
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322401376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


11 

In Vitro and In Vivo Transactivation 
of HIV-1 by Human Herpesvirus 6 

Ongrádi Joseph1, Kövesdi Valéria1, Nagy Károly1, Matteoli Barbara2, 
Ceccherini-Nelli Luca2 and Ablashi Dharam3  

1Institute of Medical Microbiology, Semmelweis University, Budapest 
2Virology Unit and Retrovirus Center, Department of Experimental Pathology, 

University of Pisa, Pisa  
3HHV-6 Foundation, Santa Barbara, CA  

1Hungary 
2Italy 

3USA  

1. Introduction 

1.1 Latency and reactivation of HIV-1 

Since the discovery of human immunodeficiency virus type 1 (HIV-1), there has been a great 
deal of interest in identifying cofactors that might accelerate the stages of development 
associated with acquired immunodeficiency syndrome (AIDS). Many environmental agents, 
namely inherent factors such as ethnicity and geographical location, were first implicated as 
risk factors in the study of HIV infection. However, speculation that infectious diseases may 
act as cofactors in HIV infection began to be studied soon thereafter. These speculations led 
to one of the early opinions that HIV plays a correlary role in AIDS, but not a causative role 
(Duesberg, 1989). AIDS patients have a history of both circumstantial serological and 
microbial evidence of increased exposure to a number of common and opportunistic 
infectious agents. It is difficult to ascertain, however, whether these various coinfections 
contribute anything to the progressive decline of the immune system (Pedersen et al., 1990). 
In vivo, infection with HIV-1 is followed by a long disease-free period, during which a low 
number of CD4+ mononuclear leukocytes (CCR5 coreceptor positive monocytes and CXCR4 
coreceptor positive lymphocytes) containing transcriptionally silent integrated provirus can 
be found. HIV-1 replication can be demonstrated in only a small population of T cells 
without inducing clinical manifestations. This state of latency is partly due to low 
transcriptional activity of the integrated provirus in resting cells. Activation of CD4+ cells by 
antigens, mitogens (Tobiume et al., 1998) or superinfection by other viruses interacting with 
HIV-1 via viral and/or cellular transacting factors may terminate HIV-1 latency, leading to a 
productive HIV-1 infection. Transactivation of the HIV-1 long terminal repeat (LTR) in turn 
will induce gene expression, including the synthesis of the HIV-1 transactivator protein 
(TAT) (Arya et al., 1985). TAT will then independently amplify HIV-1 gene expression, 
ultimately leading to a high level of virus replication and death of infected cells. Onset and 
progression of AIDS correlates with augmented production of infectious virions parallel to a 
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shift in their tropism from CCR5 towards the CXCR4 coreceptor. The number and ratio of 
infected cells, mainly CD4+ T lymphocytes, increases 100-1000-fold during this period 
(Ensoli et al., 1989). 
Initiation and augmentation of transcription by HIV relies not only on the simultaneous 
binding of virus-encoded TAT polypeptide to TAR, but the normal cellular transcriptional 

factors (NF-, Sp1, and other regions of the 3’ HIV-1 mRNA start site) also anchor into 
specific binding sites of the proviral LTR. The production of such factors are augmented 
after mitogen treatment followed by signal transduction from cell surface receptors and 
through several parallel pathways including secondary messenger systems (Martin et al., 
1991; Mosca et al., 1987a, 1987b; Nabel & Baltimore, 1987; Siekievitz et al., 1987). The basal 

level promoter activity does not require binding of NF-B or other nuclear factors (Wang et 
al., 1994).  

1.2 The role of heterologous viruses in HIV-1 activation 

Two alternative ways exist for HIV transactivation by heterologous viruses. First, two (or 
more) viruses can simultaneously infect the same immune cell if the appropiate receptors 
are expressed on its surface. Several DNA viruses have been suggested as potential cofactors 
in AIDS due to their capability to transactivate in vitro the HIV-1 LTR-directed gene 
expression by a tat-independent mechanism. For example, herpes simplex virus type 1 

(HSV-1) immediate early gene products ICP0 and ICP4 act via NF-B and Sp1 (Mosca et al., 
1987a, 1987b). Stimulating effects vary by cell type, indicating that the cellular environment 
plays an important role in viral transactivation (Albrecht et al.,1989). HSV-2 can coinfect, 
simultaneously replicate and transactivate HIV-1 (Kucera et al., 1990). Human 

cytomegalovirus (HCMV) IE genes activate via Sp1 and NF-B sites (Davis et al., 1987; 
Ghazal & Nelson, 1993). HCMV also transactivates HIV-2 LTR (Duclos et al., 1989). Epstein-

Barr virus (EBV) EBNA2, BRLF1 and LMP gene products act through NF-B and Sp1 
(Hammarskjöld et al., 1992; Kenney et al., 1988; Quinlivan et al., 1990). The IE protein of 
pseudorabies virus induces the overproduction of Sp1 (Yuan et al., 1989). Papovaviruses (JC, 
BK) transactivate through Sp1 (Gendelman et al., 1986), adenovirus (AdV) E1A 13S protein 
exerts activation on the TATA box and Sp1 sites (Nabel et al., 1988; Rice & Mathews, 1988). 
Vaccinia virus (Stellrecht et al., 1992), hepatitis B virus (HBV) X protein (Seto et al., 1988), 
and a retrovirus named human T lymphotropic virus type I (HTLV-I) tax polypeptide 
(Siekievitz et al., 1987) transactivate HIV-1. Lymphoid cells chronically infected with HTLV-
I are more susceptible to infection in vitro with HIV-1, and coinfected cells produce higher 
levels of HIV-1 (De Rossi et al., 1986, Ongrádi et al., 2000b). It is likely that the activation of 
HIV-1 by heterologous viruses in dually infected cells results from the cumulative effects of 
various gene promoters. None of these viruses infects CD4+ T cells as their primary target. 
Their gene products do not bind directly to the HIV LTR sequences, and there is no 
apparent molecular link between these products and cellular transcriptional factors. 
Intracellular transactivation is mediated by those transcriptional factors that are upregulated 
upon external stimuli. They may act in a paracrine manner, whereby altering mediator 
production affects the producer cell or neighbouring cells. It has been established that tumor 

necrosis factor (TNF)-┙ via NF-B activation acts in tandem with HSV-1 in augmenting HIV-
1 in different CD4+ cells such as T lymphocytes, monocytes, and leukemic cell lines (Popik 
& Pitha, 1994). Thus, the relevance of these viruses to direct HIV-1 activation in vivo is still 
waiting for unequivocal confirmation. Simultaneous infection in a single cell is a relatively 
rare event, and as such the biological effects of an event of this nature could be minimal. On 
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the contrary, cross-talk between immune cells carrying different viruses is more common, 
especially in lymph nodes where they are in the vicinity of one another. Heterologous 
viruses can infect many other types of cells which are not targets of HIV, but release several 
immunomodulating mediators. This transcellular transactivation can last a lifetime, and its 
intensity may vary on an individual basis, as well as on the synergistic or antagonistic 
effects of several factors including the heterologous viruses themselves. This category of 
interaction seems to have a more significant biological and clinical impact on HIV 
replication and AIDS progression. Expression of the early and/or immediate early genes of 
several heterologous viruses exert very strong modifying effects on the normal mediator 
pattern, which consequently alters HIV replication. HIV infected individuals carrying other 
viruses, therefore, may be at a greater risk for early onset and rapid progression of AIDS. 

2. Human herpesvirus 6 as a broad-range virus transactivator 

2.1 Characterization and genetic structure of HHV-6  

Among heterologous viruses, human herpesvirus 6 (HHV-6, Herpesviridae family, 
Betaherpesvirinae subfamily, Roseolovirus genus) seems to be one of the most important HIV-1 
transactivator. HHV-6 is predominantly a T cell tropic virus, and its unique 
immunomodulatory characteristics have made it a widely studied in vitro and in vivo model. 
HHV-6 has two variants, which differ on the basis of distinct genetic, immunological and 
biological characteristics.; Variant A (HHV-6A) was originally obtained from the peripheral 
blood mononuclear cells (PBMC’s) of patients with HIV infection and other 
lymphoproliferative disorders (Salahuddin et al., 1986), while HHV-6B was originally 
obtained from the PBMC’s of children suffering from exanthema subitum. Isolates were 
later grouped according to prototypes (e.g. GS and U1102 for HHV-6A, Z29 and HST for 
HHV-6B) (Ablashi et al., 1991). The viral genome is 160-162 kbp in size and is formed by a 
central unique (U) region (143-145 kbp) flanked at both ends by terminal direct repeats (DR, 
each 8-9 kbp long). The DR’s contain a tandem repetitive sequence that is also present in 
human telomeres (Thomson et al., 1994a). The genome of HHV-6B contains 119 open 
reading frames (ORFs) encoded by 97 genes, 9 of which are absent in HHV-6A: DR4, DR5, 
DR8, U1, U61, U78, U88, U92, U93 (Dominguez et al., 1999; Gompels et al., 1995). Several 
conserved genes organized into 7 blocks are present in the genome of all herpesviruses. One 
additional block comprises 17 genes conserved in all Roseoloviruses (U20-21, U23-24, U26, 
U85, U100). Two genes are unique to HHV-6 and present in both variants: U83, which 
encodes chemokines (Dewin et al., 2006), and U94, which encodes for a homologue of the 
human adeno-associated virus type 2 (AAV-2) rep gene (Thomson et al., 1994b). The latter is 
transcribed in latently infected lymphocytes, suggesting it likely contributes to the 
maintenance of latency (Rotola et al., 1999). The overall nucleotide sequence identity 
between HHV-6A and –B variants is 90%, but the genes of DR, U86-U93, and U95-U100 
show the highest degree of sequence divergence, reaching 72%. Increased divergence in 
consequent amino acid sequences explains the biological and pathogenic differences 
between variants A and B. Differences in the U100 gene products, designated gQ, determine 
differences in cell tropism between variants (Mori et al., 2003). The variants also differ in 
temporal regulation and splicing patterns of U91 transcripts in T cell lines (Mirandola et al., 
1998). The products of U90 and U95 genes are hypothesized to play a role in the 
establishment of variant–specific niches within the host. The degree of heterogeneity 
between HHV-6 isolates within the same variant is less than 1% (Ablashi et al., 1991). In the 
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isolates obtained from immunocompetent persons no genetic gradients and recombinants 
between HHV-6A and HHV-6B have been detected, making it clear that the two variants 
have independent biological niches and meet the criteria for classification into distinct 
species (Dominguez et al., 1999).  

2.1.1 Molecular interactions between HHV-6 and the immune system 

2.1.1.1 Modulation of surface receptor expression, cytokine and chemokine pattern 

CD46 has been demonstrated as a cellular receptor for both HHV-6A and HHV-6B (Santoro 
et al., 1999). This glycoprotein is a complement regulator, and is expressed on the surface of 
all nucleated cells. Binding of HHV-6A gH structural polypeptides, but not HHV-6B gB 
structural polypeptides, to CD46 cell surface receptors induces the downregulation of IL-12 
and CD46 with consequent disturbances in the complement system (Santoro et al., 1999), cell 
fusion, and CD4+ T lymphocyte depletion (Mori et al., 2002). Through CD46, HHV-6 has the 
ability to infect a wide variety of cell types including neuronal cells (references in De Bolle et 
al., 2005), but both variants express a non-naive phenotype and replicate most efficiently in 
CD4+ T lymphocytes (Ablashi et al., 1991; Grivel et al., 2003). This phenotype introduces a 
unique relationship to the immune system with profound implications on 
immunomodulation. They also infect monocyte/macrophages (Kondo et al., 1991) and 
dendritic cells (Kakimoto et al., 2002) to further establish their latent infection. HHV-6A 
efficiently infects CD8+ T cells (Lusso et al., 1991), ┛├ lymphocytes (Lusso et al., 1995), and 
natural killer (NK) cells (Lusso et al., 1993). This leads to the induction of CD4 expression on 
infected cells, which in turn potentially increases the range of cells susceptible to HIV 
infection. The genes responsible for transactivation of the CD4 promoter include U86 and 
U89 (Flamand et al., 1998). HHV-6A and HHV-6B viral envelope proteins inhibit T 
lymphocyte proliferation induced by phytohemagglutinin (PHA), IL-2 or antigens (Horvat 
et al., 1993). Not only do the infected cells experience programmed cell death (apoptosis), 
but adjacent healthy lymphocytes die as well due to high concentrations of both TNF-┙ and 
-┚ released from nearby infected cells (Inoue et al., 1997). Both variants inhibit the 
expression of CD3/T cell receptor (TCR) complex (Lusso et al., 1991), the lectin-like receptor 
DC-SIGN on dendritic cells (Niiya et al., 2004), CD14, CD64 and HLA-DR on antigen 
presenting cells (Janelle & Flamand, 2006). 
HHV-6 profoundly modifies the bodily pattern of cytokine and chemokine production as 
well, which in turn significantly affects the functionality of effective immune responses. 
HHV-6A strongly inhibits IL-12 and IFN-┛ production, consequently lowering the output of 
uninfected T lymphocytes (Arena et al., 1999). IL-12 production by macrophages (Smith et 
al., 2003), IL-2 production by CD4+ lymphocytes (Flamand et al., 1995), IL-2, IFN-┛ 
production by HSB-2 cultures (Ongrádi et al., 1990), IL-10 and IL-14 production in SupT1 
cultures is inhibited (Mayne et al., 2001). On the contrary, HHV-6A upregulates the 
production of IL-1┚, IFN-┙, TNF-┙, IL-10 synthesis in PBMC’s, TNF-┙ production in HSB-2 
cultures, IL-10, IL-12 production in monocytes, and IL-15 production in both monocytes and 
NK cells (Arena et al., 1997, 1999, 2000; Flamand et al., 1990, 1991, 1996; Kikuta et al., 1990; 
Mayne et al., 2001; Li et al., 1997; Ongrádi et al., 1990). HHV-6A induces GM-CSF in the 
peripheral blood lymphocytes and the ensuing increase in macrophages consequently 
enhances differentiation of bone marrow progenitor cells, further sensitizing them to HIV 
infection (Furlini et al., 1996). All these changes result in a Th1 to Th2 shift in cytokine 
pattern, an impairment of cellular immunity and maintenance of persistent viral infections.  
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Similar to HHV-6A, HHV-6B increases expression of IL-18, IL-2 receptor and members of 
TNF-┙ superfamily receptors (Mayne et al., 2001). HHV-6B increases the production of IFN-
┙ in PBMC’s (Kikuta et al., 1990), IL-8 release from HepG2 human hepatoma cell lines 
without altering IL-1┚ expression (Inagi et al., 1996), and downregulates IL-12 production 
(Smith et al., 2001). Upon HHV-6B infection, the cytokine pattern produced by MOLT-3 
CD4+ lymphoid cells drastically changes as compared to mock-infected cultures in 
synergism with IL-2, while the concentration of IL-3, IL-4, IL-10, IL-15, GM-CSF, TNF-┙ and 
-┚ decreases. These changes result in the suppression of innate, humoral and cellular 
immunity in vivo (Ongrádi et al., 2006). 
It seems that the global effect of HHV-6 on human immune functionality differs by variant. 
HHV-6A targets the suppression of cellular immunity above all, while HHV-6B primarily 
weakens humoral immunity. The consequence of variant-specific immunomodulation is the 
onset of different clinical entities and provision of helper function for other viral diseases. 
These studies have suggested that HHV-6A induced chronic immune alterations contribute 
to HIV pathogenesis and AIDS progression as causative factors, while recurrent HHV-6B 
infection acts as a secondary contributor by aggravating and accentuating other 
immuncompromised conditions. 

2.1.1.2 HHV-6 encoded chemokines and chemokine receptors 

During co-evolution with animals, HHV-6 seems to have obtained genes from them via 
molecular piracy. The products of these genes may play important roles in pathogenesis and 
immune evasion. U83 of HHV-6B encodes for a functional ┚-chemokine (Zou et al., 1999). 
This protein is produced by infected cells, and as a highly active CCR2 agonist attracts 
CCR2-expressing cells such as monocytes/macrophages the virus establishes new infection, 
thus facilitating the spread of the virus. U83 of HHV-6A encodes for two different forms of 
┚-chemokines. The full-length form acts as an agonist while the spliced form acts as an 
antagonist that interacts with other chemokine receptors, i.e. CCR1, CCR4, CCR5, CCR6 and 
CCR8, and is expressed on T cells, monocytes/macrophages, and dendritic cells (Dewin et 
al., 2006). Gene U22 also codes for yet another chemokine (French et al., 1999). Counterparts 
of U12 and U51 genes have been shown in the betaherpesviruses and they code for G-
protein coupled receptor homologs: U12 protein of both variants acts as a ┚-chemokine 
(RANTES, macrophage inflammatory protein /MIP/-1┙ and -1┚, monocyte chemoattractant 
protein /MCP/-1) binding receptor related to CCR1, CCR3, and CCR5. It is expressed at the 
late stage of infection of monocyte/macrophages and cord blood mononuclear cells. Its 
expression is activated by the above cytokines elicited on the effect of other factors, i.e. 
viruses, but not by the ┙-chemokine IL-8 (Isegawa et al., 1998, Kondo et al., 2002). While 
expressed on human epithelial cells, U51 protein specifically binds and down-regulates 
RANTES (Caruso et al., 2003; Milne et al., 2000) by mimicking receptors typically expressed 
on the surface of activated T cells (Menotti et al., 1999). Down-regulation of RANTES may 
consequentially compromise the ability of T-lymphocytes, monocytes and eosinophils to 
gather at sites of inflammation. The gene product of U51 may act as a positive regulator of 
viral replication, possibly promoting membrane fusion and facilitating cell-to-cell spread 
(Zhen et al., 2005).  
The main task of the production of HHV-6 specific chemokines and chemokine receptors is 
to ensure the efficient dissemination of virus throughout the organism either by way of 
acute infection or latent carriage.  
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2.2 Clinical manifestations and transactivating potential of HHV-6A 

The exact mode of transmission and pathomechanism of HHV-6A have not been 
established. In developed countries, HHV-6A does not or very rarely infects children, but 
from adolescence onward its prevalence increases. In several countries of the developing 
world, especially in Sub-Saharan and South Africa, as much as one quarter of children 
below the age of 18 months already carries this variant in both HIV-1 positive and negative 
groups. This suggests that early infections have a different exposure profile compared to 
North America and Europe (Kasolo et al., 1999). In a recent study of genotyping, variant A 
was identified in 85% of HHV-6 infections of asymptomatic African infants, and HHV-6B 
was largely detected as a co-infection alongside HHV-6A (Bates et al., 2009). In such cases, 
unusual recombinants between HHV-6A and HHV-6B were shown (Gompels & Kasolo, 
2006; Kasolo et al., 1997). This is reminescent of the peculiar adenovirus recombinants found 
in the intestines of AIDS patients (Hierholzer et al., 1988). The molecular mechanisms are 
known in neither case, but each raise the idea of a common effect exerted by HIV-1. Saliva 
and breast milk contained neither HHV-6A virions nor viral DNA. It was found in 54% of 
the lungs of healthy adults (Cone et al., 1996). In the blood of children born to HIV 
seropositive mothers living in Africa, a high-quantity load of HHV-6A can be detected. 
HHV-6 DNA has been found in the semen of two thirds of healthy males, and although its 
variant specificity has not been established, epidemiological circumstances raise the 
possibility of sexual spread. Transmission is also suspected to occur from mother to child 
(Bates et al., 2009). The symptoms of acute infection are unknown, but in some well-
documented cases febrile conditions in children were observed. Primary adult infections 
have been associated with severe inflammatory or neurological disease with increased 
neurotropism (Alvarez-Lafuente et al., 2007; Hall et al., 1998; Portolani et al., 2005). 
Persistent HHV-6A infection in the brain may also contribute to AIDS-associated dementia. 
Primary HHV-6A infection later in life may trigger the onset of multiple sclerosis (MS) 
(Akhyani et al., 2000; Alvarez-Lafuente et al., 2006; Ongrádi et al., 1999). HHV-6A also 
establishes life-long latency in CD4+ immune cells, and is usually reactivated in 
immunocompromised patients after bone marrow or organ transplantation along with 
HHV-6B, HHV-7 and HCMV (Griffiths et al., 1999). HHV-6A might be a cofactor in the 
progression of several tumors. The simultaneous detection of HHV-6A and human 
papilloma virus type 16 (HPV-16) in cervical carcinoma cells (Chen et al., 1994b) and the 
ability of HHV-6A U16 and U30 gene products to transactivate E6 and E7 of HPV-16 in 
cervical epithelial cells (Chen et al., 1994a) have prompted investigation of its role in the 
pathogenesis of cervical carcinoma. In a large clinical study, it was concluded that although 
HHV-6A is not the causative agent of cervical carcinoma, it can contribute to multistage 
carcinogenesis and the progression of cervical cancer (Di Paolo et al., 1994). It is of note that 
cervical cancer is one of the AIDS criteria. Furthermore, due to their high prevalence in the 
lymphoid tissues, HHV-6 and EBV are frequently detected simultaneously (Bertram et al., 
1991). HHV-6A infection has been shown to activate EBV replication from latency by a 
mechanism of transactivation that targets a cyclic AMP response element with the EBV 
Zebra promoter (Flamand & Menezes, 1996) to increase expression of EBV early genes 
(Cuomo et al., 1995) and to enhance the transformative capacity of EBV (Cuomo et al., 1998). 
In return, the presence of EBV renders B cells susceptible to HHV-6 infection. EBV has been 
detected in all brain lymphomas and frequent detection occurs in other lymphomas of AIDS 
patients as well (Cuomo et al., 1995). HHV-6A has been shown to enhance the progression 
of lymphomagenesis. As mentioned earlier, the HHV-6A U94 gene product, known as the 
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RepH6 polypeptide, is able to complement replication of a rep-deficient AAV-2 genome 
(Thomson et al., 1994b). Contrary to HIV LTR activation by HHV-6, HHV-6 cannot 
transactivate latent infection by human T lymphotropic virus type I (HTLV-I) or 
subsequently affect the expression of its tax transactivator gene (Cao & Sullivan, 1992). 
Mediators released from actively replicating HHV-6A or carrier cells transactivate the 
human endogenous retrovirus (HERV) K18 and induce expression of HERV K18-encoded 
superantigen (Tai et al., 2009). HHV-6B also induces HERV K18-encoded superantigen 
expression (Turcanova et al., 2009).  
In rare clinical manifestations of HHV-6A infection (e.g. hepatitis) or transmission by organ 
transplantation in Europe, North-America and Japan (Portolani et al., 2005; Potenza et al., 
2008) where HHV-6B predominates, HHV-6A strains may be considered emergent 
infectious diseases. These cases will require careful genotyping as well as viral load and 
gene expression studies to further characterize the infection (Bates et al., 2009).  

2.3 Epidemiology and biological effects of HHV-6B 

Although both HHV-6 variants infect CD4+ immune cells, and despite their high molecular 
homology they profoundly differ in epidemiology and pathogenesis. Lack of reliable 
serological testing has hindered their differentiation in pathological conditions for several 
decades, but variant specific polymerase chain reaction (PCR) and other PCR based 
quantitative methods have yielded satisfactory data on their role played in acute and 
chronic diseases. The mode of transmission and pathomechanism of HHV-6B has sine been 
well-characterized, and evidence seems to indicate that humans are the only know 
reserviors of HHV-6B. The salivary gland serves as a reservoir for symptomless shedding, 
and the saliva of the caregivers of small children has been shown to transmit infection via 
droplets (Fox et al., 1990). By age 2, almost all children have become seropositive (references 
in Ongrádi et al., 1999d). The majority of infections are symptomless, but approximately 
15% of infected children develop exanthema subitum (Yamanishi et al., 1988). Although 
HHV-6B DNA sequences were found in the genital tract of 20% of pregnant women, 
perinatal transmission is unlikely (Okuno et al., 1995). HHV-6B establishes life-long latency 
in CD4+ immune cells. HHV-6B is frequently reactivated in immunocompromised 
conditions, e.g. after transplantation of bone marrow, liver, kidney or pancreas. High fever, 
graft rejection and other lethal complications are not uncommon. HHV-6B reactivation is 
followed by HHV-7 and HCMV reactivation in a temporal pattern, aggravating clinical 
symptoms (Herbein et al., 1996). HHV-6B might also act as a cofactor in the pathogenesis of 
several chronic debilitating immunological or neurological diseases such as Hodgkin’s 
lymphomas, multiple sclerosis, mesial temporal lobe epilepsy, chronic fatigue syndrome 
and drug induced hypersensitivity syndrome (references in Caselli & Di Luca 2007 and De 
Bolle et al., 2005). HHV-6B DNA is commonly detected in the brain of deceased AIDS 
patients and HHV-6B proteins are often located in the demyelinated areas, suggesting an 
active role in persistent infection and neurological complications in AIDS patients (Drobyski 
et al., 1994). No vaccination against HHV-6B exists, but for chemoprevention and treatment 
in severe conditions ganciclovir, valaciclovir, foscarnet and cidofovir have been used 
(references in Caselli & Di Luca, 2007 and De Bolle et al., 2005). 

2.4 Chromosomally integrated HHV-6 

It has recently been demonstrated that both variants of HHV-6 can integrate specifically into 
the telomeres of human chromosomes 1, 9, 10, 11, 17, 18, 19 and 22 of PBMC’s in vivo and in 
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vitro (Luppi et al., 1993; Morrisette & Flamand, 2010; Torelli et al., 1995). This behavior is 
unique among human herpesviruses. The presence of human telomeric-like repeat 
sequences at the HHV-6 genome termini (Gompels & Macaulay, 1995) and the HHV-6 U94 
gene product (RepH6) might mediate the site-specific viral DNA integration within human 
cells (Surosky et al., 1997). Chromosomally integrated HHV-6 (CIHHV-6) can be passed 
through the germ line. Recent evidence from studies in the USA, UK, and Japan have shown 
that approximately 0.2-0.85% of infants experience vertical transmission of HHV-6 through 
the germ line, accounting for almost all HHV-6 congenital infections with no significant 
differences between distribution of variants (Hall et al., 2008; Tanaka-Taya et al., 1996; Ward 
et al., 2006). Cells containing CIHHV-6 copies do not have closed circular viral DNA 
(episomes), but produce a high viral load in the blood (106-107 copies per ml). A person with 
CIHHV-6 will never be negative by PCR in serum or whole blood (Ward et al., 206). While 
some individuals with CIHHV-6 are asymptomatic, the integrated virus appears to be 
capable of reactivating. Members of these families carry identical HHV-6 strains, and some 
of them suffer from severe neurological symptoms. It has been demonstrated that CIHHV-6 
can be made to reactivate by chemically stimulating the integrated cells (Arbuckle et al., 
2010). Several case reports have shown that CIHHV-6 patients with neurological problems 
responded to antivirals (Troy et al., 2008; Wittekind et al., 2010). 

3. Transactivation of HIV by human herpesvirus 6 variant A and B 

3.1 In vitro studies on the intracellular transactivation of HIV by HHV-6 variants  

The fact that HHV-6 and HIV-1 infect overlapping subsets of CD4+ lymphocytes (Lusso & 
Gallo, 1995) and lytic HHV-6 infection may contribute to the decline of this cell population 
in HIV-infected individuals, has lead to the hypothesis that there is specific interaction 
between these viruses. To substantiate this claim, several arguments were initially raised 
based on in vitro data rather than on clinical observations. In the first logical investigation, 
freshly isolated and activated PBMC’s containing CD4+ immune cells were simultaneously 
infected with HIV-1 and HHV-6A (GS). It was demonstrated that HHV-6A and HIV-1 could 
productively coinfect individual CD+ T cells, resulting in accelerated HIV-1 gene expression 
and enhanced cell death through apoptosis (Lusso et al., 1989). Infection of the ACH-2 
leukemic T cells carrying latent HIV-1 with HHV-6A resulted in HIV-1 antigen co-
expression with early-late HHV-6 products, suggesting that more IE gene products are 
involved in the activation of latent HIV-1 (Isegawa et al., 2007). Superinfection of U1 
promonocytic cells latently carrying HIV-1 occurred by introducing HHV-6A (GS) and 
treating with TNF- induced massive HIV-1 replication, whereas none of the clinical isolates 
of HHV-6B were able to break latency of HIV-1. It is of interest that HIV-1 upregulation 
elicited by HHV-6 was not inhibited by anti-TNF-┙ antibodies (Knox & Carrigan, 1996). 
Cloned fragments of HHV-6 and HIV-1 LTR were cotransfected into different cells, and the 
transactivating potential of HHV-6 infection on HIV-1 LTR was reported (Ensoli et al., 1989). 
Since then, transactivating functions have been assigned to an increasing number of 
individual HHV-6 genes. The protein encoded by HHV-6A (U1102) DR7 gene, expressed 
from 18h postinfection has been shown to transactivate HIV-1 LTR promoter and increase 
HIV-1 replication (Kashanchi et al., 1994, Thompson et al., 1994). Its oncogenic potential in 
NIH 3T3 fibroblast cells relates to its capacity for binding and intiating the tumor suppressor 
protein p53 (Kashanchi et al., 1997). The U3-encoded protein was found to transactivate the 
HIV-1 LTR promoter in money kidney CV-1 cells (Mori et al., 1998). The U16 to U19 genes 
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encode transactivators that upregulate viral and cellular transcription. The immediate early 
(IE) expressed spliced gene products of U16/U17 and the IE U18- and U19-encoded proteins 
have all been shown to independently transactivate the HIV-1 LTR promoter in vitro 
(Flebbe-Rehwaldt et al., 2000; Geng et al., 1992; Nicholas & Martin, 1994). The DNA 
polymerase processing factor, encoded by the HHV-6 (U1102) U27 gene, was shown to 
transactivate the HIV-1 LTR in CV-1 cells. The presence of NF-B binding sites was 
mandatory for the response to pU27 (Zhou et al., 1994). The HHV-6 IE-A locus encodes two 
proteins, IE1 and IE2, corresponding to the ORFs U89 and U86-87, respectively. Both are 
expressed from spliced mRNAs, and each contains an exon derived from the U90 gene 
(Nikolaou et al., 2003). IE1 of HHV-6A was shown capable of transactivating heterologous 
promoters. Compared to the IE1 protein of HHV-6A, the HHV-6B IE1 protein was found to 
exhibit much lower transactivating potential on HIV-1 LTR (Gravel et al., 2002). IE2 activates 
multiple promoters that have no regulatory element in common, such as the complex HIV-1 
LTR promoter, or simple promoters containing zero or only one response element (NF-B, 
CRE, or NF-AT (Gravel et al., 2003). It also transactivates the CD4 promoter (Flamand et al., 
1998). HHV-6A (U1102) U94-encoded RepH6 acts as a transactivator by binding to a 
transcription factor, human TATA binding protein (Mori et al., 2000). RepH6 by itself 
possesses single-stranded DNA binding capacity, which is enhanced by cellular nuclear 
factors (Dhepakson et al., 2002), and is known to activate the HIV-1 LTR promoter in 
fibroblast cells (Thomson et al., 1994b). 
HHV-6 encoded proteins with HIV-1 LTR transactivating potential not only stimulate HIV-1 
expression (Ensoli et al., 1989; McCarthy et al., 1998), but these proteins (e.g. IE1) and the 
HIV-1 transactivating protein TAT have been shown to interact synergistically in this 
respect as early as 6.5 hours after HHV-6 infection (Di Luca et al., 1991, Garzino-Demo et al., 
1996). HIV-1 TAT enhances HHV-6A titers and protein synthesis in cord blood lymphocytes 
and continuous CD4+ JJHAN T cells (Sieczkowski et al., 1995), but no activation was 
detected in Jurkat cells (Di Luca et al., 1991). More products of genes and cloned gene 
fragments of HHV-6A (U1102), namely SalI L, EcoRI (encoding p41) genomic fragments and 
HHV-6A (GS) pZVB70 and pZVB10 transactivate HIV-1 LTR at the NF-B site, while 
pZVH14 acts through the Sp1 site in African green monkey kidney cells (CV-1) and human 
T cells (Geng et al., 1992), although in other experiments all three fragments have been 
shown to activate NF-B. HHV-6A is able to activate HIV LTR in both stimulated and 
resting T lymphocytes, while HHV-6B (Z29) can carry out HIV LTR activation in T cells only 
(Horvat et al., 1991). 
Patients and clinically normal individuals are frequently infected with multiple viruses. It is 
therefore important to understand the implications of simultaneous infection by multiple 
viruses. Coinfections with HIV, HHV-6A and hepatitis C virus (HCV) are frequently seen in 
the same individual. In a recent study, human lymphoid cells were simultaneously infected 
with all three viruses. Individual cells were able to support replication of all three viruses 
without dominance of one virus. All these viruses are highly cytolytic, and therefore triply-
infected cells were short lived (Salahuddin et al., 2007).  
There are several reports concerning the inhibitory effect of HHV-6 on HIV-1 in cell 
cultures. Peripheral blood lymphocytes, macrophages, and dendritic cells were coinfected. 
Unfortunately, in the majority of these studies, two different HHV-6 strains belonging to 
variant B were used: either strain Z29 (Asada et al., 1999; Carrigan & Knox, 1990; Spira et al., 
1990) or SF (Levy et al., 1990b). Their further studies on cytokines produced by HHV-6 B 
infected cells showed inconclusive results, because virus infection was not synchronized. In 
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this way, consecutive generations of viruses induced different cytokines at very different or 
overlapping time points. 

3.2 In vitro studies on the transcellular transactivation of HIV by HHV-6 A and B 

Next, to study the possible transcellular transactivation of HIV by HHV-6A, Ongrádi et al. 
infected HSB-2 CD4+ T lymphocytes with HHV-6A (GS). Supernatants of the infected cells 
contained a myriad of mediators and newly produced virions, similarly to the serum of 
patients. At regular time intervals, supernatant samples were removed and filtered until 
virus-free. Meanwhile CEM-ss cells were infected with HIV-1 (IIIB) at different multiplicities 
of infection (moi) and then mixed with HHV-6A-free supernatant samples. Next, HIV-1 
production was quantitated by syncytia formation, reverse transcriptase (RT) activity and 
p24 antigen production. Supernatants obtained at 24 and 48 hours post-infection exerted the 
strongest HIV-1 activation. The smaller the HIV-1 inocula were, the higher activating effect 
was observed. This timing coincides with the expression of early HHV-6A genes. Elevated 
TNF-, but suppressed IFN- production was exhibited, and IL-2 was found to have no role. 
Late supernatant samples obtained at the time of virion production showed slightly 
inhibited HIV production. Distinct cytokines and chemokines are produced in a sequential 
manner by the same cell. Their ratio continuously changes, and they furthermore exert 
pleiotropic effects. HIV-1 activation (and/or inhibition) via HHV-6 induced cytokine and 
chemokine production is the net effect of many soluble factors. This is the only known 
experiment in the literature describing that HHV-6 infected--but virus-free--media obtained 
from one type of CD4+ lymphoid culture modifies HIV-1 production in another lymphoid 
culture (Ongrádi et al., 1990, 1999c). Similarly, separated human peripheral blood 
monocytes were exposed to different viral antigens, and aliquots of the media of these 
monocytes were mixed to ACH-2 and U1 cells latently infected by HIV-1. Conditioned 
media obtained from HCMV and EBV antigen exposed monocyte cultures augmented HIV-
1 replication, whereas others, such as HSV-1, HSV-2, VZV, HHV-6A failed to stimulate HIV-
1 replication (Clouse et al., 1989). These suggest that HIV-1 is under several synergistic or 
antagonistic effects in vivo. Several studies have also shown that certain proinflammatory 
cytokines induced by HHV-6A infection--such as TNF-, IL-1 and IL-6 enhance in vitro 
expression of HIV-1(Flamand et al.., 1991). The major mode of transcellular transactivation 
between HHV-6A (GS) infected and HIV-1 carrier lymphocytes is mediated by TNF- and 
consequent NF-B induction followed by its increased binding to LTR sequences. In vivo, 
HHV-6A induces the T helper cell profile to shift from Th1 to Th2 by upregulating IL-10 and 
downregulating IL-12 in infected PBMC’s (Arena et al., 1999), which might act with the 
similar effects of HIV-1 to accelerate AIDS progression.  

4. Epidemiological studies on the HIV transactivating and AIDS promoting 
potential of HHV-6 

4.1 Cross sectional molecular studies 

In vivo transactivation of HIV-1 by HHV-6 has been postulated on the basis of several in vitro 
experiments. Following the discovery of HHV-6A, it was frequently isolated from HIV-1 
infected patients worldwide (Dowling et al., 1987; Levy et al.., 1990a; Lopez et al.., 1988; 
Tedder et al., 1987) although no opportunistic diseases had been associated with HHV-6A at 
that time. Concomitant infection by HHV-6A, HTLV-I and HIV-2 has also been described 
(Agout et al., 1988). Widespread HHV-6A infection was documented in patients with AIDS 
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at post-mortem examination (Carrigan & Knox, 1994). HHV-6A infected cells--usually lung 
macrophages--were observed in all patients, whereas HHV-6A infected lymphocytes and 
epithelial cells were seen in approximately two thirds of patients. The kidneys and liver also 
showed wide-spread infection of lymphocytes in inflammatory infiltrates. In the lymph 
nodes, HHV-6A concentrated in lymphocytes in the medullary region. Lymphoid organs are 
important reservoirs of HIV infection, and progression from HIV-1 infection to AIDS is 
associated with the involution of these tissues. Cell destruction is synergistically enhanced 
leading to early disintegration of the lymphoid environment with higher viral load. HIV 
proviral viral load was higher in tissues taken at autopsy if the organ also harbored HHV-6, 
which could suggest upregulation of the former by the latter (Corbellino et al., 1993; Knox & 
Carrigan, 1994a, 1996). HHV-6B levels in the lymph nodes and in different organs of 
deceased patients also were found elevated alongside increased HIV-1 loads. It has been 
postulated that neighbouring cells exert mutual effects by altered cytokine milieu (Emery et 
al., 1999). Excretion of HHV-6B in the saliva of patients in successive stages of the disease 
was not significantly different (Gautheret et al.., 1995).  
Ongrádi et al. also tested several groups of patients for double virus infection. In the first 
series of cross-sectional studies, patients in consecutive stages of HIV-1 infection with 
declining CD4+ cell number (symptomless, full blown and terminal AIDS, permanent HIV 
seronegative sexual partners, and control individuals) were screened for HHV-6A 
antibodies by immunofluorescence. As compared to controls, the mean level of IgM in the 
sexual partners raised 30-fold, that of IgG increased 10-fold, and 80% of individuals had low 
avidity IgG suggesting fresh HHV-6A infection. As compared to controls, the mean titer of 
IgM to HHV-6A remained elevated 10-fold in each group of HIV positive subjects. The 
highest level was found in the HIV seronegative partner group. The IgG level was 6-fold 
increased in asymptomatic HIV carriers, 4-fold in early and 5-fold in terminal AIDS patients. 
In the rapid progressors of AIDS patients HHV-6A IgG was higher, whereas in the 
subgroup of rapid progressors of terminal AIDS patients HHV-6A IgG was significantly 
lower compared to slow progressors. More than one quarter of AIDS patients had low 
avidity IgG to HHV-6A. These data suggest that, parallel to the decline of CD4+ T cell 
number and disease progression, HHV-6A maintains a chronic persistent infection in a 
significant number of HIV infected persons, and repeated HHV-6A infection furthermore 
occurs in the sexual partners of HIV-1 carriers. In the case of rapid progression, HHV-6A 
IgG production ceases (Maródi et al., 1998; Ongrádi et al., 1999b, 1999e), and as a result 
HHV-6A can become widely distributed by inflitrating the lymphocytes of several organs 
without specific tissue damaging effects (Knox & Carrigan, 1996). 
Restricted expression of the same immediately early and early genes without the complete 
replication cycle, of several viruses can alter cellular machinery, resulting in malignant 
transformation and altering cytokine/chemokine production and subsequent HIV 
transactivation. The question then became whether simultaneous carriage of HIV-1 and 
HHV-6, or expression of viral genes reflecting active virus replication can influence 
depletion of CD4+ T cells and disease progression in different risk patients such as 
hemophiliacs and intravenous drug abusers (IVDA) compared to blood donors. DNA was 
extracted from plasma and peripheral blood lymphocytes (PBL’s), while RNA was only 
extracted from PBL’s. Carriage of both viruses was detected by PCR, and their expression by 
RT-PCR: PCR specific for HIV-1 env gene and nested PCR specific for HHV-6 ZVH14 
fragment, was carried out. RT-PCR was carried out on complementer (c) DNA under the 
same conditions. The HHV-6 strain was characterised by endonuclease digestion fragments. 
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(Ceccherini-Nelli et al., Ongrádi et al. detected HHV-6A active replication more frequently 
in IVDA, 107/135, 79%), than in hemophiliacs (11/35, 31%, p<0.001) and blood donors 
(26/145, 18%, p<0.001). 81% of IVDA was positive by HIV-1 DNA PCR and, in spite of 
specific retroviral therapy, expressed HIV in 54% of cases. Furthermore, 43% (58/135) of 
these persons also expressed HHV-6 sequences evidently able to transactivate HIV-1. 
Expression of HHV-6 in HIV-1 seropositive patients is found to be 6.1 times more frequent 
than in HIV-1 seronegative counterparts. Simultaneous virus expression was shown to 
enhance CD4+ cell depletion. HHV-6 expression was found to enhance mortality of AIDS 
patients by approx. 35% in a two year period. These data prove that in the majority of 
patients HIV-1 expression is associated with active HHV-6A replication, but not with the 
latent state of HHV-6A. Among HIV-1 transactivating cofactors, HHV-6A seems to be 
relatively frequent. These data also suggest that the route of HHV-6A dispersal throughout 
the body is identical to that of HIV-1 (Ceccherini-Nelli et al., 1990; Ongrádi et al., 1994). 
 

 
Patients 

CD4+ 
cell 

counts 

HIV-1 
viral load 

(log Eq/ml) 

HHV-6 DNA 
PCR 

1µg 5µg 

HHV-7 
DNA PCR 

1µg 5µg 

Clinical 
stage 

(CDC 1993) 

1 17 147.9 + + - - C3 
2 29 501.8 - - - - C3 
3 59 32.66 - - - - B3 
4 79 72.57 - + - - B3 
5 97 190.06 + + - - C3 
6 139 388.4 + + - - C3 
7 197 10.9 - - + + C3 
8 217 117.46 - - - - A2 
9 240 negative - - - + A2 

10 280 negative - - + + A2 
11 321 18.9 - - - - A2 
12 346 51.53 - - + + A2 
13 429 13.04 - + + + A2 
14 432 13.77 - + + + C2 
15 453 12.52 - - - + A2 
16 504 11.48 + + + + A1 
17 598 28.1 - - - + A1 
18 735 negative - + + + A1 

Table 1. Clinical, virological and immunological data of HIV-1 seropositive patients 

As outlined in Section V, HHV-7 shows a marked reciprocal interference with HIV-1 in vitro. 
To investigate in vivo interactions of HHV-6, HHV-7 and HIV-1, another cross-sectional 
study comprising 18 HIV-1 seropositive patients and 33 blood donors has been recently 
described (Barsanti et al., submitted). Presence of HHV-6 was established as above, and 
nested PCR for HHV-7 on DNA extracted from PBLs was carried out using a set of specific 
primers and probe designed from the KHR strain of HHV-7 as described (Okuno et al., 
1995). HIV-1 load was quantitated by branched DNA signal amplification. Although no 
significant difference in HHV-6 prevalence was found between patients and controls (22 and 
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33%, respectively), all 4 HHV-6 positive patients belonged to variant A, whereas among 
controls with HHV-6 DNA positivity had variant A and 4 had variant B, confirming that 
HHV-6A is predominantly associated with immunocompromised patients (Table 1). The 
percentage of HHV-7 positivity in HIV-1 seropositive patients (39%) is significantly lower 
than that of blood donors (82%, p<0.01, χ2 test). HHV-7 positivity significantly correlated 
with a low level of HIV-1 (p<0.01, Mann-Whitney’s test) as compared to HHV-7 negative 
HIV-1 positive patients. Interestingly, while the presence of HHV-6A was detected in 
patients with all consecutive stages of HIV-1 infection, distributed evenly, HHV-7 positivity 
was found more frequently in patients with earlier stages of HIV-1 infection: namely stages 
A1- 3/3, A2-5/7, C2-1/1, B3-0/2, and C3-1/3. Although the number of patients in each 
group is very small, the trend is clear: independent or synergistic destruction of CD4+ T 
cells by HHV-7 and HIV-1 lead to their rapid declination. Another possibility is that rapid 
declination of CD4+ cells by HIV-1 prevents the replication of HHV-7 in the later stages of 
HIV-1 infection, but the low level of HIV-1 load argues against this hypothesis. Irrespective 
of interpretation, these results raise the idea that HHV-7 may not be such a harmless virus in 
HIV-1 infected patients. Further in vivo studies on the interaction between HIV-1 and HHV-
7 are warranted (Barsanti et al., submitted). 

4.2 Longitudinal, serological and molecular studies 

Follow-up studies could be done only in a limited number of double infected patients, and 
methodology was the same as described above. The first study of HHV-6 infection was 
carried out in two HIV-1 seropositive patients to provide in vivo evidence of HHV-6 
reactivation. Concomitant with a significant rise of anti-HHV-6 IgG detected by IFA, a 
transient increase in HHV-6 viral load was shown in PBL’s via PCR. During HHV-6 
reactivation it was identified either as cell-free HHV-6 by PCR in plasma or by IgM antibody 
titers. HHV-6 reactivation was followed by a temporary decrease in CD4+ count and by a 
progressive dramatic loss of CD4+ cells during the 18 months post-reactivation. HHV-6 
strain characterization by PCR demonstrated that the first patient (a woman with 232 CD4+ 
cell/mm3 at the beginning, 34 CD4+/mm3 with full-blown AIDS 16 months later) initially 
carried the B variant followed by reactivation and persistence of the A variant, while in the 
second patient (a man with 248 CD4+ at the beginning, then 14 CD4+/mm3, Pneumocystis 
carinii pneumonia and esophageal candidiasis 13 months later) only the A variant was 
detected. The evidence of HHV-6A reactivation presented suggests its involvement in a 
mechanism of immunologic damage underlying the disease by either direct destruction of 
lymphoid cells or altering cytokine pattern (Iuliano et al., 1997). In another longitudinal 
follow-up of two AIDS patients from active HHV-6A infection evidence was demonstrated 
but the profile of infection in the two patients varied. One patient demonstrated the 
appearance and disappearance of HHV-6A indicating viral reactivation, whereas the other 
patient exhibited chronic or persistent HHV-6A infection (Ablashi et al., 1997). In another 
cohort, serum samples and PBMC’s collected over a period of four years. IgG antibodies to 
HHV-6 gp110 late antigen did not differentiate between HIV-1 infected and control subjects, 
but IgG and IgM antibodies to p41/38 early antigens showed a significantly higher 
prevalence in HIV-1 infected individuals than in healthy donors, suggesting viral activation. 
HHV-6A was also shown in doubly infected PBL’s of T lineage (CD2+, CD4+, CD38+) 
(Ablashi et al., 1998b). As Ceccherini-Nelli et al., Ongrádi et al. demonstrated, others have 
also shown that HHV-6A is frequently reactivated in early asymptomatic HIV-1 infected 
patients (Secchiero et al., 1995). AIDS progression is accelerated in infants with vertically 
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acquired HIV-1 and early acquisition of HHV-6A infection (Kositanont et al., 1999). Periodic 
reactivation or sustained persistence seem to be general phenomena among doubly infected 
persons. Additionally, high HHV-6 antibody titers were demonstrated in patients with 
consistently increasing HIV-1 load (Lenette et al., 2005).  
HHV-6A upregulates CD4 expression, competitively inhibits binding of CCR5-trop HIV 
particles through RANTES overproduction, and ensures selective advantage of CXCR4-trop 
particles to infect T lymphocytes. HHV-6A persistence seems to sensitize the organism to 
HIV-1 infection. In the early phases of HIV infection, reactivated HHV-6A -especially in 
children- speeds up the disintegration of lymph nodes, as well as the onset and progression 
of AIDS in a vicious cycle. During the terminal phase of AIDS, a large amount of reactivated 
HHV-6A particles invade the whole body. In rapid AIDS progressors, both prevalence of 
HHV-6A virions and the titer of anti-HHV-6A antibodies are higher than in slow 
progressors. In AIDS-associated retinitis, HHV-6A proviral DNA, RNA and polypeptides 
are frequently shown beside HCMV (Qavi et al., 1989). In AIDS patients, HHV-6A might 
aggravate pneumonitis (Knox & Carrigan, 1994), Regarding the neuropathogenesis of HIV-1 
infected children, HHV-6A is extensively disseminated in neural cells of the brain. It was 
reported that adult patients with AIDS had large areas of demyelination in their brain tissue 
at time of death (Knox & Carrigan, 1995).  

5. Human herpesvirus 7 as a negative competitor of HIV infection 

HHV-7 was isolated from the activated T lymphocytes of a healthy blood donor (Frenkel et 
al., 1990). HHV-6 and HHV-7 share similar genetic, biologic and immunologic features. 
HHV-7 also belongs to the Roseolovirus genus. The viral DNA is completely sequenced 
(Nicholas, 1996), it is formed by a unique segment of 133 kbp flanked by 6 to 10 kbp DR 
sequences, so that the genome length ranges between 145 and 153 kbp. Similar to HHV-6, 
the HHV-7 viral genome contains herpesvirus conserved genes arranged in 7 boxes. Nucleic 
acid sequence identity ranges from 20.7 to 75.7% in various genes, while amino acid 
sequence identity is between 41 and 75%. The coding ability of HHV-7 comprises 84 
different ORFs (Megaw et al., 1998), only one gene (U55B) is HHV-7 specific, and there is no 
homologue to the HHV-6 U94 gene. It has been shown that HHV-7 gB attaches to CD4 
molecules as a receptor (Lusso et al., 1994). It is likely that other molecules can act as 
receptors, and it is known that HHV-7 can infect cells that do not express CD4, e.g. 
lymphocytes, monocytes, epithelial cells, and fibroblasts. CD4 alone is not sufficient for a 
productive infection (Kempf et al., 1998). HHV-7 also establishes latent infection in CD4+ 
lymphocytes and macrophages, persistent infection occurs in salivary gland tissues as well, 
as shown by specific PCR (Sada et al., 1996). In vitro, only the CD4+ immature T cell line 
(SupT1) supports HHV-7 growth (Ablashi et al., 1998a). Due to CD4 affinity, HHV-7 
competes for the shared receptor with HIV-1 (Lisco et al., 2007). Blockade of the CD4 
molecule with anti-CD4 monoclonal antibodies (mAbs) or HIV-1 gp120 (which bind to CD4), 
inhibits HHV-7 infection of T cells. Exposure of terminally differentiated CD4+ 
macrophages derived from peripheral blood monocytes to intact or UV-inactivated HHV-7 
prior to HIV-1 infection reduced the average level of HIV-1 p24 antigen production in cell 
culture supernatants by 91%, indicating that the mechanism of interference depends directly 
on the competition for CD4. It was suggested that this antagonistic effect be exploited to 
devise therapeutic approaches to AIDS. However, in prospective in vivo studies, HHV-7 was  
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detected in only 3% of HIV-1 infected patients and 12% of controls. It was suggested that 
this low level of detection resulted from HIV-1 out-competing HHV-7 for infection of CD4+ 
cells. There was no association between HHV-7 viral load in PBL and progressson of HIV-1 
disease (Crowley et al., 1996). HHV-7 has a strong down-regulation on CD4 mRNA and 
transcriptional activity in cord blood lymphocytes and SupT1 cell (Furukawa et al., 1994). 
The HHV-7 U21 open reading frame codes for an immunoevasin that inhibits the transport 
of class I MHC and CD4 molecules to the surface, thus infected cells are more difficulty 
recognizable by CD8+ cytotoxic T lymphocytes (Hudson et al., 2003). Expression of Kaposi’s 
sarcoma herpesvirus (HHV-8), K5 protein (MIR2) (Paulson et al., 2001) and adenovirus 
E3/19K protein (Lippé et al., 1991) also restrict surface expression of MHC class I molecules. 
HIV Nef polypeptide down-regulates both MHC class I and CD4 molecules (Mangasarian et 
al., 1999). In patients carrying several viruses simultaneously, the concerted action of HIV 
Nef and immunoevasins of heterologous viruses dramatically diminishes cytotoxic immune 
cell activism, resulting in the survival of virus-producing cells and consequently increasing 
bodily viral load. HHV-7 down-modulates CXCR4 surface molecule independently of CD4 
in infected cells (Secchiero et al., 1998), which inhibit HIV-1 spread through the body. 
Differently than HHV-6A, HHV-7 does not down-regulate CD3, and has no effect on CD1, 
CD2, CD44 and CD49 T cell adhesion molecules (Yasukawa et al., 1993). In addition, HHV-7 
decreases CD38 levels, and slightly increases CD5 and CD57 on the surface of infected both 
SupT1 cells (Kirn et al., 1997). During the late stage of infection, HHV-7 increases the 
expression of CD46 at both the transcriptional and translational levels, as well as on the 
surface of SupT1 cells and primary CD4+ T cells. Together with CD59 overexpression, 
HHV-7 infected cells become more resistant to complement-dependent cytotoxicity than 
uninfected cells. CD46 overexpression facilitates infection of these immune cells by several 
heterologous viruses, among them HHV-6 and some adenovirus types, which are known to 
transactivate HIV-1 (Takemoto et al., 2007). Unlike with HHV-6, a generalized increase in 
host cell protein synthesis is observed in HHV-7 infected lymphocytes. Host genes whose 
expression is upregulated by HHV-7 infection include the lymphocyte specific G-protein 
coupled receptor EBI I, GADD45 (Kirn et al., 1997), GM-CSF and IL-15 (Atedzoé et al., 1997). 
Infection of PBMC’s obtained from seronegative individuals (mimicking primary infection) 
increases the level of intracellular mRNA and secreted polypeptides of TNF-, TGF-, IFN-, 
but decreases the production of IL-2 from mitogen (bacterial endotoxin polysaccharide, LPS 
and OKT3 mAb) activated PBMC. On the other hand, HHV-7 does not affect IL-4 and IL-6 
synthesis (Atedzoé et al., 1999). In PBMC’s of seropositive persons (mimicking secondary 
infection), HHV-7 infection results in diminished IL-2 and IFN- production with or without 
mitogen activation. HHV-7 induces early IL-10 production, which is known to inhibit 
cytokine release from CD4+ helper lymphocytes. After a primary infection, HHV-7 causes 
significant inhibition of lymphocyte proliferation and overall the cellular immununity, but 
in repeated infections the overall effect of HHV-7 on cytokine production by infected cells is 
balanced.This might contribute to the moderate immunosuppression upon reactivation 
(Ongrádi et al., 1999a). HHV-7 also encodes two functional chemokine receptors, U12 and 
U51, which are counterparts of human CCR4 and CCR7. And whose natural ligands are 
CCL22 and CCL19, respectively. These receptors are expressed on T and B lymphocytes, 
and promote their translocation from the blood to the lymph nodes. Overexpression of these 
receptors facilitate the dissemination of infected lymphocytes throughout the body 
(Tadagaki et al., 2007).  
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HHV-7 is ubiquitous worldwide. Approximately 70% of children are infected and 
seroconvert before 4 years of age,usually following HHV-6B infection, but 30% of the 
population acquires infection later in life. In children, HHV-7 can induce exanthema 
subitum directly or, through activation of HHV-6B, may induce febrile convulsions or 
hepatitis. HHV-7 is reactivated in some patients 4 to 6 weeks after liver, kidney, bone 
marrow or stem cell transplantation, and may exacerbate human cytomegalovirus (HCMV) 
induced immunosuppression. HHV-7 can also reactivate HHV-6B in vitro (Katsafanas et al., 
1996). In seronegative adults, HHV-7 can induce pityriasis rosea (PR) as presence of 
infective viruses, viral DNA and rising antibody as is indicated by increasing levels of IFN-
and - in the serum (Drago et al., 1997; Vág et al.., 2004a). Although rare, cases of PR have 
been described in patients with HIV-1 infection. Several types of papulosquamosus 
disorders might occur also in AIDS patients (Duvic et al., 1991). The lack of herald patch 
typical of genuine HHV-7 induced PR supports proper differential diagnosis. Due to some 
common immune pathways of HHV-7 and HIV-1 (e.g. alteration of cytokine pattern in the 
skin), PR might be mimicked in AIDS patients (Sadick et al., 1990). Interaction of HHV-6B or 
HHV-7 with human parvovirus B19 induces papular-purpuric gloves-and-socks syndrome 
(PPGSS, Ongrádi et al., 2000a; Vág et al., 2004b). HHV-7 is transmitted via saliva (Wyatt & 
Frenkel, 1992) and breast milk (Fujusaki et al., 1998). HHV-7 has been detected at the same 
ratio, more frequently, at higher viral loads, or in decreased quantitiy in saliva from HIV+ 
individuals with clinical symptoms of immunodeficiency than from controls by PCR in 
different studies (Di Luca et al., 1995; Lucht et al.., 1998; Gautheret-Dejean et al., 1997). There 
is no evidence for congenital infection, although 2.7% of cervical samples obtained from 
pregnant women during the third trimester are PCR positive (Hall et al., 2008). Viral DNA is 
sporadically detected in the urine of healthy individuals, and in 6.5% of the cellular fraction 
of urine samples from HIV-1 positive patients with low CD4+ cell count (Gautheret-Dejean 
et al., 1997), but no infectious virus has been obtained from cervical and urine samples 
simultaneously. The HHV-7 pp85 protein was detected in 9 of 32 HIV-associated cases, and 
in one of 7 classic sporadic Kaposi’s sarcoma lesions, which was localized to the cytoplasm 
of CD4-CD68+ cells of the monocyte/macrophage lineage. Dually infected HHV-6B and 
HHV-7 CD4-CD68+ cells were detected in 9% of these lesions. The cytokine-rich 
environment of Kaposi’s sarcoma might activate HHV-7 and subsequently HHV-6B (Kempf 
et al., 1997). These data suggest that HHV-7 also interacts with different viruses, among 
them HHV-6B, but does not activate HIV-1 directly and does not activate HIV-1 through 
HHV-6A activation. On the other hand, its immunomodulatory effects can be additive to 
immune suppression induced by HIV-1 in vivo.  

6. Animal models to study transactivation by heterologous viruses 

6.1 Simian AIDS model  

A major hindrance to elucidating the in vivo role played by HHV-6A in AIDS has been the 
lack of a reliable animal model system (Lusso et al., 2007). Although simian (SIV) and feline 
(FIV) immunodeficiency viruses in their natural hosts provide appropriate models, the lack 
of known counterparts of Roseolovirus isolates from these animals impedes studies on the 
effect of simultaneous infection in AIDS progression. Peripheral blood lymphocytes of adult 
chimpanzees, pig-tailed macaques (Macaca nemestrina) and African green monkeys were 
found as susceptible to HHV-6A (Lusso et al., 1990, 1994) and HHV-6B (Levy et al., 1990) 
infections as were human PBL’s. Although HHV-6A infected PBL cultures of chimpanzees 
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exhibited CPE similar to that seen in human PBL and produced infectious virus (Lusso et al., 
1990), this model is practically unavailable. The availability of pig-tailed macaques whose T 
cells are highly susceptible to HHV-6A infection is an ideal experimental model (Lusso et 
al., 1994). It has been established that in vivo coinfection with HHV-6A accelerates the course 
of SIV disease in pig-tailed macaques (Lusso et al., 2007). Three groups of young adult 
animals were infected by intravenous inoculation with either SIVsmE660 alone, HHV-6AGS 
alone, or both SIV and HHV-6A. Dually infected animals were first inoculated with SIV and 
then superinfected with HHV-6A 14 days later. None of the animals had detectable 
antibodies to HHV-6A and SIV before inoculation. Animals were observed for 32 months. 
HHV-6A infected animals developed clinical manifestations of mild to moderate intensity 
such as fever, splenomegaly, and generalized lymphadenopathy. Anti-HHV-6A 
seroconversion appeared after a mean of 3±1.4 and 2.2±0.5 weeks in HHV-6A and dually 
infected animals, respectively. SIV infection resulted in plasma viremia, and SIVp27Gag 
antigenemia at two weeks post-inoculation in both groups. Clinical signs included fever, 
generalized lymphadenopathy and splenomegaly, while the fever was higher and longer in 
duration in animals coinfected with SIV and HHV-6A. A transient loss of circulating CD4+ 
T lymphocytes was detected in singly and coinfected macaques. During the follow-up, no 
long term clinical or hematological alterations were seen in animals singly infected with 
HHV-6A, and their CD4+ and CD8+ T cell counts remained stably with the normal range. 
By contrast, a progressive loss of circulating CD4+ and CD8+ T cells was seen in 
coinfected animals. SIV superinfection of animals carrying HHV-6B for 13 to 21 months 
resulted in a very rapid decline of CD4+ and CD8+ T cells, and these animals developed 
AIDS-related conditions after 69 and 15 weeks of SIV superinfection (Lusso et al., 2007). 
Interestingly, the longer the duration of HHV-6A latency was, the shorter of AIDS-related 
conditions developed. This means that even latent HHV-6A infection induces irreversible 
changes in the immune system. Unlike the immunological parameters, the levels of SIV 
plasma viremia and antigenemia during the follow up were not significantly different 
between singly or dually infected macaques. Interestingly, disease progression in dually 
infected animals was accompanied by frequent episodes of HHV-6A reactivation, 
suggesting that SIV infection exerted a boosting effect on HHV-6A replication. Dually 
infected animals also showed a significantly expedited decrease in anti-HHV-6A antibody 
reactivity over time demonstrating exhaustion of humoral immunity. Lymph node biopsy 
one month post-inoculation showed follicular hyperplasia in all animals. However, in 
macaques singly infected with SIV or HHV-6A the nodal architecture was conserved, 
whereas in dually infected monkeys it exhibited a florid follicular hyperplasia with 
confluent germinal centers. Coinfected lymph nodes showed higher levels of SIV RNA 
deposited on the surface of follicular dendritic cells and HHV-6A mRNA expression in the 
extrafollicular area. Thus, HHV-6A and SIV could simultaneously replicate in coinfected 
lymph nodes. In biopsies obtained 6 months after inoculation, lymph nodes of dually 
infected animals showed significant atrophy of germinal centers. During the 32 months of 
the study, AIDS-defining clinical conditions developed in all coinfected macaques, but in 
only one of 4 infected with SIV.  
It was also shown that reisolated SIV obtained from HHV-6A coinfected macaques after one 
year of infection had acquired resistance to RANTES (regulated upon activation normal T 
cell expressed and secreted). RANTES is a CCR5 binding chemokine that blocks the entry of 
SIV into cells, since SIV depends on CCR5 for infection. As has been previously discussed, 
HHV-6A is a potent RANTES inducer in lymphoid tissue (Grivel et al., 2001). In HHV-6A 
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coinfected macaques, SIV subsequently evolved toward RANTES resistance, most likely 
under the selective pressure of elevated RANTES levels. Resistance to RANTES is 
increasingly recognized as a key virulence factor in HIV infection (Grivel et al., 2003), which 
may allow the virus to replicate in the high-RANTES milieu. One of the possible 
mechanisms whereby HHV-6A may foster the progression to AIDS is by facilitating an early 
acquisition of RANTES resistance (Lusso et al., 2007). In a recent study, SIV were reisolated 
from singly and HHV-6A-coinfected macaques. Surgically removed human tonsils in the 
presence of RANTES and PBMC from randomly selected healthy donors or from a 
homozygous CCR5-32 +/+ donor were infected with SIV reisolates. All SIV isolates were 
able to replicate in human lymphoid tissue. Inoculation of different cell lines expressing 
several coreceptors (CCR2b, CCR3, CCR4, CCR6, CCR8, CX3CR1, and CXCR4) were not able 
to support SIV infection. The majority of SIV isolates from HHV-6A coinfected macaques 
were not able to replicate in CCR5-32 +/+ PBMC’s showing that SIV variants, despite 
maintaining exclusive CCR5 coreceptor sensitivity, become resistant to HHV-6A and 
RANTES receptor competition. Cytokine polypeptide production in PBMC’s obtained from 
healthy donors was induced by infection using either SIV from singly infected animals or 
SIV from HHV-6 coinfected animals. IL-2 production was significantly down-regulated 
while IFN- production was significantly upregulated in cultures infected with SIV derived 
from coinfected macaques as compared to the cytokine-inducing ability of SIV obtained 
after a single infection. For other Th1 and Th2 cytokines (IL-1 and -, IL-4, IL-7, IL-12, IL-
15, IL-16, and TNF-), chemokines (MIP-1 and –), other mediators (GM-CSF, IP10, MIG, 
and SDF-1) no significant differences between lymphoid tissue infected with the two 
groups of SIV isolates were recorded. These results also indicate that SIV isolates obtained 
from HHV-6A-coinfected animals undergo a biological evolution in vivo, with the 
emergence of viral strains containing a reduced sensitivity to RANTES-mediated inhibition, 
thus, bypassing an important mechanism of virus control. It has been learned from clinical 
studies, that progression toward full-blown AIDS is often associated with the evolution of 
HIV-1 toward increased virulence. HIV-1 acquires the ability to use CXCR4 as a coreceptor, 
becoming resistant to the inhibitory effects of endogenous CCR5-binding chemokines. This 
phenotypic switch is typically accompanied by an accelerated loss of CD4+ T cells and 
suppression of Th1 polarized responses that play an essential role in the clearance of viral 
infections. These results are conclusive in vivo evidence that HHV-6A accelerates the 
progression of SIV toward full-blown AIDS (Biancotto et al., 2009), and excellently support 
human clinical and experimental data on the interaction of HHV-6A and HIV-1. 

6.2 Feline AIDS as an ideal small animal model to study the interaction between 
retroviruses and different heterologous viruses 

Although SIV infection is very close to the human analog monkeys are not available for the 
majority of research groups due to short supply and ethical considerations. Specific 
pathogen-free populations are nonexistent. Feline immunodeficiency virus (FIV), another 
member of the family Retroviridae has a pathogenesis similar to that of HIV infection, and 
because cats are both plentiful and available in specific pathogen free (SPF) status, they 
might prove to be an ideal model for AIDS cofactor studies. FIV shares many genetic, 
structural and biological characteristics with HIV. Although FIV shows tropism for CD4+ 
cells, its receptor is CD134 (Shimojima et al., 2004), and it requires further interaction with 
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chemokine coreceptors (CCR5 and CXCR4) for entry (de Parseval et al., 2006). RANTES 
inhibits FIV infection of feline PBMC’s, while antibodies against CXCR4, CCR5 and CCR3 
reduce FIV infection. CD4+ and CD8+ T cells monocytes/macrophages are the major targets 
of FIV, in which it might establish latent infection. Upon virus activation, cells die of 
apoptosis (references in Bendinelli et al., 1995 and Burkhard & Dean, 2003). FIV diverges 
from other lentiviruses throughout the genome. Beside gag, pol, env and other small ORFs 
encoding regulatory proteins, the provirus contains two LTR elements, one at each end, 
which accommodate multiple regulatory elements. FIV LTRs appear to be strong basal 
promoters and poorly active in transactivation (Sparger et al., 1992). Regulatory sequences 
include one or two TATA boxes, and a variety of enhancer or promoter protein-binding sites 
(AP-1, NF-B, etc). FIV transactivation is significantly different than that seen for HIV 
because FIV lacks TAT and the transactivating response (TAR) element (Sparger et al., 1992). 
Instead, FIV contains Orf-2 (also designated as Orf-A), a tat-like gene encoding a viral 
transactivator necessary for productive FIV replication in primary T lymphocytes as well as 
feline T cell lines (de Parseval & Elder, 1999). Unlike other lentiviral transactivators, FIV Orf-
2 requires additional LTR elements for transactivation (Chatterji et al., 2002). Infection with 
FIV is usually associated with direct inoculation of the virus into the body via bites, and 
there is a distinct transient initial stage of infection that follows exposure by several weeks. 
After recovery from this initial disease, afflicted cats enter into a long asymptomatic stage of 
the infection that lasts for months or years before other signs appear. CD4+ T lymphocyte 
decline and inversion of the CD4/CD8 ratio are hallmarks of FIV infection, especially in 
neonates (Diehl et al., 1996) due to apoptosis induced by TNF-overproduction (Ohno et 
al., 1993). Serum levels of IL-1, IL-6 and TNF- increase in parallel with viral replication 
(Kraus et al., 1996). After in vitro treatment of separated PBMC in experimentally infected 
cats CD4+ lymphocytes produce TNF-, IFN-, IL-2, IL-4 and IL-8, while CD8+ T 
lymphocytes express TNF-, IFN-, and IL-2. Monocytes/macrophages are the source of IL-
1, IL-6, TNF-, IL-10 and IL-12p40 (Ritchey et al., 2001). The terminal AIDS stage of FIV 
infection is associated with a number of chronic common and opportunistic-type infections. 
Like HIV infection of humans, other infectious diseases may interact with FIV infection in 
the field to cause a more severe disease syndrome. 
Retroviruses and herpesviruses are associated with a variety of diseases in animals. It has 
been suspected for long time that their interaction may result in synergistic induction of 
diseases (Bacon et al., 1989). A possible interaction of feline herpesvirus type 1 (FHV-1, 
subfamily Alphaherpesvirinae) with FIV has been studied in vivo and in vitro. FHV-1 is a 
significant pathogen of family Felidae, causing an upper respiratory tract disease in cats. In 
dually infected animals it induces several immunological abnormalities (Reubel et al., 1992, 
1994). FHV-1 also infects T lymphocytes. Productive coinfection of individual T 
lymphocytes has been detected (Kawaguchi et al., 1991). FHV-1 ICP4 was shown to 
modulate FIV LTR activity (Kawaguchi et al., 1994, 1995). 
Among other AIDS-promoting DNA viruses, adenoviruses (AdV) are known to cause fatal 
enteritis among terminal AIDS patients. The only feline adenovirus isolate (FeAdV) was 
obtained (Ongrádi, 1999) from a PCR positive fecal sample (Lakatos et al., 1997) of a cat with 
unknown FIV status. In Europe, 10 to 20% of free roaming cats are seropositive (Lakatos et 
al., 1996, 2000). FeAdV DNA has been detected in fecal samples of a child and her cat in 
Japan (Phan et al., 2006), and in a Brazilian child with upper respiratory tract infection (Luiz 
et al., 2010). Sequences of its hexon (Pring-Akerblom & Ongrádi, GenBank Accession No. 
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AY512566) and fiber (Pring-Akerblom & Ongrádi, GenBank Accession No. AY518270) 
suggest that FeAdV is related to human AdV type 1. It would be ideal to explore its 
interrelationship with both HIV and FIV, especially with respect to the role of AdVs in the 
intestinal complications of AIDS.  
Another common interaction in nature is between FIV infection and feline leukemia virus 
(FeLV). About 10 to 15% of the cats clinically ill with FIV infection are coinfected with FeLV 
worldwide (Hosie et al., 1989; Ishida et al., 1989; Yamamoto et al., 1989). FeLV can also 
induce immunodeficiency (Rojko & Olsen, 1984). In dually infected cats, the CD4+/CD8+ T 
lymphocyte ratio becomes rapidly inverted (Pedersen et al., 1990). FeLV induced tumors are 
a source of frequent and anticipated feline death (Shelton et al., 1990). This interrelationship 
is similar to what has been described for HIV and HTLV-I (Levy, 1993). 
Besides viruses, other opportunistic infections can enhance the progression of feline AIDS. 
Both Toxoplasma gondii (Levy et al., 1998) and Listeria monocytogenes (Dean et al., 1998; Dean 
& Pedersen, 1998; Levy et al., 1998) disrupt the synergistic production of normal Th1 type 
cytokines, causing a loss of cellular immunity in FIV positive animals.  
These different systems clearly show that the progression of feline AIDS is facilitated by a 
wide array of microbes. Further studies are warranted to better delineate the role of other 
putative cofactors among the Roseoloviruses in FIV infection as an ideal small animal model 
for human AIDS.  

7. Importance of rapid viral diagnosis, treatment and prevention of HIV-1 and 
HHV-6 simultaneous infections  

Several transactivating herpesviruses cause severe, long-lasting, and unusual opportunistic 
infections in HIV-1 infected and AIDS patients. Heterologous viruses frequently show 
unusual resistance to antiviral drugs. The potential to transactivate HIV and cause 
opportunistic infection shows an intimate mutual relationship between these viruses and 
their relationship within the immune system. Prevention and suppression of both 
phenomena ought to be a continuous clinical tasks while treating and improving the quality 
of life of these patients. 
There are excellent laboratory methods available to diagnose HIV-1 and 2 antibodies, and to 
determine the actual viral load in the serum of patients. Determination of their resistance to 
antiviral drugs is also routinely analyzed during treatment. Unfortunately, no serological 
tests are routinelyavailable for the differential diagnosis of HHV-6 variants A and B. 
Immunfluorescent and ELISA methods determine the total quantity of anti-HHV-6 
antibodies due to cross reactions, however the level of detectable serology can be insensitive 
when diagnosing immunocompromised populations. Several multiplex and real-time PCR 
assays are available for the simultaneous detection and quantification of HHV-6A, HHV-6B 
and HHV-7 specimens in patients (Safronetz et al., 2003). Recently, the success of highly 
active antiretroviral therapy (HAART) in controlling HIV-induced immunosuppression has 
resulted in the disappearance of HHV-6 opportunistic infections, according to the trend 
already described for HCMV (Martinez et al., 2007; Salzberger et al., 2005). HHV-6 variants 
are sensitive to ganciclovir, foscarnet, cidofovir, IFN- and IFN-, and all of them have 
already been used in a small number of patients with different immunocompromised 
conditions. Some HHV-6A strains can carry mutations in the U69 gene responsible for 
phosphotransferase activity, consequently displaying resistance to treatment with 
ganciclovir (De Clercq & Naesens, 2006).  
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8. Future dimensions 

Future research efforts could be directed toward hot topics such as the following: 
First, it has not been established that cytokines and other mediators excreted from HHV-6 
infected cells are structurally normal or have altered chemical structure (e.g. 
glycosylation, phosphorylation). It is also conceivable that HHV-6 carrier cells produce 
one or more unique soluble mediators that strongly transactivate HIV-1. Such aspects 
ought to be explored.  
Second, results strongly suggest that persistent HHV-6 gene expression and replication 
sensitizes to HIV infection and rapid progression. Rapid progressors might carry integrated 
HHV-6, or may be progressing due to other potential yet presently unknown genetic 
immunological defects. Available samples of former and recent patients ought to be retested 
with this goal in mind. More attention must also be payed to these HIV-1 infected, HHV-6 
carrier patients concerning anti-HHV-6 therapy. Gene therapy to suppress HHV-6 
expression would be ideal to treat patients carrying integrated HHV-6. 
Finally, further studies on the in vivo interrelationship between FIV and feline roseolovirus 
are necessary to understand the clinical aspects of dual infections of this nature. A feline 
counterpart of HHV-6 ought to be discovered and characterized. 

9. Conclusions 

HIV-1 infection is followed by a long disease-free period due to low transcriptional activity 
of the integrated provirus in resting CD4+ immune cells. Activation of CD4+ cells by 
mitogens, altered cytokine/chemokine milieu, or superinfection by heterologous viruses 
upregulate cellular, nuclear transcriptional factors, which in turn upregulate HIV-1 LTR 
directed gene expression by a tat-independent mechanism leading to augmented HIV-1 
production. HHV-6 variant A possesses several alternative ways to upregulate HIV-1 
infection and promote AIDS progression. Co-infection of HIV-1 carrier CD4+ cells results in 
enhanced cell death through apoptosis in vitro and in vivo, especially in the lymph nodes. 
Infection of immune cells leads to a a shift in cytokine pattern from Th1 to Th2. 
Overproduction of TNF-, IL-1 and IL-6 strongly transactivates HIV-1 via secondary 
messengers and the same nuclear transcriptional factors. Elevated levels of RANTES 
facilitate the change of CCR5-trop HIV-1 population towards the strongly cytopathic CXCR4 
mutants. In the body, synergistic effects of immune evasion result in either a continuous or 
alternating presence of high level viremia, dissemination of the virus to all organs of the 
body which contributes to their failure and the consequentially premature death of AIDS 
patients. HHV-6A primarily damages cellular immunity, whereas HHV-6B predominantly 
suppresses the activity of humoral immune function. While HHV-6B infects CD+ immune 
cells, it hardly contributes to the activation of HIV-1, due to a differently modified 
cytokine/chemokine pattern. HHV-7 binds directly to CD4 molecules, therefore directly 
competing for this receptor with HIV-1. It is regarded as a harmless virus, but in successive 
stages of HIV-1 infection contributes to the gradual loss of CD4+ cells. There are molecular 
techniques for the simultaneous and rapid detection of these herpesviruses in vivo. Since the 
introduction of HAART, severe complications by HHV-6 have become rare, but if necessary 
ganciclovir and foscarnet can be used to inhibit these herpesviruses to improve the quality 
of life of HIV-1 infected patients.  
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