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Subacute Sclerosing Panencephalitis and  
Other Lethal Encephalitis Caused by  

Measles Virus Infection: Pathogenesis  
and New Approaches to Treatment 

Fernandez-Muñoz R.*, Carabaña J.1, Caballero M.1, Ortego J.2, Liton P.B.1, 
Duque B.M, Martin-Cortes A.3, Serrano-Pardo A., Muñoz-Alia M.A., 

Porras-Mansilla R., Alvarez-Cermeño J.C.4 and Celma M.L.* 

1. Introduction 

Measles virus (MV) is a human, negative-stranded RNA virus, member of the 
Paramyxoviridae family, genus Morbillivirus. The virus enters cells by interaction of viral 
glycoprotein Hemagglutinin (H) with cellular receptors (CD46, CD150, CD147/EMMPRIN) 
and membrane fusion  is mediated by viral fusion glycoprotein (F); helical nucleocapsids 
replicate in the cytoplasm on replication-transcription complexes formed by the viral 
catalytic subunit (L), the phosphoproteín (P) and the RNA wrapped in the viral 
nucleoprotein (N); virus particles bud out from plasmatic cell membrane patches internally 
lined by viral matrix protein(M). MV causes cytopathic effects by cell fusion forming 
syncytia, by inducing apoptosis, or both together, and may produce persistent infections in 
cultured cells and in the infected host. MV is highly lymphotropic infecting macrophages, 
lymphocytes and dendritic cells; causes systemic acute infections after cell-associated 
viremia generating life-long immunity (Griffin, 2007 for a review). 
Despite the availability of an efficient live attenuated vaccine, MV still remains an important 
global pathogen infecting over 25 millions individuals and causing over 250.000 deaths per 
year, being one of the main causes of child death worldwide. Plans for the global eradication 
of measles are hindered by a number of factors: 1. high contagiousness of MeV (it is the 
most transmissible respiratory virus known, and it is needed a 95% to 98% protection in a 
population to avoid measles out-brakes), 2. vaccination fails in over 5% of the general 
population (non-responders), 3. vaccination has a low efficiency in infants under 9 months, 
4. poor health care in some countries, and 5. objection to vaccination in sectors of the 
population. 
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During acute measles, MV produces a transient clinical significant immunosuppression that 
can contribute to some complications as measles interstitial pneumonitis and giant cell 
pneumonia, otitis media and diarrhoea. Unfrequently, MV may cause Central Nervous 
System lethal complications as Acute measles post-infection disseminated encephalomyelitis 
(ADEM), Measles inclusion body encephalitis (MIBE), and Subacute sclerosing 
panencephalitis (SSPE) Figure 1 and Table1. In this chapter we will briefly review the 
epidemiology, clinical course, pathogenesis, treatment, and prevention of these encephalitis 
with emphasis on SSPE, and present some results from our group concerning pathogenesis 
and possible therapeutics approaches to this fatal disease.  
 

 

Fig. 1. Neurological complications of Measles Virus Infections. Onset and time course of 
encephalitis after MV infection (ADEM, MIBE, and SSPE) 

2. Acute post-infectious measles disseminated encephalomyelitis (ADEM)  

Onset occurs about one to 2 weeks after the appearance of the rash (in some rare cases, 
coincident with rash) in approximately one case in 103 cases of measles, usually in children 
older than 2 years and adults. In contrast, the incidence drops to one in one million after 
measles vaccination. The onset is typically abrupt, starting with irritability fever, headache, 
vomiting, and confusion and progressing rapidly to seizures impaired consciousness and 
coma, Present a monophasic clinical course over weeks and the mortality rate is 10 to 20%. The 
majority of survivors have neurological sequelae, in one quarter of them permanent. Neither 
MeV virus, or viral RNA has been found in the brain of patients with ADEM at autopsy, and 
not intrathecal synthesis of anti-MV antibodies have been demonstrated. Among other 
pathology changes, perivascular inflammation and demyelination are observed. Possibly it is 
an autoimmune parainfectious disease. Molecular mimicry between myelin basic protein and 
MV proteins has been conjectured. Antibodies to myelin basic protein are found in CSF, but no 
cross-reacting antibodies or T cells have been identified. Besides supportive therapy, 
immunomodulatory treatment with intravenous (i.v.) corticosteroids, i.v. immunoglobulin or 
plasmapheresis have been employed in monitored patients with variable results. Current live 
measles virus vaccine has reduced the incidence of ADEM after vaccination campaigns. 
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Table 1. Encephalitis Caused by Measles Virus 
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3. Measles Inclusion Body Encephalitis (MIBE) 

The disease occurs at any age in immunocompromised patients after MV exposition. MIBE 

affects persons with congenital or adquired cell-mediated immunodeficiency as oncologic 

(approximately 70% of MIBE cases occurring in acute lymphocytic leukaemia), transplanted 

or HIV-infected patients. In severily inmmunodeficient patients the live attenuated measles 

vaccine in use may also cause MIBE. It has been described one fatal case of MIBE in a boy 

with chronic granulomatous disease after stem cell transplant without a history of recent 

clinical measles in the donor or the receptor (Bitnum et al.1999). 

Typically, the onset occurs within one year of MV infection. MIBE may accompany or 

follows measles giant cell pneumonia, but more often occurs as the sole clinical 

manifestation, two to six months after MV infection or vaccination. Patients usually present 

with afebrile refractory focal seizures and altered mentation, and progress to generalized 

seizures, coma and death. CSF parameters are often normal and unlike SSPE hyperimmune 

antibody response to MV and oligoclonal bands may be not detected. EEG are abnormal, 

but unspecific; head computed tomography (CT) and Nuclear Magnetic Images (MRI) scans 

are normal. The mortality exceeds 85%, and survivors have severe neurological sequelae. At 

autopsia or biopsia the brain show gliosis and focal necropsia, lymphocyte perivascular 

cuffing, and intranuclear and intracytoplasmic inclusions in glial cells and neurons. MV 

nucleocapsids can be detected by electron microscopy, MV antigens by immuno-assays, and 

MV RNA by in situ hybridization or RT-PCR.  

The virus persists and progressively invades the brain over months. At a brain autopsia 

from a patient with MIBE, R. Cattaneo, M. Billeter and collaborators first reported the 

phenomena of biased U to C RNA hypermutation in the MeV genome (Cattaneo et al, 1988). 

This hypermutation may take place by the enzyme Adenosine deaminasa ADAR present in 

nervous tissue which would transform Adenosine into Inosine in the replicative 

intermediary RNA (see below). 

4. Subacute Sclerosing Panencephalitis (SSPE) 

SSPE is a rare delayed progressive encephalitis that occurs in 4 to 11 cases per 105 cases of 

measles in apparently immunocompetent children after an acute uncomplicated measles. 

Under 2 years of age, the risk to develop SSPE is higher, 18 per 105 cases of measles. The 

incidence has fallen drastically after successful measles vaccination campaigns. Recent 

epidemiological data suggest that measles vaccination protects against SSPE, and MV 

vaccine strain does not cause SSPE (Bellini et al, 2005; WHO, 2006; Campbell et al, 2007; 

Garg, 2008). The disease is caused by a persistent MeV infection that progressively invades 

the brain, possibly with a clonal origin, in the presence of a potent humoral response anti-

MeV. The mean period from acute measles to onset of SSPE symptoms is eight years, 

ranging from one to over thirty years (adult onset SSPE). After a progressive course with 

sporadic relapses in some cases the patients usually die from few months to twenty years 

after the onset, although the majority of patients die between one to four years after onset of 

symptoms. In this chapter we describe some previous and undergoing work from our 

laboratory on samples obtained at autopsy from three SSPE patients (Figure 2) who 

presented short (3 to 4 months, SMa79), average (3.5 years, SMa84), and long (18 years, 

SMa94) disease course (Figure 3). 
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Fig. 2. Temporal distribution of measles virus genotypes circulating in a geographic area 

(Madrid) in the MV pre-vacccination and vaccination periods and SSPE cases. 

Superimposed the time-course of 3 cases of SSPE from Madrid with short duration 

(SMa79, 3-4 months), average duration (SMa84, 3.5 years) and long duration (SMa94, 18 

years) of disease. For each patient birth date (b), date of measles acute infection (m) and  

dates of SSPE  from onset to death are boxed (S). At autopsy, brain samples were 

separated and from them the whole genome sequence (15894 nucleotides for each one) 

was determined in our laboratory. The genotype of MV present in the brain at autopsy 

from each SSPE case is indicated with an arrow at the right end of the respective  box. In 

brackets, number of isolates. 

4.1 The SSPE virus 
To date, MV strains present in SSPE brain tissue are wild-type strains belonging to different 

genotypes and no MV vaccinal strain (A genotype) has been found (Rima et al. 1995; Jin et 

al, 2002; Forcic et al, 2004; Mahadevan et al, 2008; Souraud et al, 2009). It is an open question 

the existence of circulating MV strains with high ability to establish persistent infections and 

cause SSPE. The epidemiological data indicate that although has been described some 

clusters of SSPE cases they are small and very rare, and some of them are familiar clusters 

(Beersma et al. 1992; Sharma et al, 2008). Reported simultaneous measles infections in 

identical twins with subsequent development of SSPE in only one twin do not point to the 
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existence of “SSPE prone” MV strains (Houff and al. 1979). These data suggest it is unlikely 

the existence of circulating SSPE measles virus strains prone to cause SSPE, but does not 

exclude they could play a co-factor role in conjunction with environmental and genetic 

predisposing traits in the host. In this context our group has reported a MV strain produced 

by a long-term persistent infection which, in contrast with the cytocidal parental virus, 

establishes an immediate persistence in the original human lymphoblastoid cell line (Celma 

& Fernandez-Muñoz, 1992). This MV strain of “persistent” phenotype establishes an 

immediate persistence  without cytocidal effect on a number of  human cell lines of different 

lineages (Fernandez-Muñoz & Celma , 1988). We have also observed  a MV primary isolate 

from a clinical sample of a patient with measles that when inoculated in a human B 

lymphoblastoid cell line has established directly an immediate steady-state persistent 

infection in absence of cytopatic effects. (Fernandez-Muñoz and collaborators, unpublished 

results).  

 
 

 
 
 

Fig. 3. Brain images of a long-course case of Subacute Sclerosing Panencephalitis (case 

SMa94, diagnosed and autopsied in Ramón y Cajal Hospital in Madrid). Panel 1 shows a 

Brain Computed Tomography (CT) image at the time the patient was 9 years old and 

presented a retinitis with high serum titre of anti-MV antibodies by  Complement fixation 

and Hemagglutinin Inhibition assays, whereas serology for other neurotropic viruses was 

normal. One year later she presented neurologic symptoms and signs of subacute 

encephalitis and of intrathecal synthesis of MV antibodies was demonstrated confirming 

the diagnosis of SSPE. After a 20 years progressive course with transient relapses, she was 

hospitalized and died at Ramon y Cajal Hospital in Madrid. Panel 2 shows a brain CT 

image shortly before death  and panel 3 shows  at autopsy a sliced cerebrum from the 

patient. Brain atrophy with loss of white and grey matter, and ventricular dilatation were 

observed  

(Courtesy from Dr M. García-Villanueva, Dept. Anatomía Patologica, Hospital Ramon y 

Cajal) 
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The absence of detectable virus budding and infective viral particles in the SSPE and MIBE 

brain and the slow course of infection indicated a defective nature of these MV strains. 

Studies on MV persistent infections in animal models and cultured neural and lymphoid 

human cells in the in 1970s and 1980s, analysis of MV genomic and mRNAs present in SSPE 

after the development of nucleic acid amplification by PCR studies, and the rescue of 

infective MV from cloned genomic cDNA by M.Billeter and collaborators (Radecke et al, 

1995) have provided valuable information on the pathogenesis of SSPE. Thus, amplification 

and sequencing of MV genomic and transcripts RNAs from diseased brain has revealed a 

range of mutations that could explain defective expression and functionality  for several 

viral genes (Cattaneo et al 1988). Despite the hyperimmune response to MV antigens in 

SSPE patients, early observations of selective absence of antibodies to matrix protein (M) 

pointed to a defective expression of this protein which is necessary, among other steps, for 

the budding of viral particles. The search for mutation that may lead to defective budding 

and absence of syncytia observed in the diseased brains are concentrated in the MV viral 

membrane proteins: H glycoprotein, F glycoprotein, and M matrix protein.  

F protein from three SSPE cases studied by Billeter et al. and two cases studied by our group 

(SMa79 and SMa84) presents mutational alterations in their cytoplasmic tail(Billeter et 

al.1994) , region which have been found involved in cell fusion (Caballero et al.1998). In all 5 

cases the SSPE F glycoprotein shows fusion activity after transfection in cultured cells 

(Cattaneo & Rose 1993; Carabaña,1997).  

Viral glycoprotein H from 2 of the 3 SSPE cases from Madrid (SMa79 and SMa94) showed 

mutations in their distal cytoplasmic region with extension of 4 amino acids due to mutation 

in the stop translation codon (Carabaña, 1997, and Celma et al unpublished results).  

In a MV matrix gene from brain of a child with MIBE, M. Billeter and collaborators 

described for the first time the phenomenon of biased hypermutation, a cluster of 

exceptional point mutations (50% of U residues were changed to C); these biased mutations 

found only in the M gene could confer to the MV an selective advantage in the brain 

(Cattaneo et al. 1988). Wong and collaborators (Wong et al. 1989) shortly afterwards, found a 

non-random M gene hypermutation, similar to the one identified by Billeter, in a SSPE virus 

strain (Yamagata-1) passaged in human neuroblastoma cells.  

Biased hypermutation was reported for the first time in the brain of a SSPE case by Celma 

and collaborators in the matrix protein M gene of SMa84 (Carabaña et al., IX International 

Congress of Virology, Glasgow, 1993). 38% of the U residues mutated to C, generating 59 

amino acids changes in M protein, 18 of the changes being Leu to Pro, which probably 

altered drastically its secondary structure. Figure 4 shows a map of the different type point 

mutations found across the entire genome sequence in 3 SSPE cases. In SMa94 we observed 

biased hypermutation U to C at a lower lever, 10% U to C, producing 12 aminoacid changes; 

besides the hypermutation, there is a loss of the 83 amino acids at the C-end. In contrast, in  

SMa79, there is not biased hypermutation, and we found the creation of a premature stop 

triplet that caused the loss of 40 residues at the C-end of M protein. In this SSPE case, M 

protein presented a drastically impaired interaction with MV nucleocapsids tested by 

binding of radio-labelled cloned M proteins to purified MV nucleoprotein (Carabaña,1997, 

and unpublished results). Thus in SSPE, 1. biased hypermutation was not dependent of MV 

genotype, 2. bias hipermutation may requires several years course of disease, and 3. the level 

of final hypermutation do not increase necessarily with the length of the disease (Figure 4).  
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Fig. 4. Distribution of mutation events in MV Genome of  SSPE cases with short, average 

and long disease course. The antigenome of SMa79, SMa84 and SMa94 are represented. 

Point mutations U to C (red boxes), C to U (black boxes), G to A (grey boxes) and others 

(white) are indicated. The height of boxes correspond to the number of mutated bases. On 

the horizontal axis, groups of 50 consecutive nucleotides were taken as a unit. Gene 

junctions are indicated by vertical lines. The methodology used for determination of 

intergenomic regions  and whole genes were as described for analyzing MV genotypes 

(Rima et al.1995). RT-PCR products were sequenced directly in both directions by 

dideoxynucleotide chain-terminating sequencing with primers constructed at 400-500 

base intervals and  manual analysis or by using an automated DNA sequencer (model ABI 

PRISM 377 Applied Biosystems). Sequences of 5´and 3´end of the SSPE genomes were 

determined by a ligation method (Sidhu et al. 1993) and a modification of the 5´RACE 

method  (Frohman et al. 1988, Baron et al. 1995, Carabaña,1997). 
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The same hypermutation pattern was observed in distant zones of brain for each case, in 

agreement with previous results form Billeter, ter Meulen and collaborators (Bazko et al. 

1993), suggesting a clonal origin of brain infection in SSPE. Biased hypermutation was not 

observed outside the M gene in any of the studied cases. (Carabaña,1997, and Celma and 

cols, unpublished results). It remains unknown whether the M gene transcription is 

particularly susceptible to hypermutation or the process is frequent for every MV gene, but 

hypermutation in other viral genes generates unfit genomes which are counter-selected in 

the brain environment. A possible mechanism for this biased hypermutation was proposed 

by M. Billeter group in collaboration with H. Weintraub group (Bass et al , 1988). Essentially, 

the mechanism consist in  the action of  Adenosin-deaminase that convert  in double 

stranded RNA Adenosine into Inosine resulting in a transition A to G or U to C.  

This enzyme found by Weintraub group has been later identifided as ADAR1, a member of 

ADAR protein family inducible by Interferon I. While ADAR1 activity in cell culture has 

been reported to be barely detectable (Horikami & Moyer, 1995), recent studies in transgenic 

mice indicate that ADAR1 is a restriction factor controlling the replication of MV and other 

Paramyxovirus. On the other hand there are indications that ADAR1 is a proviral 

antiapoptotic host factor in the context of MV infection (Ward et al, 2011; Toth et al. 2009; 

and Samuel, 2011 for a recent review). 

Since 1954 when von Magnus first described in influenza virus subgenomic nucleic acid 

particles, defective interfering particles (DI) have been found in a variety of viruses. In 1970 

Alice Huang and David Baltimore suggested that DI particles play a role the establishment 

of viral persistent infections. E. Norrby described MV DI particles, and in 1977 Rima, Martin 

and collaborators demonstrate a role of DIs in establishment of MV persistence in cultured 

cells (Rima et al, 1977). DI particles were detected in measles vaccine pharmaceutical 

preparations by Roux and coll. (Calain & Roux, 1988). In 1992 Fernandez-Muñoz and Celma 

did not found evidence the subgenomic RNAs at detectable level in MV metabolically radio-

labelled nucleocapsids by denaturating formaldehyde gels from a long-term steady-state 

MV persistent infection in human lymphoblastoide cells with reduced level of infective 

virus (Fernandez-Muñoz & Celma, 1992). In 1994 Dowling, Udem and collaborators with 

dot-blot hybridization and RT-PCR experiments found over representation (2 to 5 times) of 

MV genomic 5´end sequences and the presence of copy-back type DI particles in MV 

nucleocapsids from brain material of 3 SSPE cases (Sidhu et al, 1994). 

In post mortem obtained brain samples from 3 SSPE cases of short (SMa79), average 

(SMa84) and long (SMa94) course of disease (Figure 2), we have searched for MV defective 

particles. Genomic RNA (-) from purified nucleocapsids  was hybridized with radio-labelled 

(32P) RNA probes with polarity (+) designed to recognize different MV genes along the 

viral genome to determinate de abundance in the brain of  the regions of MV genome. As 

shown in Figure 5 no detectable overrepresentation of 5´or 3´ ends of MV genome was 

observed in any of the 3 SSPE cases, indicating that no abundant DI particles of deletion 

type were present. To assay specifically for the presence of copy-back type MV DI particles 

we amplify by RT-PCR MV nucleocapsid RNA with suitable primers of the same polarity 

and products were detected by liquid hyridization with radio-labelled probes. Only in one 

SSPE case, SMa84 with clinical course of average length, were detected copy-back DI 

particles (Figure 6). Sequencing of amplified cDNA corroborated de copy-back structure of 

the subgenomic RNA and determined the polymerase jump point. Thus, the presence of 
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copy-back DI particles in the brain is not universal in SSPE cases, and its presence is not 

associated with long clinical course of disease. The possible functional interfering ability of 

these copy-back DI particles that could modulate MV replication in SSPE remains 

conjectural. 

 
 

 
 
 

 
 
 
 
 

 

Fig. 5. Search for possible subgenomic MV in SSPE brains. Hybridization with  labelled 

probes  across MV genome show that different regions are similarly represented in 

genomic RNA (-) from brain material of  SSPE cases with short (SMa79), long (SMa94), and 

average (SMa84) disease course. Positions of the RNA probes for four MV genes (top) and 

the fentomoles of each gene hybridized per 10μg of Brain Nucleocapsid RNA (bottom). 

Genomic RNA and labelled RNA standards of antisense polarity were slot blot hybridized 

with P32 sense polarity probes and radioactivity estimated by densitometry analysis 

(Carabaña 1997). Genomic RNA from postmortem SSPE brain tissue was purified from 

nucleocapsids isolated by CsCl gradients. Probes and standards RNA specific for 

nucleoprotein (N), Matrix (M), Hemagglutinin (H), and polymerase (L) was of obtained 

by transcription with T7 and SP6 polymerases of Gemini vectors (Celma and Fernandez-

Muñoz 1992) containing from nucleotide 825 to 1676  for N gene, from 4215 to 4719 for M 

gene, from 7669 to 8456 for H gene (generous gift from Dr.M.A.Billeter) and a clone 

obtained in our laboratory containing a 3´terminal fragment of gene L from nucleotide 

14892 to 15742.  
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Fig. 6. Copy-back defective measles virus particles in SSPE brain. Liquid Hybrydization 
autoradiograph of 5´copy-back genome specific PCR products synthesized with primers 
designed to amplified copy-back DIs. The determination in our laboratory of the  entire 
sequence of MV genomes from  brain of  3 SSPE cases allowed us to synthesize transcription 
vectors from which riboprobes specific for their genomic 5´end region were synthesized 
(Carabaña J. 1997). Defective viral products were amplified by RT-PCR of Nucleocapside 
RNA with primers of same polarity as described by Calain et al.1992 and Sidhu et al.1994. 
Products amplified with primers V233 (antigenome nucleotide numbers15894 to 15866) and 
V271 (15648 to 15621) were detected by liquid hybridization with internal probe V290(15783 
to 15812). Positive control hybridization from Edmonston measles virus RNA amplified 
with primers of both polarity V272 (15588 to 15613) and V233 is shown. Based on the 
sequence of amplified DI copy back, the polymerase jump point position is 15764 and15570. 
Assuming the DIs follow a precise copy-back mechanism and their generation assumes 
complete complementarity of the ends, the size of the detected SMa84 DI particles were 456 
nucleotides. Detection of copy-back DI particles was observed in only one of the three SSPE 
cases studied. 

4.2 The SSPE patient 
The SSPE patients were otherwise healthy individuals who has a history of past acute 

measles, typically uncomplicated and before the age of two; SSPE affects males 

preferentially, ratio 2.5:1. Several hypothesis have been proposed to explain the 

epidemiological data of early MV infection as a predisposing factor for SSPE development; 
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for instance it has been suggested, un still immature immune response, anatomical factors 

that favor viral invasion of CNS, or the presence of maternal anti-measles antibodies which 

could modulate the MV infection. So far these hypotesis remains unproven. Another 

conceivable possibility would be the coincidence of the acute MV infection with another 

infection by a different pathogen which could facilitate the MV persistence and invasion of 

the CNS. Were this the case, as coincident infections may be more frequent at an early age, 

the coinfection hypothesis could explain the association of SSPE development with an acute 

measles early in life. In our laboratory we have been testing during the last three decades this 

hypothesis in a collection of samples from SSPE patients diagnosed along those years, but so 

far we found no conclusive results. In 2005, based on the association between the development 

of SSPE and the immunodepression by intensive immunosuppressive therapy in 

unimmunized subjects, or on the early age immaturity of immune system, M. Oldstone and 

collaboratos proposed SSPE likely arises after MV infects an transiently immunosuppressed 

individual; these authors developed an SSPE transgenic mouse model expressing CD46 MV-

receptor transiently immunodepressed by prior infection with lymphocytic coriomeningitis 

virus (LCM –Cl 13), proposing a dual viral hit playing a role in causation of SSPE (Oldstone et 

al, 2005; Oldstone, 2009). This model promises to be useful for pathogenesis studies and assays 

in search of effective new therapeutic approaches to SSPE and MIBE. 

It is conceivable that some individuals have genetic traits that predispose them to develop 

SSPE after MV exposure. In recent years several polymorphisms have been associated with 

SSPE from different populations. Thus, several functional polymorphisms in the regulatory 

regions of genes for the expression of proteins involved in the immune response as MxA 

(protein associated to the anti-viral response induced by Interferon I), Interferon Regulatory 

Factor 1 (IRF-1), Interlekin-4 (IL-4), Toll-like receptor 3 and granulysin are associated with 

development of SSPE in the Japanese and Filipino populations. On the other hand 

polymorphisms in IL-12, IL-2, Interferon-gamma, Angiotensin-converting enzyme (ACE) 

and Angiotensin II type 1 receptor have been associated with SSPE in Turkish population 

(Kusuhara et al, 2007). More recently these authors have obtained results in Japanese and 

Filipino populations suggesting that PD1 gene may contribute to genetic susceptibility to 

SSPE. Due to the small size of some of these samples, further studies are needed to confirm 

these associations and their significance for the development of SSPE. 

4.3 SSPE onset, clinical course and pathogenesis 
Onset occurs on the average 8 years after MV acute infection, ranging from one year to 

decades in adult-onset SSPE; in rare cases onset occurs during pregnancy and it is often 

fulminant. The course of SSPE is progressive for one to twenty years, sometimes with 

transient  remission periods, but in most cases death occur within 3 to 4 years of onset. The 

course of SSPE use to be divided in 4 stages with rare transient remissions periods (Garg, 

2008). Stage 1. The onset is insidious with symptoms of progressive cortical dysfunction, 

behavioural changes, deterioration of intellectual capacity, and some times awkwardness, 

stumbling or visual symptoms of retinitis, optical neuritis or cortical blindness, over months. 

Stage2, Later, manifest motor disability and paroxysmal disorder develop: mioclonus jerks 

(pathognomonic electroencephalographic alterations-Rodermacker complexes). Stage 3. 

Pyramidal and extrapyramidal manifestations, disappearance of myoclonus, alteration in 

sensorium. Stage 4. Vegetative state, and death.  
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The diagnosis of SSPE can be established with the compliance of the following diagnostic 
Dyken´s criteria: 1. Atypical clinical picture of progressive subacute mental deterioration 
with stereotyped generalized myoclonus. 2. Characteristic electroencephalogram changes. 3 
Elevated CSF globulin levels greater than 20% of total protein. 4. Raised CSF anti-MV 
antibody titers (intrathecal synthesis of measles antibodies) 5. Typical histopathologic 
findings in brain biopsia or autopsy; pathological changes are usually diffuse and involve 
grey and white matter: neural loss (Figure 3), gliosis, inflammation, and demyelination. A 
key feature is the presence of both cytoplasmic and nuclear inclusion bodies, predominantly 
in neurons and oligodendrocytes. No budding of MV particles or syncytia  cytoplasmic 
effects are observed, and scarce neurons, oligodendrocytes, microglia, and lymphocytes 
infected by MV undergo apoptosis.  
When and how MV enter into the CNS in SSPE remain unknown questions, but molecular 

epidemiology and in situ studies have provided some likely answers. A basic question is 

whether the MV causing SSPE is the same virus that caused the acute measles in the patient 

years before. This is a difficult question to answer, especially in SSPE presenting a long 

course, since is improbable to have for one patient both the primary MV isolate causing the 

acute infection and the virus recovered from his brain years to decades later. The 

recognition of MV genotypes, and their geographical and temporal distribution pattern 

(rapid “endemic” genotype replacement after years of circulation) in the pre-vaccination 

period provided an answer to this question (Rima et al, 1995). Thus, studying the MV 

genotypes that circulated in a large city like Madrid from 1960s to 1990s and 3 local SSPE 

cases from this period (Figure 2), we observed that the genotype of the MV recovered at 

autopsy from the brain of each SSPE patient was the same genotype circulating in Madrid at 

the documented date of his acute infection at early infancy, and not the one circulating in 

Madrid at the date of onset of SSPE years later. This was the first confirmation that a SSPE is 

long-term infection by MV, and that it is not caused by a MV re-infection, representing the 

prime example for a long-term persistent human infection by an RNA virus, (Rima et al, 

1995; Carabaña, 1997).  

The question arises, where MV resides and replicates in an individual during the 

intervening years between acute infection and onset of SSPE symptoms. One possibility 

would be that during acute measles the virus enter into the CNS of the subjects who will 

develop SSPE. This hypothesis is based on data from post-mortem brain samples from SSPE 

cases where cerebral vascular endothelial cells showed infection by MV (Kirk et al.1991), 

and in acute fatal infection cases where MV infected cerebral endothelial cells were found by 

in situ hybridization and in situ RT-PCR (Esolen et al, 1995). This site of infection may 

provide a portal of entry for MV in subjects who subsequently would develop SSPE or MIBE 

or a target for immunological reaction in ADEM. Although these epithelial cells do not 
express the CD150(SLAM) receptor, they could be infected through recently discovered 

CD147/EMMPRIN receptor expressed in epithelial cells (Watanabe et al, 2010). 

MV is highly lymphotropic (Moench et al, 1989) and the virus infect monocytes, 

lymphocytes and possibly dendritic cells early in the natural acute infection and in 
experimental animal infections. The data after aerosol infection of non-human primates 

strongly suggest that MV entered the host at the alveolus by infecting macrophages or 
dendritic cells which traffic the virus to local lymph nodes, resulting in a primary local 

amplification and subsequent systemic dissemination by cell-associated viremia (Ferreira et 
al, 2010; Lemon et al, 2011). In patients with measles the clearance of detectable RNA by RT-

www.intechopen.com



Subacute Sclerosing Panencephalitis and Other Lethal Encephalitis  
Caused by Measles Virus Infection: Pathogenesis and New Approaches to Treatment 

 

171 

PCR in MV-infected blood cells may occur after several months of acute infection (Ridell et 
al, 2007). From these results, it is conceivable that MV infecting mononuclear cells as 

monocytes could survive as long-lived macrophages for months or years invading by a 
troyan horse mechanism different organs, including the brain in some patients. In our 

laboratory we have established long-term steady-state persistent infection in a number of 
human monocytic cell lines (Ortego, 1994); in some of them  we observed cell-surface over-

expression of cell adhesion molecules as Intercellular Adhesion Molecule 1 (ICAM-1) or 
integrin LFA-1, which could facilitate the attachment of infected leukocytes to endothelial 

cells (Fernandez-Muñoz et al. unpublished results). On the other hand, we differenciated in 
vitro the MV-persistently infected human monocytic cell lines to macrophage–like cells by 

means of  PMA or GM-CSF which kept expressing high levels of MV proteins for weeks in 
the follow-up (Ortego, 1994, and Fernandez-Muñoz et al. unpublished results). These results 

suggest that MV infected monocytes may be converted to macrophages which could remain 
infected by MV and might harbour the virus for years. Previous results suggesting that MV 

was present in peripheral blood mononuclear cells (PBMC) and lymphoid organs from some 
SSPE patients (Brown et al, 1989), have not been confirmed (Schneider-Schaulies et al, 1991, 

Rima & Duprex 2005 for a review). In an early study by J. Sever and collaborators MV was 
isolated in mixed cultures of HeLa cells with lymph node biopsies from 2 out of 5 SSPE 

patients (Horta-Barbosa et al, 1971). As the isolated MV hemagglutinated macacus rhesus 
erythrocytes, it is possible that the isolates were a MV vaccine strain contamination 

(Lecouturier et al 1996). As we had the opportunity to be present at the time autopsy was 
performed for patients SMa84 and SMa94, we could collect “clean” extra cranial tissues 

before the braincase was opened to obtain brain samples. Thus, among other samples, we 
collected separately thoracic and mesenteric lymph nodes from these SSPE patients. From 

every lymph node we amplified by RT-PCR MV genomic (-) RNA from N, P, M, F and H 
genes (Figure 7). The MV in lymph nodes belongs to the same genotype that the MV in the 

respective brain, C1 in SMa84, and F in SMa94, and had high sequence homology with the 
respective MV in the respective brain. In both patients we have detected differential 

mutations between lymph nodes and brain in genes N, P and M, some of them resulting in 
aminoacid change. Interestingly, in both patients MV found in lymph nodes showed biased 

hypermutation U to C  in the M gene, and in the SMa94 lymph nodes M gene, besides 
having all mutation found in brain, there are 10 additional mutations, all of them T to C 

mutations, and 7 resulting in change of aminoacid (Carabaña 1977, Celma et al. unpublished 
results). Although the separate collection of extra brain tissues and the diversity of 

sequences obtained, did not indicated possible contamination with brain RNA, to further 

exclude it we designed and performed in parallel amplification from lymph nodes RNA of 
Glial fibrillar acidic protein, abundant protein in nervous tissue, that resulted lower than 

amplification from PBMC from a control sample (Fig. 7). Although our results indicate that 
MV is present in lymph nodes of SSPE patients at the late stages of the disease, so far can not 

answer the question where the virus resides and replicate in the patient the years elapsing 
between the acute infection and the onset of encephalitis. The comparative analysis of 

genome sequence of two coetaneous  MV belonging to the same genotype, F , one causing a 
short course (months) SSPE (SMa79) and the other one causing a very long course(twenty 

years) SSPE (SMa94) might shed some light  on this issue (Celma et al, work in course). The 
study of MV sequences present in different zones of brain from one SSPE patient suggest 

that the invasion of CNS by MV has a clonal origin (Bazcko et al. 1993; Carabaña, 1997). 
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MV dissemination through brain in SSPE. The presence of MV nucleocapsids and MV 
Hemagglutinin in the neuronal axonal processes suggest that MV spreads transneuronally 
(Rima & Duprex, 2005 for a review). In 1990 D.Payan and collaborators found that a 
lymphoblastoid cell line that constitutively express the neuropeptide, (substance P) receptor, 
neurokinin-1, facilitate MV fusion (Harrowe et al, 1990). M. Billeter and cols in slice cultures 
demonstrated neuron-to-neuron polarized spread of a recombinant autoflurescent MV 
(Ehrengruber et al, 2002). More recently, G.Rall showed in a transgenic mice model  
implication of neurokinin-1 in infection and spread of MV, serving as viral receptor, or co-
receptor in neurons, allowing MV synapsis (Makhortova N et al, 2007). No doubt the 
integration of these approaches will shed light on the pathogenesis of SSPE and other viral 
encephalitis. 
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Fig. 7. Detection of genomic MV RNA in lymph nodes of SSPE patients. Agarose gel 
electrophoresis of cDNA amplified for MV  M and N genes of a lymph node from SMa 
94(left). Analysis of fibrillary acidic protein gene in SMa94 lymph nodes I and II by 
amplification  and hybridization with specific primers (right). 

Left panel. At autopsy mesenteric lymph nodes were obtained before opening the braincase. 
RNA was extracted using guanidinium isothiocyanate technique, reverse transcribed,  
amplified (1,2,3,4) and re-amplified (5,6,7,8,9,10) with specific genes for different regions of 
gene M and N (1,2). Negative controls 1M, 5M and 1N and MW markers. Sequencing the 
amplified DNA for N gene, besides the nucleotide changes characteristic of brain genotype 
there is one aminoacid change Ser432 to Leu. For M gene, from 1 to 135 residue, there are 8 
aminoacid changes with respect to the brain sequence. 
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Right panel. To further exclude any MV RNA from brain samples glial fibrillary acidic 

protein mRNA was amplified. This transcripts are abundantly represented in brain RNA 

and scarcely in lymphoid tissue; agarose gel electrophoresis of RT-PCR amplification with 

fibrillary acidic protein gene specific primers (Reves et al. 1989) (top) of RNA from 

MOLT4 as negative control , RNA from a control sample of peripheral blood mononuclear 

cells (PBMC), RNA from two lymph nodes (I,II) and SMa 94brain RNA. Analysis of the 

amplified material by hybridization with specific radiolabelled probe (bottom). 

Carabaña1997.  

5. Antiviral therapeutic approaches to encephalitis caused by measles virus 
infection of the central nervous nystem: SSPE and MIBE 

Multiple therapeutic agents, including Interferons, Ribavirine, Isoprinosine, vitamin A 

have been used to treat measles complications, including SSPE and MIBE, but benefit has 

been transient at best. Today there is not antiviral therapy of proven efficacy for MV. We 

will briefly review past experience, some times necessarily anecdotal, given the low 

frequency and highly variable course of these diseases that hinder controlled clinical 

trials. We will discuss new potential anti-MV therapies including, RNA interference, 

inhibitors of virus entry and MV RNA  polymerase, (reviews by Garg, 2008; Pempler & 

Snyder, 2009; Reuter & Schneider-Schaulies, 2010) and a novel therapeutic approaches 

including selective induction of apoptosis in MV infected cells as a potential early 

treatment of SSPE and MIBE. 

5.1 Small molecules and natural products with anti measles activity 
Ribavirin. This pro-drug analogue of ribonucleosides with a broad antiviral spectrum has 

been used alone or combined with Interferon-alfa by intra-ventricular administration for 

SSPE patients with variable results, transient benefit at best, and undesired effects. 

Experimental results in MV intra-cranial infected hamsters and mice have shown that 

complexation of ribavirin with cyclodextrin-alfa reduced five-fold the 50% inhibitory dose 

and improved crossing of the  brain-blood-barrier (Jeulin et al., 2009), and could improve 

the treatment with ribavirin in MV encephalitis. 
Vitamin A. Supplements of Vitamin A significantly reduce measles mortality and morbidity, 
especially in children younger than 2 years of age, and it is the treatment recommended by 
WHO for children suffering from acute measles (Joint WHO-UNICEF statement-1987- 
Vitamin A for measles. Wkly Epidemiol Rec 19,133-134). There are indications of Vitamin A 
playing a role in the innate immune response, particularly in Interferon I signalling 
pathway, and it has been reported that retinoids directly inhibit MV replication in cultured 
cells  (Trottier et al, 2009). On the other hand, it has been reported about one third of a SSPE 
(6 of 21) and (0 of 20 matched controls) showed low levels (<20micrograms per dL) of 
vitamin A (Gugor et al, 2007). It remains an open question whether Vitamin A supplements 
might implement the Intereferon treatment in some SSPE patients. 
Inhibitors of MV entry or MV RNA-polymerase. During the last decade a number of small 

molecules strong inhibitors of MV entry or viral RNA-dependent RNA polymerase as AS-

136A have being designed by R. Compans, R. Plemper & collaborators. Targets in MV RNA-

polymerase L protein catalytic subunit were identified studying in cell cultures MV escape 

mutants to the antiviral. The emergence of MV escape mutants could be a draw-back in 
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potential long treatments as for SSPE. It remains to test these drugs in MV persistent 

infections in animal models for SSPE (for a review, Plemper & Snyder, 2009). 

5.2 Interferon-α  
In SSPE patients treatments with  intraventricular Interferon-α alone or in combination with 
ribavirine or isoprinosine produce at best transient effects, and in some cases severe toxic 
effects (for review, Garg, 2008; Nacagawa et al  2009). Possibly, the low antiviral effect of 
Interferon-α treatment could be explained by the MV inhibition of antiviral response to 
exogenous Interferon I in the infected cell (Ortego, 1994 Fernandez-Muñoz et al, 2000). We 
found that MV inhibited the antiviral response to IFN I by blocking the signal transduction 
from the IFN I-receptor (Liton, 2001), and that MV non-structural protein V is associated 
with this inhibition (Celma and collaborators, unpublished results; Palosaari et al. 2003)). 
Silencing the V protein expression by anti-sense RNA oligonucleotides or RNA interference 
may be a way to increase IFN I antiviral effect in SSPE treatment. With this aim we have 
designed siRNAs that block MV P gene expression that could render MV persistently 
infected cells sensitive to IFN-α (see below). Another possible factor for the low antiviral 
response to Interferon I in SSPE patients could be the functional MxA promoter 
polymorphisms associated with SSPE (Torisu et al, 2004). 

5.3 RNA interference to control progression of SSPE and MIBE 
The gene suppression effects mediated transiently by short interfering RNA molecules 
(siRNA) or stably by intracellular expression of short hairpin RNAs (shRNAs) wich are 
processed by the cellular RNAi machinery (for a review Dykxhoorn et al. 2008) into effective 
siRNAs, are currently being tested as therapy for acute virus infections such as RSV end for 
chronic infections as HIV, Hepatitis B virus and Hepatitis C virus. To determine whether 
exogenous siRNA could inhibit the expression of MV genes and suppress viral replication 
during acute and persistent infections, we have designed siRNA molecules targeting 
conserved sequences in the genome of MV in brain of  SSPE patients which inhibit the 
expression of MV Phosphoprotein gene, involved in viral RNA transcription, replication, 
and IFN response, and Hemagglutinin gene(H), playing a critical role in adsorption, cell 
fusion, assembly and budding of viral particles (Martín-Cortes et al, 2004 and Celma and 
coll. unpublished results). As shown in Figure 8 these siRNAs efficiently inhibit the 
production of MV infective particles in acute and persistently infected cells and indicates 
could be an useful tool for antiviral therapies by themselves or in combination with others 
MV specific siRNAs (Reuter et al. 2006; Otaki et al. 2007; Keita et al. 2008). For an efficient  
siRNA therapy besides a high gene target specificity it will be necsesary to solve problems 
of siRNA delivery and undesirable toxic site effects, as discussed by Rossi et al 2009. 

5.4 Inducers of apoptosis in MV infected cells as a potential  early treatment of SSPE 
and MIBE 
Formation of syncitia by inducing cell fusion is the prominent cytopathic effect of MV in 
cultured cells (Enders, 1954) and in patients with measles giant cell pneumonia. In our 
laboratory by infecting a series of human lymphoblastoid cell lines with a MV strain 
showing low cell fusion activity, we observed that infected MOLT3 cell line underwent an 
atypical rapid cytopathic effect without a significant formation of syncytia that we 
described at the 1988 Negative Strand Viruses Conference (Fernandez-Muñoz et al. 1988).  
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Fig. 8. Inhibition by small interfering RNAs (siRNAs) of MV gene expression and viral 

replication during acute and persistent infections. Based on conserved sequences among 

MV primary isolates from patients with acute measles or SSPE we have designed siRNAs 

ds-oligonucleotides complementary to MV Phosphoprotein (siRNA P12) and 

Hemagglutinin (siRNA H86 and H11). Human epithelial 293 cells lytically infected with 

Edmonston virus or persistently infected with MV isolates were transfected with 

chemically synthesized siRNAs using Lipofectamin 2000. Upper panel. Quantitative assay 

to measure hemagglutinin gene silencing by siRNA. MV-H mRNA  was assayed by 

quantitative reverse-transcriptase-polymerase-chain-reaction using SYBR Green core 

reagents from Applied Biosystems after primer optimization and Actine or GAPDH as 

endogenous controls in a ABI Prism7000 Sequence Detection System. Each column shows 

the relative quantification for Hemagglutinin mRNA following transfection of 293-FV-P 

persistently infected infected cells with the indicated siRNA.Lower panel. Effects of 

siRNA-P12 and siRNA H86 on production of infective extracellular MV during acute and 

persistent infections. Cell supernatants were titrated by plaque assay on B95 cells adapted 

in our laboratory to grow in monolayers. 
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Attempting to characterize this previously un-recognized MV cytopathic effect we found  in 

MOLT3 infected cells chromatin condensation and DNA inter-nucleosoma fragmentation, 

hallmarks of the cell death mechanism described and  named apoptosis by J.Kerr and 

collaborators in 1972. Measles virus can induce apoptotic cell death in cultured human cells 

and this process is mediated by over-expression of Fas membrane protein in MV infected 

lymphoid cells (Fernandez-Muñoz et al., Ninth International Conference on Negative Strand 

Viruses, Estoril, 1994). At this conference apoptosis induced by MV was also present by Dr 

D. Griffin in Vero cultured cells (Esolen et al, 1995; Caballero et al, 1996). Based in our 

previous observation of Fas (CD95) involvement in apoptosis caused by MV, we studied the 

effect of Fas ligand (FasL) and other analogs as TRAIL (TNF-related apoptosis-inducing 

ligand) on acute and persistently infected human cells. We observed that MV persistently 

infected cells were more sensitive to apoptosis induced by exogenous TRAIL than 

uninfected cells (Figure 9). This sensitization could be explained by the up-regulation of 

functional TRAIL receptors TRAIL-R1 and TRAIL-R2, and down-regulation of anti-

apoptotic factor bcl-2 and activation of  protein-kinase Akt and NFkB (Duque et al, 2007, 

and unpublished results by Celma and collaborators). Since has been generally observed 

that cancer cells are more sensitive than normal cells to apoptosis induced by recombinant 

TRAIL this molecule has been object of numerous clinical trials. Although phase I trials have 

shown low TRAIL toxicity, the efficiency tests got mixed results, largely due to the 

development of tumours resistence to the action of TRAIL (Yagita et al 2004 for a review, 

Kim et al. 2008; Eaton et al, 2011). Given the lack of efficient therapies for the encephalitis 

caused by persistent infection for MV, MIBE and SSPE, we have proposed the potential use 

of TRAIL as an early treatment of these diseases with the object to kill selectively the cells 

where MV resides before the virus disseminates across the brain. 

TRAIL and its receptors have been shown to play important roles in the immune response 
to viral infections and in immune surveillance of tumours and metastasis (Falschlehener et 
al, 2009). During the last decade several studies have shown that different viral infections 
sensitize cells to apoptosis induced by TRAIL. Thus, TRAIL-resistant fibroblasts could be 
sensitized to TRAIL-induced apoptosis by infection with human cytomegalovirus (Sedger et 
al. 1999). On the other hand, it was observed and strong up-regulation of TRAIL, TRAIL-R1, 
and TRAIL-R2 in response to respiratory syncytial virus in primary tracheal-bronchial cells, 
A549 and HEP-2 cells and, RSV-infected cells could be eliminated by TRAIL-expressing 
immune cells in vivo (Kotelkin et al 2003). Furthermore, TRAIL has been implicated in 
chronic HCV infection and HCV has been shown to sensitize human hepatocytes to TRAIL 
induced apoptosis (Lan et al, 2008). Thus, the approach of an early treatment with TRAIL 
could help to control persistent infections by different viruses. However, there are some 
motives for concern after recent results showing that TRAIL, in addition to anti-tumour 
activity, has immunomodulatory functions and it has been demonstrated that TRAIL can 
eliminate plasma cells in vitro and suppress antibody production in vivo. Therefore, it 
should be noted that a strategy to over-express endogenous TRAIL, as well as 
administration of rTRAIL may impair host defense against infection (Faschlehener  et al, 
2009). For treatments of SNC diseases, some findings in cultured brain slices raise concern 
about neuro-toxicity and argue against the use of TRAIL for therapy of human brain 
tumours (Nitsch et al, 2000). A recent study obtained successful results combining anti-
papillomavirus E6/E7 siRNA and TRAIL induction of apoptosis in cancer cells being 
refractory to TRAIL treatment (Eaton et al 2011). 
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Fig. 9. Apoptosis in MV persistently infected cells treated with recombinant TRAIL. 

Left panel. To measure the sensitivity of cells to recombinant TRAIL (tumour-necrosis-
factor-related apoptosis inducing ligand) the expression of the uncleaved poly (ADP-ribose) 
polymerase (PARP)(113KD) substrate for apoptosis specific ICE-family proteases, and its 
cleaved product 89KD fragment were used as specific markers for apoptosis. Cells were 
untreated or treated with soluble human recombinant TRAIL with cross-linking enhancer or 
the killer TRAIL (His-tag) from Alexis, at concentrations and time indicated. Western blot 
analysis were performed in RIPA-cell extracts, normalized for protein concentration, run in 
SDS-PAGE , transferred to membranes end developed with specific antibodies. Staining of 
cell caveolin was used as control of protein loading.  
293 cells were less sensitive to PARP cleavage induced by TRAIL than their persistent 
infected cell lines established with a vaccine strain or with a primary isolate. These finding 
in epithelial cells were further extended to human lymphoid B (Dakiki) and T (MOLT3) 
cells. 
Right panel. To study the sensitivity to exogenous TRAIL of 293 and 293 cells persistently 
infected with primary (FV) and attenuated (Ed) MV strains, cell apoptosis was stimated as 
chromatine condensation in more than 200 nuclei after acridine orange staining. The 
specificity of acridine orange assay has been previously established in MV infected cells by 
DNA fragmentation detection techniques.                                                                                        
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6. Conclusions 

The comparison of the MV genomic sequence corresponding to Madrid SSPE cases SMa79, 
SMa84, and SMa94 with those of MV genotypes circulating in Madrid during the last 5 
decades provided the first confirmation that the MV causing SSPE corresponds to the virus 
producing the measles acute infection and not to a possible re-infection years later at onset 
of the encephalitis. This was the first example of a human persistent infection by an RNA 
virus. 
2. Concerning the question of where the virus could persist and replicate during the long 
latent period, we have observed that at least in the final stages of SSPE, MV is also present in 
abdominal and thoracic lymph nodes. The comparison of MV genomic RNA from brain and 
lymph nodes for each patient showed both viruses belong to the same genotype.  
3. In two SSPE cases, those presenting an average and long disease course, but not in the 

short disease course case, biased hypermutation U to C was observed in the matrix M gene 

at a high level (38% U to C) and low level (10%U to C) respectively. The mutation map 

across the entire genome was the same from distant parts of each brain, supporting the 

indication of clonal origin of MV brain invasion proposed by V. ter Meulen, M. Billeter and 

collaborators. After the first decription of biased U to C hypermutation phenomena by 

M.Billeter and collaborators in one brain from a MIBE case, our results were the first 

description of biased hypermutation in SSPE brain. Our results indicate that biased 

hypermutation U to C are found at autopsia in brain of SSPE patients after years of disease, 

and it is not proportional to the length of the disease. Biased hypermutation U to C is present 

in MV localized in lymph nodes at similar or higher level than in the respective brain, 

suggesting that biased  hypermutation may take place also in  infected lymphoid cells. In the 

three cases the transcription of M, F and H genes were down-regulated, and M protein ability 

to bind to MV nucleocapsids was impaired by deletion or biased hypermutation. 

4. The length of MV genome found in the brain of SSPE remains constant, 15894 after years 
to decades of persitent infection, and no evidence of significant proportion of nucleocapsid 
subgenomic RNAs was found in the brains of the SSPE cases studied. Copy-back 
subgenomic RNAs were found in MV nucleocapsids only in one of the three brains, 
indicating that the presence of MV defective interfering particles is not an universal feature 
in SSPE. 
5. Currently, no efficient treatment for SSPE o MIBE patients is available. New approaches 
to therapy of these lethal encephalitis are underway in several laboratories, and possibly the 
future treatments will combine several therapies to control MV infection by specific antiviral 
designed drugs and molecules that would counteract virus escape to host immune response. 
Today, the only effective way to prevent MV encephalitis is the implementation of measles 
vaccination programs.  
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