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1. Introduction  

With the development of information technology, quick rate of data transfer and high 
capacity of data storage are expected for advanced recording media. Although data storage 
media and technique have been developed from soft discs, hard disk, CD-ROM and DVD-
ROM to multi-layered blue-ray discs, undoubtedly, holography is one of the most 
fascinating and attractive techniques. As shown in Figure 1, which illustrates comparison of 
media in data storage and holographic ones. The optical holography is based on a three-
dimensional storage method (Bieringer, 2000; Kogelnik, 1969). This provides unique 
opportunities for the next-generation storage technique by a simple recording and reading 
process.  
 

 

Fig. 1. Comparison of several data storage media (above) and scheme of holographic storage 
(below). 
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In 1948, Gabor first reported the holography method (Gabor, 1948), but this was not widely 
studied until the discovery of laser technique in 1960s (Kogelnik, 1969). The laser technology 
can easily supply two light beams with the same frequency and a stable phase difference for 
interference, which is necessary for recording information of one object (wavefronts, in 
Figure 2). Therefore, holography becomes to be a unique technique that enables 
simultaneous recording of both phases and amplitudes of light waves.  
 

 

Fig. 2. Recording of one object (wavefronts) with interference of two coherent laser beams 
(above) and classification of holograms. 

One of the most fascinating features of holography is that it is capable of recording and 
displaying a complete three-dimensional image of an object (a lot of wavefronts in Figure 2). 
In holography, recording the phase and amplitude of light waves are performed by periodic 
alternation of physical properties of materials. According to the manner of recording of 
interference patterns, holograms are mainly classified into two types (Collier, 1971; Smith, 
1977). As shown in Figure 2, one is an amplitude–type hologram, in which the interference 
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pattern is recorded as a density variation in recording media. The other is a phase–type 
hologram, in which fringe patterns are recorded as a change in surface structure or 
refractive index. Theoretically, the diffraction efficiency of phase–type holograms is always 
higher than that of amplitude–type ones. Accordingly, the phase–type holograms for data 
recording are superior to the latter and most studies on holography are related to the phase–
type ones. On the other hand, as shown in the bottom illustration of Figure 2, according to 
the thickness of recording films, the holograms can be categorized into Raman-Nath type 
(thin films) and Bragg type (thick films). The Raman-Nath hologram recorded in a thin film 
causes multiple diffraction of an incident beam, leading to low diffraction efficiency of the 
first diffraction beam with the maximum of about 34%. The Bragg hologram shows a single 
diffraction, which enables 100% diffraction efficiency. 
Generally, storage media materials are among the most important for holographic applications 
(Smith, 1977). In the past two decades, much attention has been focused on the inorganic 
crystals as erasable holographic media. While organic materials offer incomparable 
advantages, such as simple processing, low cost and versatility. Desirable materials for 
holograms should exhibit high diffraction efficiency, fast response, high resolution, stable and 
reversible storage, low-energy consuming in the recording and reading processes as well as 
easy mass production. Therefore, introduction of organic materials is needed. Until now, none 
of them meets entirely the above-mentioned requirement, and absence of novel materials with 
high performance has become bottleneck of the holographic technique.  
As one of the best known chromophores, azobenzene (AZ) with two benzene rings 
connected with an azo (–N=N–) bridge in its chemical structures (Figure 3) has attracted 
much attention of materials chemists for their potential applications in holography. AZ–
containing materials with photoresponsive functions can be easily modulated into 
hierarchical patterns by adjusting the input light properties – wavelength, intensity, 
polarization, phase, interference pattern, etc. As a result, holograms can be recorded in AZ–
containing materials by photoinducing an orientation change of molecules in a periodic 
pattern obtained from interference of two coherent light beams, the object and the reference 
beams. Since photo-modulation of refractive index can be obtained in AZ–containing 
materials, the recorded hologram is phase–type. In this chapter, recent progress in AZ-
containing liquid crystalline (LC) or amorphous polymers, polymer-dispersed low-
molecular weight compounds or glassy oligomers will be discussed.  

2. AZ-containing materials  

An AZ moiety is well–known for its reversible photoisomerization, which may act as both a 
mesogen and a photoresponsive moiety when it is attached with soft substituents. Both 
photoisomerization and photoinduced LC–to–isotropic phase transition are involved in AZ-
containing LC materials. A myriad of AZ derivatives can be tailored by modifying the 
substituents in the two benzene rings, resulting in their maximum absorption from the 
ultraviolet to visible regions. According to the electron-absorption properties, three kinds of 
AZ chromophores have been summarized as shown in Figure 3 (Natansohn & Rochon, 2002; 
Kumar & Neckers, 1989). The left side “AZ” has relatively poor π-π* and n-π* absorbance 
overlap and the lifetime of the cis-isomer is relatively long. The middle one is “amino-AZ”, 
and there is significant overlap of the two bands and the cis-isomer lifetime is shorter. The 
right side AZ is “pseudostilbene”, where the AZ is usually substituted with electron-donor 
and electron-acceptor substituents in both ends of the framework. 
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Fig. 3. Examples of three kinds of AZs classified by Natansohn and Kumar. 

Generally, AZ-containing materials show several photoresponsive features like trans-to-cis 

photoisomerization, polarization-selective photoalignment, photochemical phase transition 

and photoinduced cooperative motions, as shown in Figure 4 (Yu & Kobayashi, 2010; Chen 

et al., 2010a). Upon UV irradiation, trans-to-cis photoisomerization often occurs for AZ-

containing materials in solutions or solid states, leading to a large change in molecular 

shape and polarizability. The cis-isomers can return to their trans-isomers by thermal 

treatment or visible light irradiation. When a linearly polarized light is used, AZs selectively 

absorb light with the polarization direction parallel to their transition moments. The 

probability of the absorption is proportional to the cos2 θ (Figure 4), where θ is the angle 

between the transition moment of an AZ and the light polarization direction. Combining the 

polarization-selective trans-to-cis isomerization and un-selective back cis-to-trans 

isomerization, the number of AZ moieties with their transition moments normal to the light 

polarization direction gradually increases, resulting in the light-selective alignment, with 

transition moments of AZs almost perpendicular to the polarization direction of the actinic 

light. This is well known as the Weigert effect (Weigert, 1919). Such a photoalignment 

process is reversible, which means that AZs can be re-orientated to any controlled directions 

by choosing appropriate polarization direction of light (Yu & Ikeda, 2011). 
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When AZ-containing materials possess an LC phase, photoinduced phase transition can be 
caused in the LC phase since the trans-AZ can be a mesogen because its molecular shape is 
rod-like, whereas the cis-AZ never shows any LC phase due to its bent shape. When 
photoinert mesogens (like cyanobiphenyl groups) exist with dopant AZs, photoinduced 
molecular cooperative motion can be observed (Ikeda, 2003). If a small proportion of AZ 
molecules change their alignment in response to an external light stimulus, the other LC 
molecules also alter their alignment, coinciding with the ordered AZs pre-aligned. Actually, 
only a small amount of energy as to induce an alignment change of about 1 mole% of LC 
molecules is enough to bring about the alignment change of the whole system of AZ and LC 
mixtures. In other words, a huge amplification of light signals is possible in LC photonic 
systems owing to the molecular cooperative motion. As shown in Figure 4, both 
photoalignment and photochemical phase transition can be isothermally caused although 
the photoinert mesogens do not absorb the actinic light. These properties have been widely 
utilized in display, optical devices and holograms. 
 

 

Fig. 4. Summarized properties of AZ-containing materials. 
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3. Low-molecular-weight AZs 

Because of easy preparation and high purity of low-molecular-weight compounds, the 
application of AZ materials for recording holograms began with them. Formation of 
holographic gratings in films of poly(vinyl alcohol) doped with low-molecular-weight AZ 
compounds was first reported by utilizing photoisomerization of AZs (Todorov et al., 1983, 
1984, 1985). The holographic gratings recorded in the polymer-based samples were self-
developing and auto-erasing or re-writable since the thermally induced back isomerization 
of AZs could be easily obtained (Pham et al., 1997). To increase the formed birefringence |n2-

n1| shown in Figure 2 and enhance the performance of recorded holograms, polymer-
dispersed AZ-containing low-molecular-weight LC compounds were also employed as 
recording media (Tondiglia et al., 1995). Due to the existence of low-molecular-weight LCs, 
the diffraction efficiency of the gratings could be electrically controlled (Sutherland et al., 
1994). Moreover, dynamic holography was achieved in AZ-doped nematic LCs (Chen & 
Brady, 1993).  
Although many research focused on the low-molecular-weight AZ–doped polymers, the 
stability of the induced anisotropy was low. To improve stability of the recorded gratings, 
molecular glasses fabricated with low-molecular-weight AZ compounds were developed 
(Shirota et al., 1998). This kind of materials can form stable amorphous and homogenous 
films without scattering of visible light (Nakano et al., 2002). Surface-relief gratings were 
successfully inscribed although the AZ derivatives were confined in the glassy sates. More 
interestingly, low-molecular-weight AZ crystals and co-crystals also showed capability of 
formation of surface-relief gratings (Nakano et al., 2005). It was believed that photoreaction 
only occurred in the surface.  
For holograms recorded in low-molecular-weight AZ materials, gain effect often occurs. It 
was reported that diffraction efficiency of gratings recorded in calamitic LC materials with 
low-molecular-weight compounds was increased sharply after annealing (Stracke et al., 
1999). In recording holograms using pentaalkinylbenzene derivatives, a strong gain effect 
was obtained by the selective growth of crystals in the non-irradiated areas (Frese et al., 
2003). For smectic trisazomelamine, the gain effect was acquired accompanied by the 
growth of surface modulation. At elevated temperatures, the free volume available to 
mesogens increased and the thermal movement led to a collective orientation along the 
direction given by those groups pre-aligned by the recording beams. This caused an increase 
of the order degree in the pre-orientated domain, which contributed to the increase of 
diffraction efficiency of holograms.  

4. AZ-containing polymers  

4.1 AZ-containing amorphous polymers 
Low-molecular-weight AZ materials are superior in terms of mobility. However, it is often 
difficult to prepare holographic gratings with narrow fringe spacing (i.e., high resolution) 
and high stability because of the high mobility of AZ molecules with low molecular weight. 
From the application point of view, AZ-containing polymer materials might be one of the 
best choices for holograms because of their simple processability and high stability. On the 
other hand, the ordered structures or photoinduced alignment of chromophores can be 
easily fixed in polymer matrix.  
In 1995, two groups independently reported surface-relief gratings inscribed in AZ-
containing polymer materials almost at the same time (Rochon et al., 1995 ; Kim et al., 1995).  
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In films of poly[4’-( 2-acryloxy)ethylamino-4-nitroazobenzene] (pDR1A, Figure 5a), surface-
relief gratings with a sinusoidal shape was recorded with an interference pattern of two 
light beams at 514 nm. The obtained grating structures were stable but could be erased by 
heating the polymer above its glass transition temperature. In addition, no permanent 
damage of the film was observed. Multiple gratings can be simultaneously written and 
gratings can be overwritten (Rochon et al., 1995). Using an epoxy-based amorphous polymer 
containing AZ side groups (Figure 5b), surface-relief gratings with relatively large 
amplitude was successfully inscribed with two laser beams at 488 nm. Furthermore, 
recording perpendicular gratings on the same film was also achieved. Such surface-relief 
gratings in amorphous polymer films showed uniform and controllable morphologies, like 
the depth of relief, the grating periodicity, and so son. Moreover, more complicated 
topological surfaces were tailored by superimposing several surface-relief gratings. 
Recently, the recorded surface-relief structures were studied for potential applications as LC 
alignment (Li et al., 1999), polarization discriminator, waveguide couplers (Viswanathan et 
al., 1999) and antireflective coatings (Natansohn & Rochon, 2002). 
 

 

Fig. 5. Surface-relief gratings recorded in AZ-containing amorphous polymer materials.  
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4.2 AZ-containing LC polymers 
Comparing with amorphous materials, LC materials possess unique features like self-

organization, fluidity with long–range order, molecular cooperative motion, formed large 

birefringence and anisotropy in various physical properties (optical, mechanical, electrical 

and magnetic), and alignment change induced by external fields at surfaces and interfaces 

(Ikeda, 2003; Yu & Kobayashi, 2010). Therefore, LC materials can bring about a larger 

change in refractive index relative to amorphous ones. An alignment change of LC 

materials in a periodic fashion can be easily induced upon irradiation with interference 

patterns by overlapping two coherent beams, resulting in a large refractive-index 

modulation. This can contribute to a high diffraction efficiency of recorded gratings. In 

films of AZ-containing LC polymers, both surface-relief and refractive-index gratings can 

be recorded correspondingly.  

Wendorff et al. showed that holographic gratings could be inscribed in LC polymers 

composed of AZ moieties and photoinert mesogenic groups (Eich et al., 1987; Eich & 

Wendorff, 1987; Anderle & Wendorff, 1994). Hvilsted et al. achieved holographic gratings 

with diffraction efficiencies of about 40% in AZ-containing LC polyesters (Hvilsted et al., 

1995). Recently, formation of holographic gratings in side-chain LC polymers containing AZ 

moieties by means of photochemical phase transition was intensively studied. Hasegawa et 

al. achieved dynamic holographic gratings by means of photochemical nematic-to-isotropic 

phase transition in LC copolymers containing an AZ moiety with strong donor-acceptor 

substituents in side chain (pseudostilbene-type AZs in Figure 3). As shown in Figure 6, the 

inscription and removal of holographic gratings with a narrow fringe spacing of 1.4 µm was 

obtained within 150 and 190 ms, respectively (Hasegawa et al., 1999a , 1999b). Moreover, the 

optical switching behaviors of the holographic diffraction were observed repeatedly by 

turning the writing beams on and off. Using a siloxane group as a spacer in preparation of 

LC polymers decreased the glass transition temperature of the designed materials. This was 

because of the flexibility of the siloxane unit, which resulted in an effectively photoinduced 

nematic-to-isotropic phase transition at room temperature and formation of real-time 

holographic gratings (Hasegawa et al., 1999c). 

 

 

Fig. 6. Dynamic holographic gratings by means of photochemical phase transition in AZ-
containing LC polymers. 
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In a nematic LC polymer with AZs as side mesogens, both surface relief and refractive index 
modulations were recorded, as shown in Figure 7. In nematic LC phase, the obtained 
gratings exhibited a higher diffraction efficiency than that recorded in the glassy state even 
though the amplitude of surface-relief structures of the former was lower than that of the 
latter one (Yamamoto et al., 1999). These indicated that the contribution of refractive-index 
gratings to the diffraction efficiency was larger than that of surface-relief gratings. Based on 
the same materials, holographic image storage using a photomask as an object was 
successfully obtained (Yamamoto et al., 2000). 
To enhance the refractive-index modulation, both cyanobiphenyl and tolane groups were 
used as photoinert moieties to prepare LC copolymers with AZs as photoresponsive 
mesogens (Yoneyama et al., 2001, 2002). However, the photoresponse was not high enough 
due to a low content of AZ moieties in the copolymers. To improve the photosensitivity and 
induce a larger birefringence for holographic applications, a concept of molecular 
architecture of AZ–containing LC materials was proposed in Figure 8 (Okano et al., 2005). A 
tolane group was directly attached onto the 4– or 4’– position of AZ molecules to prepare an 
azotolane mesogen, which shows far longer molecular conjugation length than one single 
tolane group or an AZ moiety (Okano et al., 2005). Figure 8 lists the molecular structures 
and LC phase behaviors of a series of azotolane nematic LC polymers synthesized based on 
this principle, in which three, four and five benzene rings are included in the mesogens, 
respectively. All the prepared azotolane-containing LCPs showed a wide nematic LC range 
and exhibited a phase transition temperature higher than 200 °C (Okano et al., 2006). 
Obviously, the photoresponse of the designed LC polymer with high birefringence was 
greatly enhanced because of high density of AZ mesogens, resulting in formation of 
holographic grating in thin films within short time under low-intensity irradiation of 
recording beams. 
 

 

Fig. 7. Holographic gratings recorded in nematic LC polymer with AZs as side mesogens. 
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Fig. 8. Azotolane LC polymers with high birefringence for holograms.  
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Using two phase-type gratings recorded in LC cells (Figure 9), grating waveguide couplers 

with a flat surface were fabricated as shown in Figure 9 (Bang et al., 2007). When a probe 

beam at 633 nm was incident to one grating, the beam propagated in the waveguide and an 

output beam came out from the other grating with the throughput coupling efficiency of 

about 5%. Upon irradiation of the film between the two gratings with UV light to cause 

trans–cis photoisomerization and order-disorder transition of the AZ moiety, the intensity of 

the output beam was repeatedly switched upon alternating irradiation of visible light. It was 

found that the alternating irradiation at 366 and 436 nm induced reversible changes in the 

intensity of the output beam.  

 

 

Fig. 9. Periodically flat-structured grating waveguide couplers and photo-switching 
behaviors. 

Due to molecular cooperative motion of mesogens in LC polymers, it is difficult to record 

holographic gratings with a narrow periodicity in a subwavelength scale (Yu et al., 2008a). 

Pre-treatment with UV irradiation to induce cis-azobenzene-rich isotropic phase can 

illiminate such molecular cooperative effect of mesogens and enhance the photoresponse in 

an a lowly viscous state. These enabled us to obtain the subwavelength modulation of 

surface relief and refractive index with interference patterns in Figure 10 (Yu et al., 2008a). 

The surface relief of less than 10 nm and the refractive-index modulation were detected by 

atomic force microscopy in tapping and phase modes, respectively. A large phase 

retardation and formed birefringence were observed in the recorded subwavelength 

gratings. 
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Fig. 10. Subwavelength modulation of surface relief and refractive index in LC polymer 
films. 

4.3 AZ-containing LC block polymers with well-defined structures 
In LC block copolymers with well-defined structures, microphase separation often occurs 
because of the inherent immiscibility of the different blocks, resulted in diverse of 
nanostructures like nanospheres and nanocylinders (Yu et al., 2006a, 2006b, 2007d, 2007e, 
2009b, 2011; Chen et al., 2010b). Generally, the phase-segregated nano domains are far smaller 
than the wavelength of the visible light (Yu et al., 2007b, 2007c), making it possible to get rid of 
the scattering effect. Such kinds of AZ-containing LC block polymers with nanoscale phase 
separation have been regarded as one of ideal materials candidates for holograms. 
Generally, the diffraction efficiency is one of the most important parameters for holographic 
gratings. In amorphous polymer materials, a surface–relief grating contributes mainly to 
diffraction efficiency. Recently, microphase separation of AZ-containing LC block copolymers 
was used to control diffraction efficiency by enhancement of surface relief upon thermal 
annealing (Yu et al., 2005a, 2009a; Naka et al., 2009). As shown in Figure 11, both surface-relief 
and refractive–index gratings were recorded upon irradiation of an interference pattern, in 
which selective photoisomerization and the isotropic–to–LC phase transition were induced in 
the bright areas of pre-treated films. The diffraction efficiency of the gratings depended strongly 
on the polarization of the reading beam because of the photoalignment of mesogens in the 
bright area of the writing patterns. After grating formation, the surface-relief structures with a 
sinusoidal shape were clearly observed in the AFM images (Figure 11). The fringe spacing of 
the surface relief was 2.0 Ǎm, which was identical to that of the refractive-index gratings. Then 
nanoscaled microphase separation was proceeded by annealing the grating sample. As a result, 
the surface relief was increased to about 110 nm (18.3 % of the film thickness), almost one order 
of magnitude larger than that before annealing. The peak-to-valley contrast became more 
explicit after annealing, due to the enhancement of the surface modulation. Furthermore, the 
sinusoidal shape of the surface profile became a little irregular, indicating that the LC alignment 
was disturbed upon microphase separation. Together with the enhancement of surface relief, 
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the diffraction efficiency increased to about 9.0 %, almost two orders of magnitude larger than 
the diffraction efficiency before annealing. This increased diffraction efficiency might be 
ascribed mainly to the enhancement of surface modulation. Furthermore, multi-processes of the 
refractive-index gratings were successfully achieved as presented in Figure 11. The obtained 
grating structures were clearly observed in the polarizing optical microscopic pictures, which 
were also verified by their diffraction patterns (Yu et al., 2007a). 
 

 

Fig. 11. Holographic gratings recorded in AZ-containing LC block copolymers with well-
defined structures and enhancement of gratings upon microphase separation. 
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Comparing to other methods to control diffraction efficiency, such as gain effects, 
mechanical stretch, electrical switch, self–assembly, mixture with LC and cross–linking, the 
microphase-separation method had advantages of being simple and convenient (Yu et al., 
2005a, 2009a). To precisely control diffraction efficiency of recorded gratings in the 
amphiphilic block copolymers, the effect of recording time on grating formation and 
enhancement was systematically studied. The best enhancement effect was obtained at 10 s 
recording upon microphase separation. By adjusting the recording time, the diffraction 
efficiency was finely controlled from 0.13% to about 10% (Yu et al., 2009a).  
As described in section 2, a small external stimulus can induce a large change in refractive 
index of the materials by the cooperative effect between photoresponsive AZ moieties and 
photoinert groups. These propertied have been widely used in holographic recording, which is 
especially useful in AZ–containing block copolymers with mesogens in the minority phase 
dispersed in glassy substrates (Yu et al., 2007b). It was reported that the photoinduced mass 
transfer was greatly prohibited due to the microphase separation in grating recording, lack of 
surface–relief structures was observed (Breiner et al., 2007). Thus, refractive–index modulation 
plays an important role in the grating formation in such well-defined block copolymers. 
 

 

Fig. 12. Enhancement of surface-index modulation and prohibition of surface-relief gratings 
in block copolymers with photoresponsive AZ groups in the minority phase. (A, aligned, R, 
random). 
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As shown in Figure 12, holographic gratings were recorded in films of two polymethyl 
methacrylate (PMMA)–based block copolymers containing AZ moieties (Yu et al, 2008b). 
One was a well–defined diblock copolymer, and the other sample was a diblock random 
copolymer. Here, the diblock random copolymer consisted of two blocks, in which one 
segment was PMMA and the other mesogenic block was statistically random distributed. 
After grating formation, both films showed no formation of surface-relief gratings, and only 
refractive-index gratings were obtained. Upon irradiation of two coherent laser beams, 
refractive-index gratings in the diblock copolymer containing AZs were recorded by 
photoalignment of AZs dispersed in phase–separated domains. In contrast, the 
photoalignment of the AZ moieties was amplified by the photoinert cyanobiphenyl moieties 
as a result of the cooperative effect in the diblock random copolymer. This led to a similar 
refractive–index modulation, although the AZ content was lower in the diblock random 
copolymer. The cooperative motion was confined within the nanoscale phase domains, 
unlike the case of random copolymers with statistically molecular structures. 
Being one of commercially available products, an ABA–type triblock copolymer, 
polystyrene (PS)–b–polybutadiene–b–PS, is famous for its thermoplastics. The hard block of 
PS with a content of 20–30 wt% forms the minority phase upon microphase separation, 
which acts as physical crosslinks for the majority phase of the soft block of rubbery 
polybutadiene (PB). Mechanical stretching can induce a large elastic deformation with 
recoverable properties. By applying this concept, block copolymers with thermoplastics 
were prepared (Bai & Zhao, 2001, 2002; Zhao et al., 2002). Upon stretching–induced elastic 
deformation of grating samples recorded in the thermoplastic block copolymers, fringe 
spacing or grating periodicity was successfully adjusted, as shown in Figure 13. 
 

 

Fig. 13. Mechanically tunable fringe spacing of gratings recorded in an AZ-containing block 
copolymers with thermoplastics. 
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Generally, the fringe spacing could be decided by the pattern of the used photomask, when 
the grating was recorded with one writing beam. On the other hand, holographic gratings 
were also inscribed in block copolymer films by two coherent laser beams with an equal 
intensity. The recorded fringe spacing can be evaluated by Λ = ǌw/(2sinθ), where ǌw and θ 
are the wavelength and the incident angle of the writing laser beams, respectively. Once the 
writing beams are obtained, the fringe spacing is fixed. Tunable features of the fringe 
spacing were achieved in films of the thermoplastic block copolymers (Figure 13). When the 
strain direction was parallel to the grating direction, the fringe spacing was decreased. On 
the contrary, the fringe spacing was increased when the strain direction was perpendicular 
to the grating direction. By the stretching, diffraction efficiency of the gratings was adjusted 
accordingly (Zhao et al., 2002). Recently, mechanically tunable fringe spacing was also 
obtained in gratings recorded with ABA–type triblock copolymers showing properties of 
conventional thermoplastic elastomers, in which rubbery poly(n–butyl acrylate) was 
designed as middle soft block and photoresponsive polymers acted as hard block (Cui et al., 
2004). 

5. Novel AZ-containing materials  

Recent progress in chemistry and material science enables one to freely design functional 
materials with suitable processes to satisfy the need of advanced materials for a variety of 
applications. Integration of AZ materials with other functionalized materials and processing 
provides the designed materials for holograms with special features. For instance, graphene 
nanosheet grafted with AZ-containing polymer brushes was prepared via a “grafting-from” 
approach, which was used as dopant for an AZ-containing molecular glass in recording 
gratings (Wang et al., 2011). The diffraction efficiency of the inscribed gratins was enhanced 
due to the mass transfer of the graphene nanosheets showing a high refractive index. 
Chemically crosslinking of AZ-containing polymer films with surface-relief gratins could fix 
the obtained surface modulation, producing permanent shape change (Zettsu et al, 2008). 
As shown in Figure 2, the Raman-Nath hologram recorded in a thin film exhibited a 
theoretically maximum diffraction efficiency of about 34%. This was far lower than the 
Bragg-type hologram in a thick film with a maximum diffraction efficiency of 100%. 
Furthermore, angular multiplicity could be easily obtained in the Bragg hologram, enabling 
thick films to be suitable for volume storage. To prepare thick and transparent films, 
amorphous and highly transparent PS blended with their block copolymers containing an 
AZ block as the minority phase to eliminate the scattering by utilizing the nanoscale 
microphase separation (Häckel et al., 2005 , 2007). Since all of the mesogens were confined in 
nanospheres dispersed in PS matrix, thick and optically transparent films were obtained by 
injection-molded method. These films showed good angle-multiplexing capability, in which 
200 holograms were superimposed and reconstructed independently at the same spot and 
more than 1000 write/erase cycles were successfully obtained.  
However, the density of photoresponsive mesogens in the block copolymer blend systems 
was very low, leading to a low diffraction efficiency of the recorded gratings. To induce a 
large change in refractive index and record Bragg gratings with high diffraction efficiency, a 
series of amorphous random copolymers with both AZ moieties and photoinert mesogens 
was prepared, as shown in Figure 14 (Saishoji et al., 2007 ; Ishiguro et al., 2007). The highly 
transparent PMMA was utilized as substrate, when x > 50 mol% in the materials 
preparation. Cyanobiphenyl and tolane groups were selected as the photoinert part to 
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enhance the refractive-index modulation. AZ mesogens with a low content to the Z = about 

5 mol%, which acted as photoresponsive moieties. Transparent and thick films (> 100 µm) 
were fabricated using a melting and pressing process. 
 

 

Fig. 14. Transparent and thick films of AZ-containing copolymers for Bragg gratings. 

Upon irradiation with the writing beams, the first-order diffracted beam (+1st) appeared 

immediately and the intensity of the zeroth-order beam (0th) decreased (Figure 14). The 

maximum diffraction efficiency reached above 98 % in all the prepared films. 

Furthermore, the polarization-selective multiple holographic data storage could be 

obtained using the photoinduced anisotropy as well as rewritable holographic recording 

with about 100% diffraction efficiency. These materials prepared by a simple but balanced 

formulation would provide a new guideline for the construction of high-performance 

holographic devices.  

6. Conclusion 

Recent advance in AZ-containing materials has enabled one to record both Raman-Nath and 

Bragg holograms. Among these materials, low-molecular-weight compounds and 

amorphous polymers showed good capability of surface-relief grating formation. In LC 

polymers, refractive-index gratings are often recorded, accompanying with surface-relief 

modulation. Block copolymers with well-defined structures can eliminate the scattering of 

visible light by microphase separation and prohibit surface deformation when AZ blocks 

forms the minority phases. Furthermore, thick films (> 200 microns) with good optical 

transparency can be prepared with random copolymers or blended block copolymers, 

providing substrates for recording volume holograms. 
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