters. Thus,
points that are close to each other in the d-dimensional feature space should not be further
apart after projection into the three-dimensional space. Let O be the origin of the 3D star
coordinate system and (a1, . . . , ad) be a sequence of d three-dimensional vectors representing
the axes. The mapping of a d-dimensional data point x = (x1, . . . , xd) to a three-dimensional
data point Π(x) is determined by the average sum of vectors ak of the 3D star coordinate
system multiplied with its attributes xk for k = 1, . . . , d, i.e.,

Π(x) = O +
1
d

d

∑
k=1

xkak. (16)
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Since it can be shown that
||Π(x)− Π(y)||1 ≤ ||x − y||1 (17)

for any d-dimensional points x and y, the distance of the images of two d-dimensional points
is lower than or equal to the distance of the points with respect to the L1-norm. Therefore,
two points in the multi-dimensional space are projected to 3D star coordinates preserving the
similarity properties of clusters (at least with respect to the L1-norm). In other words, the
mapping of d-dimensional data to the 3D visual space does not break clusters. The second
property that our projection from multi-dimensional feature space into three-dimensional
star coordinate systems should fulfill is that separated clusters should not be projected into
the same region. The projection into star coordinates may cause severe cluttering of clusters
when not carefully choosing the axes (a1, . . . , ad). To alleviate the problem of overlapping
clusters we introduce a method which chooses a "good" coordinate system. Assume that a
hierarchy of high density clusters have q mode clusters, which do not contain any higher level
densities. Let mi be the barycenter of the points within the ith cluster, i = 1, . . . , q. We want to
choose a projection that maintains best the distances between clusters. Let {v1, v2, v3} be an
orthonormal basis of the candidate three-dimensional space of projections. The desired choice
of a 3D star coordinate layout is to maximize the distance of the q projected barycenters VTmi

with V = [v1, v2, v3]
T, i.e. to maximize the objective function

∑
i<j

||VTmi − VTmj||
2 = trace(VTSV) (18)

with
S = ∑

i<j

(mi − mj)(mi − mj)
T . (19)

Thus, the three vectors v1, v2, v3 are the three unit eigenvectors corresponding to the three
largest eigenvalues of matrix S. This step is a principal component analysis (PCA) applied to
the barycenters of the clusters. As a result, we choose the d three-dimensional axes of the 3D
star coordinate system as ai = (v1i, v2i, v3i), i = 1, . . . , d.
Obviously, we can also project into 2D coordinates in the same way. However, when
comparing and evaluating projections to 2D and 3D visual space (Poco et al., 2011), a
quantitative analysis confirms that 3D projections outperform 2D projections in terms of
precision. Moreover, a user study indicates that certain tasks can be more reliably and
confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on
2D screens, interaction is more difficult.
After having computed the projected clusters, we can display them using star coordinates by
rendering a point primitive for each projected data point. A less cluttered and more beautiful
display is to render the boundary of the clusters. Considering the cluster that is described by
the set of points {pi = (xi, yi, zi) : i = 1, . . . , m} after being projected into the 3D space.
In order to compute the boundary of this group of points,we need to have a continuous
representation of the group. Therefore, we consider the function

fh(p) =
m

∑
i=1

K

(

p − pi

h

)

, p ∈ R
3 , (20)

where K is a kernel function and h is the bandwidth. Then, we can reconstruct the field over a
regular grid and render the boundary set of the points by using standard isosurface extraction
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methods to extract the boundary surface of the set S(h, c) = {p ∈ R
3 : fh(p) ≥ c}, where c

is an isovalue. We choose parameter h and c to guarantee that S(h, c) is connected and has a
volume of minimum extension. The kernel function should be sufficiently smooth and have
a small compact support. For example, we can choose K(p) = (1 − ||p||2)2 for ||p|| ≤ 1 and
K(p) = 0 otherwise and the bandwidth h to be equal to the longest length of the minimum
spanning tree of these m points. In Figure 14(b) we show the visualization of the clusters by
rendering such boundary surfaces, where it can be shown that for the chosen kernel isovalue
c = 9

16 is appropriate. In order to visualize all clusters of the cluster tree, we render the
surfaces in a semi-transparent fashion. The resulting visualization shows sequences of nested
surfaces, where the inner surfaces represent higher density levels. Figure 14(b) shows the
nested density cluster visualization with respect to the cluster tree in Figure 14(a).

7.2 Coordinated views

Generating all clusters and displaying them in star coordinates allows for further analysis
of the detected clusters. The simplest interaction method is to select individual clusters by
just clicking at the boundary surface. When a cluster is selected, intra-cluster variability is
visualized using parallel coordinates, see Figure 14(b) and (c). In both pictures the relation
between the selected cluster with the dimension can be observed.
Moreover, we visualize the coordinated view in physical space, which exhibits the spatial
location of the selected feature. The rendering in physical space can be preformed by just
plotting all particles that belong to the selected feature or by extracting a boundary surface
of that feature, i.e., a surface that separates all particles that belong to the feature from all
particles that do not belong to the feature. Figure 15 shows an attribute-space rendering of the
detected clusters in 3D optimized star coordinates (a), a color-coded object-space rendering
of the clustered particles (b), and a separation surface of clusters in object space (c). The
underlying SPH simulation is that of tidal disruption and ignition of a white dwarf by a
moderately massive black hole (Rosswog et al., 2009).

(a) (b) (c)

Fig. 15. (a) Seven-dimensional attribute space visualization of SPH data set using optimized
3D star coordinates. (b) Object space visualization of cluster distribution. (c) Object space
visualization of a separating surface.

For the visualization of enclosing surfaces in attribute as well as in object space, we looked
into an alternative approach of enclosing surfaces for point clusters using 3D discrete Voronoi
diagrams (Rosenthal & Linsen, 2009). Our system provides three different types of enclosing
surfaces. By generating a discrete distance field to the point cluster and extracting an
isosurface from the field, an enclosing surface with any distance to the point cluster can be
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generated. As a second type of enclosing surfaces, a hull of the point cluster is extracted. The
generation of the hull uses a projection of the discrete Voronoi diagram of the point cluster
to an isosurface to generate a polygonal surface. Generated hulls of non-convex clusters are
also non-convex. The third type of enclosing surfaces can be created by computing a distance
field to the hull and extracting an isosurface from the distance field. This method exhibits
reduced bumpiness and can extract surfaces arbitrarily close to the point cluster without
losing connectedness. Figure 16 shows the idea of the different approaches starting from
an isosurface from the distance field to the point cluster (a), connecting the neighbors that
contribute to the surface in (a) to form a non-convex hull (b), and computing surfaces that
are equidistant to the computed non-convex hull (b). Figure 17 shows a comparison of the
different enclosing surfaces when applied to a cluster of points when projected into optimized
star coordinates.

a) b)

Fig. 16. (a) Extracting an isosurface from the distance field to the point cluster. Voronoi
regions on the isosurface induce neighborhoods. (b) Neighbors are connected to form a hull.
The image also shows an isosurface extracted from the distance field to the hull.

We extended our work on interactivity by explicitly encoding the cluster hierarchy in a
tree that is visually encoded in a radial layout. Coordinated views between cluster tree
visualization and parallel coordinates as well as object-space visualizations allow for an
interactive analysis of multi-field SPH data (Linsen et al., 2009). The cluster tree allows for the
selection of detected clusters, the parallel coordinate plots show the properties of the selected
clusters, and object-space visualizations in form of extracted surfaces or particle distributions
exhibit the location of the respective clusters in physical space. Figure 18 shows such a visual
analysis set-up when applied to the IEEE Visualization Contest data (Rosenthal et al., 2008).
We also proposed a method to integrate the parallel coordinates into the cluster tree
visualization. The MultiClusterTree approach (Long & Linsen, 2011) uses circular parallel
coordinates for the embedding into the radial hierarchical cluster tree layout, which allows
for the analysis of the overall cluster distribution. This visual representation supports the
comprehension of the relations between clusters and the original attributes. The combination
of the 2D radial layout and the circular parallel coordinates is used to overcome the
overplotting problem of parallel coordinates when looking into data sets with many records.
Figure 19 shows how integrated circular coordinates can provide a good overview of the
cluster distribution.
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Fig. 17. Different visualizations of two point clusters (colored red and blue) from the 2008
IEEE Visualization Design Contest data. The clusters were found using density-based
clustering of multidimensional feature space and were projected to a 3D visual space using a
linear projection. Additionally to the cluster points (a), three types of enclosing surfaces are
shown. (b) Isosurface extraction from distance field computed using a 3D discrete Voronoi
diagram of resolution 256 × 256 × 256. (c) Hull of the cluster computed from the isosurface
of the distance field. (d) Isosurface extraction from distance field to hull.

Fig. 18. Coordinated views allow for selecting clusters in cluster tree and investigating
properties in attribute space (using parallel coordinates) as well as locations in physical
space.

8. Interactive visual system for exploration of multiple scalar and flow fields

Our research results are combined in the SmoothViz software system that is offered to the SPH
community via our website (http://vcgl.jacobs-university.de/software). Not all presented
features are included yet. Currently, the system consists of three modules responsible
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Fig. 19. Integrated circular parallel coordinates in clusters tree visualization for data set with
hierarchical clusters.

for time-varying data manipulation, scalar field exploration, and flow field visualization.
An intuitive graphical user interface (GUI) allows for easy processing and interaction.
Additional functionalities and visualizations that are common in the SPH community have
been included.
First, the user can load SPH data containing time-varying particle positions and time-varying
multiple scalar and vector field values sampled at the particles. A 3D view of the particle
distribution at a chosen time step allows the user to adjust the viewing parameters using
arbitrary rotation and translation of camera. Loading of successive or preceding time steps
from the time-varying series of data sets is as easy as play or rewind in a standard media
player. Extracted pathlines can show evolution in time of an individual particle or sets of
particles. Figure 20(a) shows the GUI and a particle distribution plot for a chosen time step.
There are two options to represent the structure of a selected scalar field: Maximal intensity
projection plots can render any of the scalar fields using one of the build-in color maps and
allowing for manually modifying the transfer function. Figure 20(b) shows the GUI for the
transfer function modification and the respective maximum intensity plot of a chosen scalar
field. Alternatively, isosurfaces can be extracted for interactively selected isovalues and shown
using a point splatting technique or a dense point cloud rendering. Figure 20(c) shows a
number of nested isosurfaces using point cloud renderings.
Finally, a specified number of streamlines can be computed with respect to the vector field
chosen by the user. Combined views are possible to explore multiple fields simultaneously,
e.g. multiple isosurfaces together with stream- or pathlines. Figure 20(d) shows an isosurface
rendering using point splatting combined with a rendering of selected streamlines. For more
details on the system, we refer to the user manual that comes with the SmoothViz software
package.
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(a) (b)

(c) (d)

Fig. 20. Screenshots of SmoothViz software system for SPH data exploration: (a)
Three-dimensional particle distribution modeling a White Dwarf passing close to a Black
Hole. (b) Maximal intensity projection plot of the density field of a White Dwarf with user
defined transfer function; (c) Several density isosurfaces of two White Dwarfs in point-based
representation. (d) Interplay of a velocity field (shown with streamlines) and a temperature
field (shown as splatted isosurface).

9. Conclusion

We have presented approaches for visualization of SPH data. All methods operate directly
on the particles that are distributed in a highly adaptive and irregular manner and that do
not have any connectivity. Operating on the particles avoids the introduction of errors that
occur when resampling to a grid. Our visualizations focus on surface extractions from such
data. We first presented an isosurface extraction from any scalar field of the SPH data. It
exploits a fast navigation through a kd-tree via an indexing structure and allows for fast
isosurface extraction of high quality. Because of approximations made during simulation, it
is desirable to add a smoothing term to the isosurface extraction method. This is achieved
by the use of level-set methods. Again, the method operates on the particles only. We
have presented several ways on how to accelerate the computations including a narrow-band
approach, a local variational approach, and a signed distance function computation to any
isosurface representation. Extracted isosurfaces are given in form of point clouds. We
presented how they can be rendered using an image-space point cloud rendering approach
that avoids any pre-computation and thus can immediately applied to any extracted surface.
Shadows and transparency are supported at interactive rates. We further extended the
work to the extraction of boundary surfaces of features in multi-field data. The attribute
space of the multi-field data is being explored using clustering and cluster visualization
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methods. Coordinated or integrated views to parallel or circular coordinates, respectively,
allow for further visual analysis of the properties of the extracted clusters. Coordinated views
to object space allow for the investigation of the spatial distribution of detected features.
Enclosing surfaces show the cluster boundaries. The presented functionality has partially
been incorporated into the SmoothViz software package including further features such as
geometric flow visualization. It allows for interactive exploration and integrated analysis of
multiple fields of SPH data.
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