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1. Introduction 

This Chapter deals with bulk hydrogels consisting of a widely used biomaterial: 
poly(ethylene) glycol (PEG). PEG is renown for its bio-inertness; it is very effective in 
suppressing non-specific protein adsorption (NSPA) and thereby preventing cell adhesion. 
However, we have observed unexpected adhesion of fibroblast cells to the surface of bulk 
PEG hydrogels when the surface was decorated with micrometer-sized, topographic 
patterns. This Chapter describes the aim of our investigations to unravel the biophysical, 
biochemical and biomechanical reasons why these cells do adhere to the intrinsically anti-
adhesive PEG material when it is topographically patterned. 

1.1 Application of hydrogels in biomaterial science 
Amongst the different classes of materials which find use in the field of medicine and 
biology, hydrophilic polymers have demonstrated great potential. Networks formed from 
hydrophilic polymer often exhibit a high affinity for water, yet they do not dissolve due to 
their chemically or physically crosslinked network. Water can penetrate in between the 
chains of the polymer network, leading to swelling and the formation of a hydrogel (Langer 
& Peppas, 2003; Peppas et al., 2000; Wichterle & Lim, 1960). Generally such polymer 
networks can be formed via chemical bonds, ionic interactions, hydrogen bonds, 
hydrophobic interactions, or physical bonds (Hoffman, 2002; Peppas, 1986). Hydrogels have 
found numerous applications in drug delivery as well as in tissue engineering where they 
are used as scaffolds for the cultivation of cells to enable the formation of new tissues (Jen et 
al. 1996; Krsko & Libera, 2005; Langer & Tirrell, 2004; Peppas et al., 2006). Hydrogels are 
especially attractive for this purpose as they meet numerous characteristics of the 
architecture and mechanics of most soft tissues and many are considered biocompatible 
(Jhon & Andrade, 1973; Saha et al., 2007). Furthermore, concerning the intended purpose of 
cell encapsulation and delivery, hydrogels support sufficient transport of oxygen, nutrients 
and wastes (Fedorovich et al., 2007; Lee & Mooney, 2001; Nguyen & West, 2002). 
In general, hydrogel matrices can be prepared from a variety of naturally derived proteins 
and polysaccharides, as well as from synthetic polymers (Peppas et al., 2006). Depending on 
their origin and composition, natural polymers have specific utilities and properties. 
Hydrogels from natural sources have for example been fabricated from collagen, hyaluronic 
acid (HA), fibrin, alginate and agarose (Hoffman, 2002). Collagen, HA and fibrin are 
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components which are in vivo present in the extracellular matrix (ECM) of mammalian cells. 
Since they are derived from natural sources, hydrogels formed from these polymers are 
inherently cytocompatible and bioactive. They can promote many cellular functions due to a 
diversity of endogenous factors present. However, scaffolds fabricated from natural sources 
are rather complex and often ill-defined, making it difficult to determine exactly which 
signals are promoting the cellular outcome (Cushing & Anseth, 2007). Furthermore they can 
possess an inherent batch-to-batch variability which can affect sensitive cells in their 
viability, proliferation, and development (Cushing & Anseth, 2007).  Due to these limitations 
of gels formed from natural polymers, a wide range of synthetic polymers has been found 
suitable regarding their chemical and physical properties (Hoffman, 2002). The advantages 
of synthetic gels include their consistent composition and predictable manipulation of 
properties.  
A few examples of synthetic hydrogel building blocks are given in Figure 1, including 
neutral (upper row) and ionic (bottom row) monomers (Peppas et al., 2006).  
 

 

Fig. 1. Some examples of synthetic hydrogels that are used in biomedical applications. 
Reproduced with permission from Peppas et al., Adv. Mater., 18, 1345-60. Copyright 2006 
John Wiley and Sons. 

Proteins are molecules, which often adsorb unspecifically from solution at biomaterial 
interfaces, a phenomenon that has been documented in a wealth of publications, e.g. 
references: (Andrade & Hlady, 1986; Andrade et al., 1992; Wahlgren & Arnebrant, 1991). 
Almost any material, when exposed to a physiological, protein-containing solution, becomes 
coated with proteins within seconds. As widely recognized, this adsorption of proteins to 
synthetic material surfaces is of great importance in the field of biomaterials as it plays a 
determining role for the subsequent cellular responses. Failure of most implant materials 
stems from an inability to predict and control the process of protein adsorption and cell 
interaction, resulting in an inappropriate host response to the material (Castner & Ratner, 
2002; Hlady & Buijs, 1996; Tsai et al., 2002). Biomaterial surface-induced thrombosis, for 
example, one of the major problems in clinical applications of materials in contact with 
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circulating blood, begins with the unspecific adsorption of plasma proteins (Andrade & 
Hlady, 1986; Harris, 1992; Horbett, 1993).  
Not only with regards to tissue engineering and implant design unspecific protein 
adsorption is a highly critical process, also different devices in diagnostics (e.g. protein 
arrays) and biosensors are based on specific receptor-ligand binding, demanding a non-
interacting background. Therefore, much effort has been focused on the development of 
inert, protein resistant materials and coatings (Chapman et al., 2000; Elbert & Hubbell, 1996). 
Many synthetic hydrophilic polymers, including PAA, PHEMA, PVA, PEG and 
poly(ethylene oxide) (PEO) have been applied for this purpose (see Figure 1) (Castillo et al., 
1985). 

1.2 Biomedical applications of PEG- or PEO-based hydrogels 
Some of the earliest work on the use of PEG and PEO as hydrophilic biomaterials showed 
that PEO adsorption onto glass surfaces prevented protein adsorption (Merrill et al., 1982). 
Several subsequent studies confirmed that PEO, or its low molecular weight (Mw<10 kDa) 
equivalent, PEG, were showing the most effective protein-repellent properties (Harris, 
1992). PEG-modified surfaces are non-permissive to protein adsorption, bacterial adhesion 
and eukaryotic cell adhesion (Zhang et al., 1998; Desai et al., 1992; Drumheller et al., 1995; 
Krsko et al., 2009. 
Based on these properties, PEG hydrogels are one of the most widely studied and used 
materials for a variety of biomedical applications such as tissue engineering, coating of 
implants, biosensors, and drug delivery systems (Langer & Peppas, 2003; Langer & Tirell, 
2004; Krsko & Libera, 2005; Tessmar & Gopferich, 2007; Veronese & Mero, 2008; Harris & 
Zalipsky, 1997). PEG substrates have also been used to generate patterns of proteins or cells 
using for example the technique of microcontact printing (Whitesides et al., 2001; Mrksich & 
Whitesides, 1996; Mrksich et al., 1997). PEG hydrogels are approved by the US Food and 
Drug Administration (FDA) for oral and topical application; they are little immunogenic 
and non-toxic at molecular weights above 400 Da. Since PEG itself is not degradable by 
simple hydrolysis and undergoes only limited metabolism in the body, the whole polymer 
chains are eliminated through the kidneys or eventually through the liver (Mw < 30 kDa) 
(Harris, 1992; Knauf et al., 1988).  
Many groups have investigated surface coverings of PEG or PEO in order to try to elucidate 
why PEG has such remarkably effective properties and different theories have been 
proposed (Jeon et al., 1991; Prime & Whitesides, 1993). First, there are generally only weak 
attractive interactions between the PEG-coatings and a wide range of proteins, as protein 
adsorption is generally known to be more pronounced on hydrophobic surfaces in 
comparison to hydrophilic ones (Morra, 2000). Furthermore, as the interaction between 
water and PEG via hydrogen bonds is more favorable and surpasses possible attractive 
interactions of proteins with the surfaces, a repulsion force is created. Therefore the 
hydration of the layer, i.e. the binding of interfacial water is of high relevance for the 
exclusion of other molecules coming near the polymer surface (Harris, 1992; Harder et al., 
1998). Additionally, molecules approaching the rather flexible, loosely crosslinked PEG 
hydrogel from the surrounding medium initiate the compression of the extended PEG 
molecules inducing a steric repulsion effect (Jeon et al., 1991; Morra, 2000). More specifically, 
a loosely crosslinked gel has relatively long segments between the crosslinks, which can take 
a relatively large number of conformations. The number of segment conformations would 
be substantially restricted by the binding of a protein molecule to the gel surface. This 
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would lead to a relatively large unfavorable entropic change, making the process of protein 
adsorption very unfavorable for thermodynamic reasons. Additionally, the high mobility of 
PEG chains allows little time for proteins to form durable attachments. 
Many techniques have been developed to create PEG or PEO-bearing surfaces, e.g. exploiting 
physical adsorption, chemical coupling, and graft polymerization (Harris, 1992; Harris & 
Zalipsky, 1997; Prime & Whitesides, 1993; Fujimoto et al., 1993; Prime & Whitesides, 1991). 
Whitesides and co-workers have studied covalent coatings of oligo(ethylene glycol)s, so-called 
self-assembled monolayers (SAMs) and found that the resistance to protein adsorption 
increased with the chain length of the oligomers (Prime & Whitesides, 1991 and 1993). 
Furthermore, it has been demonstrated that the adhesion resistance of PEG increases with 
chain packing density (Sofia et al., 1998; Malmsten et al., 1998). 
In recent years the versatility of star-shaped PEG molecules has been recognized, as they 
present a high number of end-groups per molecule allowing interconnectivity and 
functionalization (Groll et al., 2005a & 2005b; Lutolf et al., 2003). Some star polymers have 
been shown to achieve a high surface coverage and localization of the end-groups near the 
top of the star polymer (Irvine et al., 1996). Therefore, star-shaped PEG molecules are an 
interesting and promising alternative to linear PEG.  

1.3 PEG-based hydrogels formed by UV-curing: patternable biomaterials 
We have been using PEG hydrogels that are prepared by UV-based radical crosslinking of 
six-armed star-shaped macromonomers via acrylate (Acr) end-groups. The polymer 
backbone consists of a statistical copolymer of 85 % ethylene oxide and 15 % propylene 
oxide (P(EO-stat-PO)) and each star molecule bears 6 reactive Acr end-groups. The formal 
notation of the precursor polymer would thus be Acr sP(EO stat PO). Nevertheless, in the 
following the resulting, crosslinked network will be denoted PEG-based (hydro)gel, even 
though the arms of the precursors do not consist of pure PEG, but contain a fraction (15%) of 
propylene glycol units in the copolymer. These PO-units give the prepolymer its unique and 
very useful property of being a liquid at room temperature, before crosslinking. The 
crosslinking reaction was initiated by a UV-based radical reaction with benzoin methyl ether 
as photoinitiator (PI) and an additional crosslinker (CL) (pentaerythritol triacrylate). Further 
experimental details concerning the synthesis and the curing conditions can be found in our 
recent publications (Lensen et al., 2007; Diez et al., 2009).  
The hydrogel substrates were applied as free-standing bulk gels for 2D cell culture studies. 
Due to the fact that the prepolymer Acr-sP(EO-stat-PO) is liquid before crosslinking, the 
precursor mixture can be molded in any shape, which has enabled us to imprint desired 
micro- and nanometer topographic patterns into the hydrogel surface (Lensen et al., 2007; 
Diez et al., 2009). In the following, the properties of this hydrogel system in view of its use in 
biomedical applications will be evaluated, e.g. the cytotoxicity and cytocompatibility will be 
assessed, and the cell behavior on the surface of the hydrogels will be demonstrated. Finally, 
the remarkable effect of surface topography and substrate elasticity on protein adsorption, 
cell adhesion and cell spreading will be discussed. 

2. Fabrication and properties of PEG-based substrates  

2.1 Synthesis of PEG-based hydrogels from Acr-sP(EO-stat-PO) macromonomers 
Hydrogels fabricated for the application in cell culture studies were crosslinked from Acr-
sP(EO-stat-PO) prepolymers. UV-irradiation was used to initiate radical polymerization of the 
macromonomer mixture with added photoinitiator (PI) and crosslinking agent (CL) (Figure 2). 
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observed to adsorb to virtually any surface, and because FN is generally considered to be 
the most important cell adhesion mediating protein in serum and consequently has been 
much more studied than VN. 
 
 

 

Table 1. Protein adsorption to the surface of the (topographically patterned) PEG-based 
hydrogel; qualitative results are given for samples that were incubated with serum (100% or 
10% in buffer solution) or with buffer solutions containing a mixture of the pure proteins 
Vitronectin (VN) and Fibronectin (FN) in various ratios. Reproduced from: Schulte et al., 
(2011) Macromol. Biosci. (in press). Copyright 2011 John Wiley and Sons. 

 

 

Fig. 10. Cell adhesion on PEG hydrogels enabled by surface topography and/or pre-
incubation with the cell adhesion-mediating protein VN. Reproduced from: Schulte et al., 
Macromol. Biosci. (in press). Copyright 2011 John Wiley and Sons. 

In order to verify whether this small but significant amount of adsorption of VN to the PEG 
surface is responsible for the observed cell adhesion on topographically patterned hydrogels 
we investigated the pre-incubated hydrogels (both smooth and patterned) in cell culture. 
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We analyzed the number of adherent cells and found an increased number of cells on the 
VN-incubated hydrogels. This effect was also found for the unpatterned, smooth hydrogels; 
after VN-incubation a very small but significant number of cells were able to adhere to the 
PEG surface. In Figure 10 these results are depicted; comparing smooth and patterned 
hydrogels with and without VN-incubation.  
It can be seen that compared to the effect of topography alone, the VN-incubation alone was 
less effective in enabling cell adhesion. Remarkably, the effect of VN on cell adhesion was 
only evident at early time points; after 24 hours the enabling effect was completely lost. 
Finally, a striking synergistic effect was observed from the combination of VN-incubation 
and topography; the number of adherent and spread cells was larger than the sum of the 
individual contributions (Schulte et al., 2011). Taking into account the apparent difference in 
the effect of topography and VN with time, we tentatively conclude that the cell adhesion 
protein VN facilitates the initial cell adhesion, while the adhesion-enabling effect of surface 
topography becomes dominant at longer times and is necessary for the development of 
durable and stable adhesion complexes.  

3. Conclusion  

Hydrogels are of high relevance for several biomedical applications. We have described the 
fabrication of a hydrogel system based on poly(ethylene glycol) and evaluated the potential 
of this PEG-based gel as a patternable biomaterial. PEG-based polymers are of great 
importance as biomaterials for applications in cell and tissue engineering, as coating of 
implants or biosensors, and as drug delivery systems. In particular, PEG coatings have been 
used to minimize surface biofouling by plasma proteins to create surfaces that are 
“invisible” to cells. Cell biological studies with murine fibroblasts (NIH L929) confirmed the 
expected non-adhesive nature of the smooth hydrogel surfaces and furthermore ruled out 
any toxic effect of the material. Alterations of the mechanical properties could easily be 
achieved by varying the crosslinking density.  
The most striking result from our studies is that the very popular and versatile PEG 

biomaterial is not cell-repellent per se. Only when the surface of the bulk PEG hydrogels is 

smooth it is anti-adhesive to cells, and this applies to all hydrogels we have investigated 

with a stiffness ranging from 0.1 to 1 MPa. However, we have discovered that on the same 

PEG hydrogels when decorated with micropatterns of topography, cells are able to adhere 

and spread. We have explored several underlying biochemical, biophysical and 

biomechanical factors that could attribute to this phenomenon and found that these factors 

do have an effect indeed, and notably the combination of these parameters, e.g. protein 

adsorption, surface topography and substrate compliance, work together to enable cell 

adhesion to the intrinsically anti-adhesive PEG biomaterial.  

More specifically, three investigated PEG-based hydrogels with different stiffness were all 
cell anti-adhesive when smooth. However, in combination with topography, the softer gels 
were clearly more attractive for the cells; on softer gels with the same pattern geometry, 
significantly more cells adhered and spread than on the intermediate or stiffer gels. It seems 
that the compliance of the softer gels enables the cells to ‘squeeze’ into the grooves, although 
the cells apparently deform their own cytoskeleton rather than the topographic features. 
We also discovered that a slight but significant amount of the ECM-protein Vitronectin is 
able to adsorb to the PEG surface and that this leads to an increase in initial cell adhesion 
during the first 4 hours of cell culture. However, this effect rapidly falls off. The effect of 
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topography is a more durable effect that dominates at longer time scales, suggesting its role 
in the enabling of stable adhesion complexes, which is a process that occurs during more 
than several hours. We consider that the topographic features may provide shelter to the 
cells and prolong their residence time inside of the grooves. Added to this, the ‘pulling’ of 
the cells on the weakly bound cell adhesion proteins may be less effective when they are 
confined between the vertical walls than when the surface is smooth; as a consequence focal 
adhesion contacts can develop into stable focal adhesion complexes.  
Thus, the combination of different (bio)chemical, physical and mechanical properties of the 
PEG hydrogels results in the observed cell adhesion on this intrinsically anti-adhesive 
biomaterial. The effects are difficult to disentangle, and marked synergistic effects were 
observed for example when using topographically patterned hydrogels that were incubated 
with Vitronectin prior to cell culture. 
As PEG is generally well known for its anti-adhesive properties and is widely applied in 
biomedical applications, it is important to take into consideration what our study has 
shown: physical and mechanical surface properties can impede the anti-adhesive 
characteristics of PEG. On the other hand it also opens new opportunities for biomimetic 
material design which does not rely on complicated and expensive biochemical surface 
functionalization for manipulating cellular responses. 
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