
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322401218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Impact of Metabolic and Therapeutic  
Stresses on Glioma 

Progression and Therapy 

Kathryn J. Huber-Keener and Jin-Ming Yang 
The Pennsylvania State University College of Medicine and  

Penn State Hershey Cancer Institute 
United States of America 

1. Introduction 

Glioma cells, both within solid tumors and during invasion, exist in surroundings that are 

subject to a variety of stresses, including metabolic and environmental stresses. Nonetheless, 

glioma cells survive and can even thrive under hostile conditions, such as hypoxia, nutrient 

deprivation, and therapeutic regimens. In order to survive, these tumor cells have to find a 

way to adapt to such an environment by activating certain growth factor and survival 

pathways while down-regulating cell death mechanisms. In fact, gliomas adapt so well that 

they not only survive but proliferate by creating a more hospitable environment through 

new blood vessel formation and dissemination, even as they endure additional stresses 

along the way. This chapter reviews the basic stresses that glioma cells encounter during the 

progression of tumor formation and therapeutic interventions.  

2. Types of stress on glioma and their clinical implications 

Internal stresses such as hypoxia, acidity, oxidative stress, and nutrient deprivation already 
exist within the cellular environment of tumors while external stressors like radiation 
treatment and genotoxic chemotherapy only worsen the internal factors. Encountering these 
stresses affects the process of carcinogenesis. Gliomas, especially GBM, are highly 
transformed tumors that react to stresses differently than less transformed cancers. Common 
markers of stress will be discussed along with their roles in induction of energy 
conservation and cell survival in glioma. Redistribution of energy resources towards 
survival pathways and away from energy-consuming processes is common.  
Cellular stress can cause damage and mutations to numerous proteins, nucleic acid strands, 
and other macromolecules. The body has an innate reaction called the cellular stress 
response (CSR) to such damage. In the case of glioma and other cancers, the tumor is able to 
highjack the body’s own machinery in order to help the cancerous cells survive usually by 
taking advantage of intrinsic or stress-related mutations. Thus, at times, stress may only 
further the growth and survival of tumor cells. 
While the type of stress may vary, a common feature of many stresses is something referred 

to as the oxidative burst characterized by generation of oxidative stress and redox potential 
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changes. Reactive oxygen species (ROSs) can be produced from activation of NADPH 

oxidase or other ceullar oxidases in the cell’s various membranes. Stressor-specific 

responses, on the other hand, may be induced differentially depending on the type, severity, 

and duration of the stress. The following sections will cover these stresses and the resulting 

responses by normal cells and cancerous glioma cells. 

2.1 Types of stress 

Although gliomas can vary by type and stage, more advanced gliomas are characterized by 

high rates of mitosis, hypercellularity, evidence of angiogenesis, and areas of necrosis. 

Gliomas are known to have relatively high cellular heterogeneity, much of which may be 

caused by different areas of a tumor encountering different stresses and growing conditions. 

Thus, stress may be a driving factor in tumor heterogeneity. Although, medical 

professionals, along with patients, are able to control to a certain extent the extrinsic stresses 

put on patients’ bodies and tumors such as treatments and environmental stressors (e.g. 

smoking), intrinsic stresses still naturally affect the tumor as it progresses. 

 

 
 

Fig. 1. Typical stresses encountered by glioma cells during tumor growth and progression. 

2.1.1 Stresses during tumor development and progression   

While research on glioma cells in laboratories is conducted primarily under nutrient-rich 

conditions, the micro-environments for cancer cells are actually quite hazardous. Rarely do 

tumor cells find themselves in conditions of perfect nutrient balance with necessary blood 

flow and comfortable living spaces. More often, glioma cells are constantly inundated with a 

barrage of stresses (Fig. 1). The internal stresses faced by glioma cells are not unique to brain 

tumors, but are actually shared by the majority of solid tumors types. 
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Environmental and metabolic stress occurs during tumor growth and progression. As 
cancer cells divide, they take up more space. Normal cells would stop growing through 
contact inhibition, but malignant cells overcome the signals to inhibit growth and continue 
to divide. As the tumor expands, it continually outgrows its blood supply. Tumors larger 
than 1 mm in diameter can no longer subsist on passive diffusion of nutrients (Gimbrone, 
1973). The glioma cells, thus, go through periods of severe nutrient deprivation and hypoxia 
until enough tumor cells are able to signal new blood vessel formation or neoangiogenesis. 
Even after angiogenesis, cells are still subject to stress as the new vessels are prone to 
collapse due to their abnormal state and harsh surrounding conditions (Vajkoczy & Menger, 
2004). During this time, cancer cells must adapt to survive in conditions and intermittent 
periods of limited amino acids, salts, and oxygen. Some researches indicate that this is when 
cancer cells start to rely on glycolysis, which continues even after oxygen is available, a 
phenomenon known as the Warburg effect. This contributes to the high metabolic demand 
of proliferating tumor cells and is a relatively inefficient method of producing energy 
(Warburg, 1956). Therefore, the cells are put under enormous stress just to keep up with 
energy production needs and are subjected to further metabolic stress when nutrients 
become unavailable. 
The metabolic demands of the glioma cells are partially responsible for the increased acidity 
or pH imbalance found in many tumors. Human brain tumors measured with electrodes 
had a mean pH of 6.8, with measurements as low as 5.9; the normal pH for the human brain 
is ~7.1 (Vaupel et al., 1989). Such pH imbalance is even found in well vascularized areas of 
gliomas, thus indicating that tumor cells reside within a highly acidic environment even 
when oxygen is present. It was originally hypothesized that that hypoxia caused the acid 
buildup, but these new findings mean that hypoxia and acidity are not always linked. The 
increased energy metabolism of the glioma cells produce hydrogen ions and metabolites like 
lactic acid and carbonic acid. All these products are actively pumped out of the cell through 
proton exchangers and other transporters (Chiche et al., 2010). In cases with decreased 
perfusion, poor circulation contributes to the buildup of an acidic extracellular environment. 
As the tumor grows, the extracellular environment strives to slow down the progress of the 
cancer. Growth inhibition signals are sent that can either activate or deactivate cellular 
receptors depending on the need. Cancer cells survive by undergoing mutations in receptors 
like EGFR and PDGFR, changes that either stop the signaling cascades or rewire the 
signaling pathways to actually promote cancer cell growth. In this way, cellular proliferation 
is dissociated from nutrient availability by stress selection of surviving cells. 
Hypoxia can play a major role in glioma development, with oxygen deprivation actually 
being necessary for tumor progression through alteration of gene expression, genomic 
instability, apoptotic dysregulation, and neoangiogenesis. In glioma, hypoxia is believed to 
be a key player due to the evidence of tumor necrosis in highly malignant forms like 
glioblastoma multiforme (GBM) (Brat & Meir, 2001). Brain tumors smaller than the 
previously stated 1 mm cutoff are found to be highly hypoxic and ill-perfused (Li et al. 
2007). The oxygen deprivation is actually responsible for the growth of elaborate 
microvascular networks that indicate tumor progression in GBM. Even though larger GBM 
tumors are more vascularized, the blood vessels present are inefficient, and parts of the 
tumor environment remain hypoxic (Vajkoczy & Menger, 2004). Further transformation of 
the tumor cells occurs as reactive oxygen species (ROSs) increase during this time due to 
production by the mitochondria (Lui et al., 2008). Thus, hypoxia not only deprives cells of 
oxygen but leads to oxidative stress as well.  

www.intechopen.com



 
Advances in the Biology, Imaging and Therapies for Glioblastoma 

 

26

One of the hallmarks of a cancerous cell or tumor is its ability to invade through the 
basement membrane of one tissue into another type of tissue. The body has many stop 
guards in place to prevent this from happening, but somehow glioma cells overcome the 
challenge. Again, during this time, extracellular signals are sent to the cancer cells informing 
them to stop growing or to go through programmed cell death. Cell growth pathways are 
down-regulated by these signals causing severe stress to the cells. Without the normal 
nutrients or pathway activations, uncancerous cells would die, but glioma cells find a way 
to overcome the death signals. Cellular stress pathways that involve tumor suppressor p53 
and metabolic stress pathways which activate the apoptotic protein Bim are often 
deregulated in human glioma (Tan et al.,2005). Therefore, the neoplastic cells are able to 
overcome invasion preventions. 
The immune system is an added stress to cancer cells during all times of tumor progression, 

but is especially active during invasion and dissemination. While the immune system may 

ignore some cancer cells that stay in their own tissue, cells from different tissues are 

recognized by the markers or antigens they display. The innate immune system encounters the 

cancer cells first, with first-response cells like macrophages, granulocytes, and mast cells 

attacking foreign cells displaying unknown or altered markers. Even cancer cells that have 

managed to down-regulate these markers are subjected to hazardous surrounding 

environments due to the release of ROSs, metalloproteinases, chemokines, and cytokines 

created by the attack and death of neighboring cancer cells (Qian and Pollard, 2010). Dendritic 

cells transport the antigens from the neoplastic cells to the lymphoid organs in order to mount 

an adaptive response against the tumor. Yet somehow, in cases of cancer progression, tumor 

cells are able to survive these stresses and move to alternate locations. This is partially due to 

activated innate immune cells and paracrine signals from surrounding cells releasing soluble 

pro-survival molecules that initiated tumor cells can use to alter their levels of gene 

transcription, continuing the cell cycle and surviving (Egeblad et al., 2010). Even though the 

hazardous environment may kill some neoplastic cells, others may develop and thrive due to 

increased genomic instability from free radicals, creating additional, resistant cancer cells 

(Grivennikov et al., 2010). In fact, chronic inflammation has actually been linked to tumor 

development. Inflammatory cells can actually help in the angiogenesis and migration of 

glioma cells by promoting vasculature development and releases extracellular proteases that 

rebuild and mold the tumor environment (Colotta et al., 2009). The adaptive immune response 

eventually builds such that it can clear some of the neoplastic cells, but many of the cancer cells 

have further transformed so that they are not recognized by the cytotoxic T-cells. Even though 

the adaptive immune response may initially be helpful, as it continues it further promotes 

chronic inflammation and stress in the area, thereby contributing to cancer progression. 

Those cells able to overcome the response of the immune system have a better chance of 
surviving invasion and migration into new tissues. Although very rare in glioma, 
occasionally cells do metastasize to other locations of the body, but more commonly 
disseminate to nearby areas of the brain. After breaking through the basement membrane, 
invasion may include entrance into nearby white matter tracks, and less frequently, blood 
vessels. By invading the white matter tracks, glioma cells are able to migrate along CNS 
developmental paths of the brain, taking up residence in new areas of ideal conditions, 
again through the process of invasion (Dai et al., 2001). In the uncommon case of 
hematogenous dissemination, the liver, lungs, pleura, lymph nodes and skeletal system are 
the most common sites of metastasis, although metastases outside of the brain are relatively 
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rare due to the specificity of programming of glial cells (Pasquier et al., 1980). The cells that 
do survive are again subjected to the stresses of the immune system, new ECM signals, and 
lack of designated tumor blood vessels. 
With the above intrinsic stresses attacking gliomas throughout their progression, it is a 
testament to cancer cell adaptability that any cancerous cells survive. By adapting to these 
stresses, gliomas have selected for the most stress resistant cells, making cancer therapy a 
challenge. However, while many therapies do produce the same types of stresses already 
present in the body, the treatments cause more effective and sustained stress, especially 
when combined. 

2.1.2 Therapeutic stresses 

Tumor cells have already found ways to survive the numerous internal stresses covered in 
the previous section, so it is of no surprise that glioma cells are often able to find ways 
around common therapies due to the similarity of the mechanisms of action of the 
interventions with the mechanism of the body’s natural defenses. Table 1 lists some of the 
common and experimental therapies used to treat glioma in addition to the type of stress 
they cause. While the mechanisms of action are diverse, the treatments cause the same 
stresses already encountered by the glioma cells during the body’s intrinsic response to 
aberrant cell growth. 
Surgery is almost always used on patients who are surgical candidates. Debulking of the 
tumor not only allows for better brain function but also allows chemotherapies to be more 
effective by working on a smaller population. While surgery should be undertaken in 
situations where critical structures will not be disrupted, the act is extremely stressful on the 
brain. Small areas will be cut off from the blood supply creating a hypoxic and nutrient 
deprived environment leading to metabolic stress for unremoved cancer cells. The death of 
neighboring cells along with the immune response will cause an increase in oxidative stress 
and ROSs production. 
Radiation is another first-line therapy against gliomas. While there are many variations of 

radiotherapy, ionizing radation (IR) tends to work through two basic mechanisms that 

ultimately damage the DNA by either charged particles or photons. In the case of photon 

radiation, like in intensity modulated radiation therapy (IMRT), this technique causes indirect 

damage that occurs after water is ionized producing free radicals. Double-stranded DNA 

breaks (DSBs) are the most significant cause of cell death. Photon radiotherapy requires well-

oxygenated tumors to create the damaging free radicals, which requires adequate blood 

supply to all areas of the tumor. Because many areas of gliomas are hypoxic, this technique is 

often relatively unsuccessful long-term in many brain tumors (Harrison et al., 2002). Particle 

therapy, on the other hand, works by directly damaging the DNA by charged particles. Direct 

damage can occur through transfer of energy from charged particles like proton, carbon or 

boron ions that do not require oxygen. These particles can cause DBSB themselves. In either 

case, there are free radicals and ROSs produced by radiation; the ROSs are necessary for the 

efficacy of the treatment, further injuring cells (Dal-Pizzol et al., 2003). However, these reactive 

molecules are released during cell death causing increased stress to surviving cells. The body 

mounts an immune response to repair and clear damaged cells. Although many patients with 

gliomas take steroids to reduce the swelling and inflammation produced by radiotherapy, 

remaining neoplastic cells are still subjected to large amounts of stress, killing many while 

further transforming others into radioresistant tumor cells.  
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Therapy Mechanism of Action Form of Stress 
Surgery Evacuation of tumor 

site 

De-vascularization with 

subsequent hypoxia and 

nutrient deprivation, 

immune response 

Radiation 

    External beam radiation 

    Brachytherapy 

Ionizing radiation Oxidative stress, DNA 

damage 

Genotoxic Chemotherapy 

   Temozolomide, Procarbazine 

 

   Carmustine (BCNU), Lomustine 
 

   Cis-platinum, Carboplatin 

 

   Vincristine 

   Etoposide, Irinotecan 

 

Nonclassical alkylating 

agents 

Nitrosourea alkylating 

agents 

Platinum DNA 

crosslinkers 

Mitotic inhibitor 

Inhibits topoisomerase I 

or II 

DNA and organelle 

damage due to 

interruption of 

replication, induces 

metabolic stress and 

ROSs 

Monoclonal Antibodies 

   Bevacizumab 

   EGFR – Cetuximab, 

Nimotuzumab 

 

Anti-angiogenic 

Tyrosine kinase 

inhibitors 

 

Hypoxia 

Growth factor signaling 

inhibition leading to 

oxidative stress 

Immunotherapies/Vaccines* Immune system 

response 

Oxidative stress, DNA 

damage, metabolic stress 

Small Molecule Targeted 

Therapy* 

   EGFR – Gefinitib, Erlotinib 

   PDGFR – Imatinib 

   mTOR - Everolimus 

Tyrosine kinase 

inhibitors 

Growth factor signaling 

inhibition leading to 

oxidative stress 

   

Table 1. Common therapies and the stresses they cause. * Indicates experimental therapies 

Chemotherapy is often used in conjunction with surgery and radiotherapy. Most of the 
common genotoxic chemotherapies for glioma produce their effects by disrupting the DNA 
strands. Alkylating agents like temozolomide (TMZ) and carmustine (BCNU) primarily 
work by alkylating the guanine base of DNA leading to cross-linking of the DNA strands 
which causes the strands to be unable to uncoil and separate. The platinum drugs, such as 
carboplatin and cis-platinum, work similarly by using the platinum ion to cross-link the 
guanine base pairs on the DNA strand. These therapies are more toxic to cells that replicate 
and proliferate faster, thus making cancer cells more sensitive than normal cells to genotoxic 
therapy. The stresses to the cell caused by chemotherapy are mostly due to interference of 
mitosis and induction of DNA repair mechanisms. When the cell is unable to unwind and 
repair its DNA, it causes apoptosis and metabolic stress. As apoptosis continues, ROSs are 
released into the ECM affecting nearby cells. Genotoxic stress through ROSs is dependent on 
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activation of SAPK/JNK pathway (Benhar et al., 2001). Thus, chemotherapy stresses glioma 
cells through different mechanisms. 
A general chemotherapy-induced stress response is seen in many types of cancer cells. This 
is a response to anti-neoplastic agents that can destroy many cancer cells but induce survival 
and resistance mechanisms in others. In yeast, stress changed the cell cycle and lead to 
increases in de novo protein synthesis, proliferation, HSP90 expression, and proton pump 
levels. The first line of defense in severe shock is de novo synthesis of protective proteins 
(Miligkos et al., 2000). Increasing key membrane component proteins can up- or down-
regulate their efficacy to restore ionic balance. Changes in the heat shock protein (HSP) 
population of the cell due to chemotherapeutic stress also increase HSP27 and HSP70 in 
resistant cells; these cells are translocated to the nucleus in response to stress, increasing 
protein synthesis necessary for resistance (Nadin et al., 2003). Whole body response is also 
important as hormones production levels can change during the stress response; such 
hormones can affect the cell cycle or gene transcription. On a smaller scale, cell-to-cell 
interactions occur between transformed and non-transformed cells involving the transfer of 
survival signals, thus indicating that the extracellular environment is important. The stress 
response to chemotherapy-induced hyperthermia can even lead to induction of drug 
resistance through a general increase in MDR P-glycoprotein production (Benhar et al., 
2001). 
Anti-angiogenic therapies are becoming more common in glioma and are used to combat 
the tumor vasculature. Most of the inhibitors, like bevacizumab, are monoclonal antibodies 
that work by antagonistically binding vascular endothelial growth factors (VEGFs), the 
factors responsible for signaling growth of blood vessels. Contrary to other cancers, it is 
thought that anti-angiogenic drugs in glioma could work by transiently normalizing the 
tumor vasculature (Nagy et al., 2010). As discussed previously, tumor blood vessels are 
abnormal and unstable due to the mixture of pro- and anti-angiogenic factors. An 
angiogenesis inhibitor would override many of these signals. Although, this might decrease 
blood vessel formation, it might also stabilize the existing vasculature. By normalizing the 
vasculature, there could be improved delivery of chemotherapeutic agents. Either way, the 
neoplastic cells would be subject to stress caused either by hypoxia and nutrient deprivation 
or increased concentrations of anticancer drugs. 
Progress in targeted therapies for glioma has been made in recent years. Numerous small 
molecule inhibitors are being tested in clinical trials to antagonize the commonly mutated 
or over-expressed growth factor pathways. These inhibitors, like erlotinib which works on 
EGFR and imatinib for PGDFR, work by intracellularly binding the tyrosine kinase 
receptors, interrupting the downstream PI3K and MAPK signaling cascades. Monoclonal 
antibodies like cetuximab and nimotuzumab (EGFR inhibitors) work similarly, except 
they bind extracellulary to the growth factor receptors. Most of the stress caused by these 
antagonists is through decreased growth factor signaling and the resulting metabolic 
stress. 
All these therapies cause stresses already encountered by tumor formation, but the duration 
and severity of the stresses during therapy is more extreme. Prolonged exposure to these 
stresses can induce cell death programming more effectively than short, intermittent 
periods. However, in most cases, some cancer cells do survive. They evade the immune 
system and death signals, selected for by their unique mutations leading to therapy 
resistance. It is therefore important to determine accurate markers to identify these cells and 
to classify the mechanisms through which they survive. 
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2.2 Markers of stress 

While glioma cells may be adept at surviving cellular stress, they do show indicators of the 
stresses they endure. These indicators or markers may eventually be exploited to determine 
what stresses the cancer cells are under, and thus what types of stress they may be more 
susceptible to if subjected further. This section will cover the most common markers of 
general cellular stress and the specific stresses mentioned previously. 
When cells encounter stress, certain elements of the stress response are universal. There is a 

highly conserved minimal stress proteome that is shared among species. In a paper by 

Dieter Kültz, a list of the 41 proteins needed for the minimal stress proteome was compiled 

(Table 2).  

While this table is not exhaustive for all proteins involved in the stress response, nor does it 

list the most reliable markers, it does indicate that cells all have a fundamental basic 

response to stress. The response is referred to as the conserved stress response (CSR). 

Various stresses may induce different proteins and markers, but certain responses are 

unchanged between stresses, even amongst species. 

The general response of cells to stress originally focused on three types of proteins: heat 

shock proteins (HSPs), glucose-regulated proteins (GRPs) and ubiquitin-associated proteins, 

all of which are inter-related (Feder & Hofmann 1999). Of these three types of proteins, 

HSPs have been studied the most thoroughly. HSPs are induced during stress as a 

protective mechanism. While HSPs ordinarily play a more mundane role in the cell, folding 

proteins into their appropriate tertiary structures and facilitating steroid hormone binding, 

the subjection of cells to stress activates heat shock transcription factors (HSFs), allowing the 

transcription of stress-related HSPs like HSP27, HSP70 and HSP90 (Calderwood et al, 2006). 

In many gliomas and other cancers, binding of HSP90 to p53 mutants in the cytoplasm can 

further the damage caused by stress (Goetz et al., 2003). This is because p53 functions in the 

nucleus, and it leads to enhanced HSP70 transcription which allows for cancer cell growth 

(Ciocca & Calderwood, 2005). These HSPs, along with others, have been linked to cancer 

therapy resistance. 

The unfolded protein response (UPR) has gained increasing coverage as a fundamental 

stress reaction caused by changes in the celluar redox potential, energy status, or Ca2+ 

levels leading to unfolded or misfolded proteins within the lumen of the endoplasmic 

reticulum (ER). This is also known as ER stress (Herr & Debatin, 2001). ER stress is closely 

linked to hypoxia and glucose depletion. Misfolded proteins can be a problem due to their 

propensity to aggregate together and cause harmful accumulations. The role of UPR is to 

stop protein translation, arrest the cell cycle, and to signal pathways that increase activation 

of protein folding chaperones, some of which are HSPs. Ultimately, UPR leads to cell death 

through apoptosis if translation is halted for a prolonged period. GPRs are related to UPR 

and are actually just specialized HSPs that are found in the ER of the cell. In fact, Grp78 is 

the protein responsible for chaperoning the misfolded proteins and signaling downstream 

activators of the UPR. Another GRP, grp94 or HSP90B1, is actually essential for immune 

responses as it is a chaperone that regulates both innate and adaptive immunity through 

secretory pathways (Maki et al., 1990). Upregulation of these proteins is often seen during 

stress, and thus could represent markers for stress induction. 

Many stresses signal through the stress-activated protein kinase/c-Jun NH2-terminal kinase 

(SAPK/JNK) pathway, which is activated by numerous extracellular signals and stresses. 
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Minimal Stress Proteome 

Redox regulation 
DNA damage 
sensing/repair 

Fatty acid/lipid 
metabolism 

Aldehyde reductase MutS/MSH 
Long-chain fatty acid ABC 

transporter 

Glutathione reductase MutL/MLH 
Multifunctional beta 

oxidation protein 

Thioredoxin Topoisomerase I/III 
Long-chain fatty acid CoA 

ligase 

Peroxiredoxin RecA/Rad51  

Superoxide dismutase   

MsrA/PMSR Molecular chaperones Energy metabolism 

SelB Petidyl-prolyl isomerase 
Citrate synthase (Krebs 

cycle) 

Proline oxidase DnaJ/HSP40 
Ca2+/Mg2+-transporting 

ATPase 

Hydroxyacylglutathione 

hydrolase 6 
GrpE (HSP70 cofactor) 

Ribosomal RNA 

methyltransferase 

NADP-dependent 

oxidoreductase YMN1 
HSP60 chaperonin Enolase (glycolysis) 

Putative oxidoreductase 

YIM4 
DnaK/HSP70 Phosphoglucomutase 

Aldehyde dehydrogenase   

Isocitrate dehydrogenase Protein degradation Other functions 

Succinate semialdehyde 

dehydrogenase 

FtsH/proteasome-

regulatory subunit 
Inositol monophosphatase 

Quinone oxidoreductase Lon protease/protease La 
Nucleoside diphosphate 

kinase 

Glycerol-3-phosphate 

dehydrogenase 
Serine protease 

Hypothetical protein 

YKP1 

2-hydroxyacid 

dehydrogenase 

Protease II/prolyl 

endopetidase 
 

phosphogluconate 

dehydrogenase 

Aromatic amino acid 

aminotransferase 
 

 

Aminobutyrate 

aminotransferase 
 

Table 2. The minimal stress proteome as described by Kültz, 2005. 

These kinases are part of the larger superfamily known as mitogen-activated protein kinases 

(MAPKs), which control many intracellular events. SAPK is activated by SEK1 or MKK4. 

The SAPK/JNK pathway is activated by stresses like hypoxia, radiation, drug therapy, 

ROSs, and inflammatory molecules (Benhar et al., 2001). They signal through a variety of 

receptors, including G-protein coupled receptors (GPCRs), cytokine receptors (TNF┙), death 
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receptors (Fas), and antigen receptors. SAPK/JNK pathways can control proliferation, 

apoptosis, transformation and differentiation along with migration. In response to many 

types of stress such as radiation and hypoxia, this pathway signals for mitochondrial-

dependent apoptosis (Sanchez-Prieto et al., 2000). Thus, the SAPK/JNK signaling cascade is 

a protective mechanism for cells. However, any mutations or aberrant signaling could also 

lead to further glioma progression. Up-regulation of proteins involved in these pathways is 

a good indicator of cellular stress. 

Additionally, other markers of general stress have also been found. The MDR1 (multi-drug 
resistance 1) gene, which encodes the P-glycoprotein responsible for reducing drug 
accumulation in cancer cells, is actually induced by stresses like acidity, drug treatment, and 
radiation (Szabo et al., 2000). Thus, cancer cells under stress have created multiple 
mechanisms to evade cell death. The original intent for non-transformed, normal cells was 
for them to be able to pump out toxins encountered in their environment for survival 
purposes. Transformed cancer cells have adapted those responses to their own needs. 
Some indicators of specific stresses have also been revealed. An example of a marker for 

specific stress can be found in hypoxia. The transcription factor HIF-1 (hypoxia-inducting 

factor-1) is a major regulator of the cellular hypoxia response, which binds to hypoxia-

responsive elements (HREs) leading to the transcription of genes involved in cell survival, 

metabolism, angiogenesis and invasion. It can increase expression of glycolysis genes and 

VEGF protein (Jiang et al., 1996). The expression of HIF-1 is increased in glioma usually 

through induction by EGFR signaling the PI3 kinase pathway and loss of the tumor 

suppressors p53 and PTEN. HIF-1 expression, and thus hypoxic stress, in tumors can be 

determined by immunohistochemical staining. Another indicator of stress linked to HIF-1 is 

NF-κB induction. NF-κB activation leads to the rapid transcription of important genes 

involved with the stress response. Because it is a transcription factor, it is often thought of as 

a first line of defense, especially against activators of the immune system (Garg & Aggarwal, 

2002). NF-κB is able to regulate many proteins involved in proliferation and survival, 

including HIF-1. Another isoform, HIF-2┙, appears to be a specific marker for pH imbalance 

as it is increased with exposure to acidic stress (Hjelmeland et al., 2010). 
Overall, there are numerous markers of stress in glioma cells. Many are the result of a 
general response to stress, but as research continues, better markers for specific stress, like 
HIF-1 in the case of hypoxia, will be developed as our understanding continues to grow. 
These markers may eventually help clinicians to positively identify the stresses the tumor is 
under, which will inevitably lead to more effective glioma treatment. 

2.3 Mitigation of metabolic and therapeutic stress by autophagy 

Glioma cells are able to employ several ways to overcome stress and the resulting energy 
depletion. Autophagy, the catabolic recycling of the cell’s own components, takes advantage 
of this idea as a survival mechanism. The autophagic process allows the tumor cells to 
reallocate amino acids, fatty acids and other macromolecules for energy and go into a 
hibernation-like state until the surrounding environment is more favorable. Glioma 
therapies, like temozolimide and etoposide, have been shown to induce autophagy as have 
various metabolic stresses. While autophagy is also viewed as a cell death mechanism, new 
research indicates that autophagy can actually be responsible for glioma cell survival and 
resistance to therapies and stresses. Molecules like beclin-1 and elongation factor-2 kinase 
(EF-2K) have been shown to play a critical role in the autophagic response in glioma.  
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2.3.1 Role of autophagy in stress response 

Autophagy was first discovered as a Type II programmed cell death (PCD) mechanism with 

distinct differences from apoptosis in yeast. Most initial research was done in yeast, and 

later, it was found that many of the proteins involved are conserved in higher eukaryotes 

with human homologues. During autophagy, double membrane autophagosomes or 

autophagic vacuoles engulf cytoplasm along with long-lived proteins and damaged 

organelles through a process of self-digesting. The enveloped contents of the 

autophagosome are degraded by fusing with the lysosome. Their constituents of fatty acids 

and amino acids are recycled into new molecules or shunted into the synthesis of ATP to 

meet energy needs. If left unchecked, autophagy does indeed lead to cellular destruction 

and canabolitic cell death. Because autophagy occurs in many cells immediately preceding 

cell death, it was initially seen as a cell death mechanism (Levine & Yuan, 2005). However, 

cells can also utilize autophagy as a means to go into a cellular “hibernation” state where 

they have decreased energy needs as a strategy of survival (Kuma et al., 2004). Thus, 

autophagy can also be seen as a temporary protective response of cells. 

Autophagy is known to occur in the brain during neurodegenerative processes such as 
Alzheimer, Parkinson, and Huntington disease. However, its role as a protector or cause of 
disease is debated (Nixon, 2006). As for its role in glioma, cancer cells were shown to have 
decreased levels of autophagy compared to non-malignant cells, while nutrient deprivation 
upregulated its autophagic activity in cancer cells (Wu et al., 2006). This could be due to the 
early stages of tumorigenesis needing increased protein synthesis and proliferation, where 
autophagy would impede the growth of the cells. Also, since autophagy removes damaged 
organelles, it can decrease the mutation rate of the cancer cells, leaving them at a 
disadvantage during early stages of the disease. Later stages of glioma progression see an 
increase in autophagy to protect against the numerous cellular stresses present at this stage 
like nutrient deficiency. 
An important mechanism of regulation of autophagy is through the PI3K-Akt-mTOR 
pathway, which is activated in many cancers. Suppression of autophagy occurs through 
class 1 PI3K, while class III PI3K promotes autophagosome development (Lum et al., 2005). 
This is because class III PI3K binds to a molecule known as beclin-1 (BECN1). Beclin-1, the 
homologue of yeast Atg6, is part of an early-autophagy complex that participates in the 
autophagosome formation (Liang et al.,  1999). It is also known to interact with the anti-
apoptotic protein Bcl-2, binding the molecule and preventing cell death (Erlich et al., 2007). 
Bcl-2 may regulate the balance between autophagy and apoptosis, since it plays a role in 
both. Down-regulation of Bcl-2  or up-regulation of its binding protein, BNIP3, induces 
autophagy. Beclin-1 expression has been shown to be aberrant in cancers, including glioma 
(Liang et al., 2006). When beclin-1 binds class III PI3 kinase, the complex can activate 
autophagy. This complex is located in the cell cytoplasm and trans-Golgi network where it 
can sort the necessary autophagosome components. It, in turn, can be regulated through 
miRNA miR-30a which is able to down-regulate beclin-1 and thus regulate autophagy. miR-
30a expression in glioma was initially implicated in a miRNA screen for differential 
expression during conditions that induce autophagy and was found to be decreased during 
autophagy. Further studies with the miRNA showed that expression of miR-30a in glioma 
cells decreased beclin-1 expression and decreased autophagy (Zhu et al., 2009). This was the 
first report of miRNA regulating autophagy, so it is certainly possible that other miRNA’s 
may play a role in this process.  
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The formation of the autophagosome is mediated by a series of autophagy specific genes 
(ATGs) originally identified in yeast like Beclin-1. Other important human counterparts of 
regulators of autophagy have been found, such as LC3, a mammalian homologue of yeast 
gene Atg8, which is one of the primary markers of autophagy. It is a ubiquitin-like protein 
which cooperates with Atg4 protease (Mizushima, 2004). Other autophagy proteins include 
another system of an Atg12-Atg5-Atg16 complex in addition to gene products like Atg5, 
Atg7, and Atg10, which also play roles in activating autophagy.  
Another regulator of autophagy is the protein synthesis inhibitor, elongation factor-2 kinase 
(EF-2K). EF-2K, a Ca2+/calmodulin kinase, halts translation by phosphorylating elongation 
factor-2 (EF-2), a protein responsible for moving the peptide strand along the ribosome 
during elongation. It does so through hydrolyzing GTP to GDP, which provides the energy 
for elongation. Phosphorylation of EF-2 negatively reduces its affinity for the ribosome 
(Ryazanov et al., 1991). Regulating this energy-consuming step in translation is important to 
cell survival during periods of stress and reduced nutrients, so it is unsurprising that EF-2K 
protein and activity levels are found to be increased in glioma and other cancers. 
The first link of EF-2K to cellular stress was found in hibernating squirrels. During 

hibernation, decreased respiration and blood flow along with abstinence from food intake, 

greatly reduces the amount of oxygen and nutrients that are available to cells. In tissues 

with high metabolic rate, both p-EF-2 and EF-2K levels were found to be increased(Chen et 

al., 2001). Further studies in cells and mouse models showed increases in EF-2K during 

nutrient deprivation, hypoxia, radiation exposure, and drug treatment. As EF-2K is a 

calmodulin kinase known to be activated by calcium flux, ER stress was also found to be 

dependent on EF-2K status (Py et al., 2009). Unsurprisingly, it was later discovered that EF-

2K regulates autophagy. Down-regulation of EF-2K reduces autophagy and increases cell 

death during stress in glioma (Wu et al., 2006).  

EF-2K is regulated through the PI3K/mTOR/S6 kinase pathway by nutrient and growth 

factor availability, which links together cellular stress and the autophagic response, as they 

are regulated by the same pathway (Hait et al., 2006). In fact, disruption of the 

PI3K/mTOR/S6K pathway is known to induce autophagy, probably through EF-2K 

activation (Fig. 2). Nutrients and growth factors activate mTOR that in turn activates S6 

kinase. Both mTOR and S6 kinase negatively regulate EF-2K by phosphorylating it on Ser 78 

and Ser366, respectively (Browne & Proud, 2004). This inhibits EF-2K activity and its 

induction of autophagy, since nutrients and cellular building blocks are plentiful. Nutrient 

deprivation not only inhibits mTOR signaling and regulation of EF-2K, but it also increases 

AMP kinase activity due to the depletion of ATP. AMP kinase can positively regulate EF-2K 

activity by phosphorylating it on a different site, Ser 398, leading to its activation and 

induction of autophagy, as measured by autophagic markers, like LC3 and acidic vacuole 

organelle staining (Browne et al., 2004). 

It is through the mTOR/S6 kinase pathway that cellular stress can cause the induction of 
autophagy. Some stresses, dependent on severity and duration, can instantaneously cause 
both apoptosis and autophagy, while the same stress under different conditions make cause 
one or another. While it is not yet clear why one pathway is chosen over another, new 
studies into the induction of autophagy have helped to determine the conditions under 
which it is stimulated. Disruption of the PI3K/Akt pathway has been associated with 
autophagy induction as well as stimulation of the AMP kinase pathway. mTOR inhibits 
autophagy through activating one of its downstream targets, S6 kinase (Abeliovich, 2003). 
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Fig. 2. Autophagy machinery and its regulation by EF-2K. 

Many neoplastic cells, including glioma cells, survive metabolic stress through autophagy. 

Autophagy can originally act as a tumor suppressor due to the inactivation of apoptosis and 

subsequent immune reaction. In fact, autophagic markers localize in vivo to areas of tumors 

that are undergoing metabolic stress (White, 2007). Autophagy supports metabolic functions 

during periods of starvation by cannibalizing and recycling need elements, in short, 

providing alternative energy sources. Initially, autophagy in non-malignant cells can help 

prevent tumorigenesis through the removal of damaged organelles and defective proteins, 

since accumulation of these particulars can lead to oxidative stress. In fact, research shows 

that it even protects the genomic stability (White, 2007). However, as genetic mutations from 

other sources accumulate, autophagy allows compromised cells to survive. Defective 

autophagy can lead to cell death through apoptosis and necrosis, which further stresses 

neighboring cells through the recruitment of inflammatory molecules. Damage can occur to 

cellular DNA, creating further genomic instability. Increased mutation rate can further 

tumor progression at the expense of some cells.  

Stresses known to induce autophagy include starvation, ER stress, mitochondrial damage, 

protein aggregation, radiation, hypoxia, and pathogens stimulation. Failure of autophagy 

has been reported to be the mechanism behind cell damage accumulation and aging. 
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Starvation is readily linked to autophagy through activation the mTOR pathway. Other 

stresses regulate autophagy in different manners. During hypoxia, autophagic clearing of 

damaged mitochondria is advantageous to cells. The source of pro-apoptotic signals and 

ROSs is removed, and thus the cancer cell is able to survive even under oxygen deprived 

conditions. Bcl-2 family protein, BNIP3, is known to induce autophagy during hypoxia, 

while others believe it induces apoptosis especially after the cellular environment becomes 

too acidic from hypoxia (Azad et al., 2008). Metabolic stress activates the p53 pathway, 

which can normally induce apoptosis through proteins like Puma and Noxa, but metabolic 

stress increases Bim instead, which signals through Bax and Bak (Vousden & Lane, 2007). 

Therefore, autophagy can suppress apoptosis during both hypoxia and metabolic stress in 

glioma. 

In short, autophagy plays a critical role in glioma cell survival during various stresses. 

While autophagy can lead to cell death if not properly regulated, neoplastic cells can also 

use it as a protective mechanism. The autophagic response is activated by the typical 

hazards encountered by glioma cells during tumorigenesis, helping the cells to survive 

periods of limited oxygen and nutrients. Thus, exploiting autophagy as a therapeutic 

intervention is a subject that has been actively explored. 

2.3.2 Glioma treatments and autophagy 

Since autophagy can serve as a cell survival mechanism, it is unsurprising that cancer cells 

would adapt to use it to their advantage. Not only can neoplastic cells survive intrinsic 

stresses through autophagy, but they can use it to evade therapeutic interventions. 

Autophagy-associated therapy resistance is gaining recognition as a key resistance 

mechanism. Glioma cells tend to undergo autophagy rather than apoptosis, perhaps due to 

their advanced nature created by genomic instability. Autophagy has been shown to be 

induced in a wide range of glioma therapies.  

Radiation was the first therapy shown to cause glioma cells to undergo autophagy. As 

stated previously, the main mechanism of damage caused by radiation is through DNA 

double-strand breaks (DBSs), which can lead to translocation, misrepair, and even loss of 

chromosomes. Gamma radiation is known to induce autophagy in human glioma cells, but 

there is some controversy as to whether it causes cell death or if it protects cells (Paglin et al., 

2001). This could be due to autophagy playing different roles at different times, acting as a 

cell death mechanism during early stages and acting as a protective mechanism later in 

tumor development after the accumulation of more advantageous mutations. Autophagy 

itself is also regulated on many levels and at different stages of induction, producing 

differing effects in glioma cells. Inhibiting autophagy is sometimes protective and other 

times destructive, indicating that autophagy is a sensitive modulator of cell survival. Even 

with glioma cells using autophagy as a way of survival, prolonged radiation may eventually 

switch the autophagic program from cell survival to cell death as too many damaged 

proteins accumulate. Glioma cells treated with autophagic inhibitors were radiosensitized, 

and radiation was able to create more DBSs (Ito et al., 2005).  

Many chemotherapies cause autophagy in glioma. Mainstay treatment, temozolomide 
(TMZ), is used for high-grade gliomas (late stage). It is a small, lipophilic agent that easily 
passes through the BBB. Although referred to as an alkylating agent, TMZ does not 
actually cause cross-linking but instead adds a methyl group to a guanine which gets 
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mispaired with thymine instead of cytosine during the next cycle of DNA synthesis. 
Initial research into the mechanism of cell death by the drug indicated that TMZ causes 
cell death through autophagy not through apoptosis (Kanzawa et al., 2004). . However, 
not much cell death occurred, and it was eventually discovered that glioma cells were 
using autophagy initially as a protective mechanism as glioma cells were able to start 
proliferating again after a week of TMZ treatment. This could be due to the previously 
stated idea that inhibiting autophagy at different stages of induction leads to different 
outcomes. Before the recruitment of LC3, cells can be rescued from autophagy by 
treatment with 3-MA (inhibitor of PI3K) (Kanzawa et al., 2004). Bafilomycin A1, an 
inhibitor of lysosomal ATPase and atuophagy, in combination with TMZ induces 
apoptosis.  
While TMZ induces autophagy and not apoptosis in glioma cell lines, another alkylating 
agent cisplatin induces both apoptosis and autophagy. Apoptosis is further activated if 
autophagic inhibitors were added to cisplatin-treated glioma cells due to the release of Bcl-2 
from beclin-1. Thus, cisplatin also utlizes autophagy as a protective mechanism (Harhaji-
Trajkovic, 2009). Additional studies were done on TMZ and etopside showing that 
autophagy clearly protects cells from the multimicronucleation and cell death normally 
associated with TMZ and etoposide treatment. This was discovered through the detection of 
a concomitant ATP-surge that occurred with treatment. The associated unsustained ATP 
surge was not through glycolysis but through a brief period of oxidative phosphorylation. 
This was due to an induction of autophagy that increased catabolic metabolism to increase 
ATP levels (Katayama et al., 2007). Many chemotherapeutic agents have also been shown to 
cause hyperthermia in areas of tumors due to increased inflammation and stress in glioma 
cells. Hyperthermia itself is also known to induce autophagy, adding another mechanism by 
which glioma chemotherapies are able to activate autophagic response (Sanchez-Prieto et 
al., 2000). 
Growth factor inhibitors are in the experimental stage of glioma therapy development. 

Platelet-derived growth factor receptor (PDGFR) antagonists, such as imatinib, and 

epidermal growth factor receptor (EGFR) antagonists, like erlotinib, have been developed to 

inhibit the growth signals transmitted through these pathways. Autocrine signaling of 

growth factors can occur, with glioma cells over-expressing both the growth factor and its 

receptor together to signal through PI3K pathway. Inhibition of PDGF and EGF signaling 

induced autophagy but not apoptosis (Takeuchi et al., 2004). This result could be due to 

inhibitory effect of class I PI3K and/or stimulatory effect of class III PI3K. Downstream 

targets are also available for inhibition of growth factor pathways. Rapamycin, the inhibitor 

of mTOR, was able to induce autophagy along with suppressing proliferation. Since mTOR 

regulates both cell proliferation and autophagy, this could be a good target for future 

combined therapies. Combining rapamycin with an Akt or PI3K inhibitor increased glioma 

cell death, and future studies will look at the combination of rapamycin with growth factor 

inhibitors (Takeuchi et al., 2005). 

Another category of experimental therapies, glycolytic inhibitors, work similarly to nutrient 
deprivation as they have preferential uptake by glioma cells that are normally dependent on 
high levels of glucose to satisfy their rapid glycolysis needs. 2-deoxy-D-glucose (2-DG) is a 
glycolytic inhibitor that blocks the effects of glucose on metabolic pathways. It had 
previously been shown to inhibit growth of cancer cells and enhance the efficacy of other 
glioma treatments. 2-DG causes oxidative stress in glioma cells which lead to the discovery 
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of its induction of autophagy. The glycolytic inhibitor activated EF-2K and thus autophagy 
in a PTEN-independent manner. Inhibition of EF-2K blocked autophagy induction by 2-DG, 
thereby sensitizing the cells to 2-DG cell death through caspase-3 apoptosis. Cells under 
additional stress like hypoxia were further sensitized by concurrent treatment of 2-DG and 
EF-2K inhibition (Wu et al, 2009). 
Thus, it appears that glioma cells have used autophagy to resist a wide range of current 
glioma therapies. Although originally thought to be a mechanism of cell death, autophagy 
obviously plays a major role in protecting glioma cells from therapeutic intervention. 
Studies do indicate, however, that inhibiting autophagy may re-sensitize cancer cells to 
currently used treatments, providing a way around tumor resistance. 

2.4 Stress and glioma cancer stem cells 

Neural stem cells (NSCs) are specific to the central nervous system and are multipotent able 
to generate neurons, astrocytes, and oligodendrocytes. Like other stem cells, they are self-
renewing, proliferative, and quiescent until needed. NSCs are common during human 
embryonic development but are reduced in number and sequestered to specific regions of 
adult brains. These tiny subpopulations of cells can be recognized by their CD133+ status. In 
recent years, there has been a new consensus that gliomas contain a glioma cancer stem cell 
(GCSC) population in addition to other precursor and differentiated cancer cells. Thus, 
gliomas can express both neuronal and glial markers. There is accumulating evidence that 
NSCs are key players in tumor initiation and progression along with angiogenesis and 
dissemination. Thus, their presence is starting to redefine how therapy outcomes are 
determined and understanding their role in tumor progression and therapy resistance may 
be pivotal in improving patient prognoses.  
For years it was thought that humans were born with all the brain cells that they were ever 

going to have and that mitosis of neural and glial cells only occurred during early 

development. While most cells in the CNS do exit the cell cycle as terminally differentiated 

cells early in life, it has come to light that neurogenesis continues throughout life in small 

areas of the brain including the subventricular zone (Lois & Alvarez, 1993) and the dentate 

gyrus (Kuhn et al., 1996). These locations are home to NSCs that exhibit the normal stem cell 

markers and are capable of migration and multipotency. The existence of these NSCs that 

are normally present in the brain provides precedence for the idea of mutipotent cells in the 

CNS and gliomas. As gliomas are known to be highly heterogeneous tumors with cells from 

multiple neural lineages, cancerous neural stem cells could explain this finding. Poor 

prognosis has been linked to glioma tumor heterogeneity (Pallini et al., 2008), which could 

be the result of GCSCs.  

2.4.1 Stress-induced stem cell markers 

Although, at present, there are no universally accepted markers of GCSCs, this section will 
cover known NSC markers along with frequently studied glioma stem cell markers (Fig. 3). 
Small side populations (SP) of glioma stem cells (0.01-5% of total cells) exist that rarely 
divide despite elevated proliferation potential (Hirschmann-Jax et al, 2004). These were first 
found through flow cytometry studies where a small SP of tumor cells could be sorted and 
differentiated from the rest of the population. These cells were shown to efflux the 
fluorescent nucleic acid-staining dye, Hoechst 33342 (Pattrawala et al, 2005). When isolated, 
this small percentage of cells was able to generate neurospheres and xenografts, which are 
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key stem cell properties. The SPs were able to efflux both the dye and chemotherapeutic 
agents through up-regulation of an ATP-binding cassette (ABC) member, BCRP, which is 
involved in multi-drug resistance (Eramo et al., 2006). These SPs were the first indicator that 
there was probably a cancer stem cell population in gliomas. 
The two most common markers of neural stem cells are CD133 and nestin. CD133, also 

known as prominin-1, is a cell membrane glycoprotein which is present on different types of 

stem cells and cancer cells while being down-regulated on differentiated cells (Uchida et al., 

2000). CD133+ cells can be isolated from human brain tumors and are able to demonstrate 

stem cell properties in vivo like accelerated tumor growth and invasion (Singh et al., 2004). 

They pass the gold standard for determining stem cell properties, which is that cells must be 

able to initiate formation of tumor similar to the patient’s and is able to undergo serial 

transplantations. These cells have increased levels of stem cell genes such as nestin, Msi-1, 

MELK, and CXCR4 (Lui et al., 2006). Recent studies indicate that CD133 expression may be 

linked to periods of angiogenesis or times of stress. In fact, hypoxia can induce a CD133+ 

brain tumor stem cell population. CD133+ cells are resistant to drug treatment and 

apoptosis with increased expression of several ABC transporters and DNA repair machinery 

(Eramo et al, 2006). These cells also show an increase in chemokine receptor CXCR4 that 

directs NSC migration and thus GSCS movement (Lui et al., 2006). Even though it appears 

that CD133+ status is indicative of a NSC, CD133- cells can still exhibit stem cell properties 

(Wang et al., 2008). Therefore, CD133 status is not the final determinant of stem cellness for 

glioma cells.  

The another common marker, nestin, is an intermediate filament protein produced by NSCs 

that controls cellular morphology, proliferation, and adhesion. Differentiated cells down-

regulate nestin and increase other neurofilaments involved in neurons and glial cells that 

have exited the cell cycle (Zimmerman et al., 1994). Nestin expression increases during 

stress like ischemia, traumatic brain injury, inflammation, and tumor progression (Holmin 

et al., 1997). As a glioma marker, it indicates an increased malignant potential in invasion 

and motility abilities associated with poor prognosis (Stronjnik et al., 2007). It was one of the 

first discovered NSC markers but is not ideal due to its cytoplasmic location. Thus, sorting 

methods like flow cytometry cannot be used to separate stem cells from non-stem cells 

according to nestin status. 

Other stem cell markers may be more useful due to their location on the cell surface. A2B5 

is cell surface marker of neural progenitor cells. It is a ganglioside normally found in cells 

in the subventricular zones that host NSCs (Nunes et al., 2003). It has recently been 

reported that cells in GBM have been found that are A2B5+ and exhibit stem cell 

properties like tumor initiation. In fact, A2B5+/CD133- cells are also capable of initiating 

tumors and forming neurospheres (Tchoghandjian et al., 2009). Thus, A2B5 status is a 

potential useful marker for stem cells in gliomas and should be added to initial 

screenings. Stage-Specific Embryonic Antigen -1 (SSEA-1), which is also known as CD15 

or Lewis-X Antigen, is another cell surface antigen. It is a carbohydrate moity that 

associates with glycoproteins and glycolipids. SSEA-1+ cells have increased stem cell gene 

expressions and properties. The majority of GBM tumors analyzed for the marker were 

SSEA-1+, and SSEA-1+ cells are highly tumorigenic while SSEA-1- cells are not (Son et al., 

2009). Therefore, these two surface markers may play an important role in determining a 

GCSC population. 
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Fig. 3. Glioma cancer stem cell population in the perivascular niche. Common markers are 
listed. 

Developmental pathways and other signaling pathways are also up-regulated in SPs, which 

later became indicators of stem cell activity (Hadnagy et al., 2006). The Wnt/┚-catenin and 

the sonic hedgehog (SHH)/Gli1 pathways are both upregulated in GCSCs (Rich, 2007). Wnt 

signaling increases ┚-catenin activity. Over-expression of Gli1 and ┚-catenin have recently 

been shown to be correlated with poor prognosis (Pu et al., 2009), while EGFR and p53 were 

not predictive (Rossi et al., 2011). Some GCSCs have increased Notch-1 signaling, as do their 

healthy NSCs counterparts. Even PDGF status is linked to stem cells, as signaling of the 

growth factor is upregulated during oligodendrocyte proliferation and differentiation (Nait-

Oumesmar et al., 1997).  

Other stem cell pathways and molecules have been found in these populations. The Notch 

receptor pathway has also been implicated in GCSCs, as this signaling cascade mediates 

differentiation and proliferation (Koch and Radtke, 2007). Over-expression of Notch-1 leads 

to formation and proliferation of neurosphere-forming stem cells that are nestin-positive, 

while down-regulation leads to apoptosis (Hitoshi et al., 2002). Additional traditional stem 

cell markers such as Sox2, Bmi-1, PCNA, NANO, Msi-1, and OCT4 have all been found in 

these cells, indicating that gliomas do in fact have populations of cancerous cells that have 

stem-cell like properties and are probably GCSCs (Hemmati et al., 2003). This finding has a 

tremendous impact of glioma cell survival and important implications for new therapies 

regimens to treat patients with glioma. 
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2.4.2 Glioma cancer stem cells are obstacles to effective treatment 

It remains a matter of debate whether GCSCs are derived from original NSCs or other 

progenitor cells. Some argue that cancer cells can actually transition from a differentiated 

cell back into an undifferentiated cell through epithelial-mesechymal transition (EMT) 

(Singh & Settleman, 2010). This would mean that signals that trigger EMT could also trigger 

cancer stem cell formation. Either way, it has been shown that stem cell pathways including 

Wnt/ ┚-catenin, SSH, and Bmi-1 can all be activated by common treatments used in glioma 

therapy, like ionizing radiation and TMZ, which may lead to resistance to radiation and 

chemotherapy (Bell & Miele, 2011). 

Thus, regardless of the origins of the GCSCs, the presence of cancer stem cells would 

explain the seemingly inevitable recurrence of advanced gliomas. If cancer cells can either 

revert to a de-differentiated state or if original mutated stem cells from a tumor could 

survive a therapy, then the cancer could proliferate again. Stem cells are designed to survive 

assaults. They are a form of cellular dormancy that can wait until the cell encounters a more 

favorable environment, and then self-renew, proliferate, and create differentiated progeny 

that are suited to the present conditions (Hambardzumyan et al., 2008). GCSCs could shed 

light on why patients seem to have been cured of their cancer only to have it return months 

or even decades later after having undergone numerous surgeries, chemotherapies, and 

radiation treatments. Mounting evidence indicates that cancer stem cells are key to the 

survival or recurrence of glioma. In fact, current treatment regimens could worsen matters 

by putting the cancer cells under the exact stresses that actually select for GCSCs (Tetyana et 

al., 2010). 

Stresses in different areas of a tumor could select for distinct subpopulations of normal 

tumor cells and CSCs. Since CSCs by definition are plastic, they are able to adapt to their 

current environment, at times lying dormant and at others, proliferating and 

differentiating cancer cells that have adapted through genomic instability that is 

inevitable with cancer progression. These cells are even able to create stromal support 

layers recruiting host cells to make some of the necessary growth factors and signals (Bao 

et al, 2006). 

The GCSCs either migrate or produce their own local microenvironments or niches that 

created by cells and an ideal extracellular matrix (ECM) (Fig. 3). Niches shield the GCSCs 

from harsh environments present in the rest of the brain (Valshi et al., 2009). They support a 

specific mix of necessary growth factors, signaling molecules, and nutrients to sustain a 

stem cell population. Perivascular niches are also commonly home to healthy NSCs 

(Calabrese et al., 2007). In GBM, the niche is composed of vasculature that contacts the cells 

and allows secretion of factors that help to maintain stem cell quiescence. This increased 

density of microvessels is highly associated with GCSCs niches, which tightly regulates the 

availability of oxygen and nutrients while allowing the cells a means of migration to other 

areas if necessary. The stems cells continue to modulate this extracellular environment – 

they secrete VEGF and increase the number of endothelial cells, which in turn leads to 

increased GCSC and tumor growth (Gilbertson & Rich, 2007). Niches are abnormal in 

GCSCs because they cause the stem cells to renew and proliferate. 

Protected by their ideal environment, GCSCs are easily able to resist common treatments. 
This is conceivable since even normal stem cells need to survive years of stress under 
normal circumstances. As mentioned previously, GCSCs express adenosine triphosphate 
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(ATP)-binding cassette transporters (ABC-transporters) such as MDR1 and breast cancer 
resistance protein (BCRP) that are able to efflux chemotherapeutic drugs. This allows stem 
cells to survive regardless of the type of chemotherapy delivered. Even when the cells 
cannot efflux all of the agent, GCSCs derived from patient tumors, when treated with 
common therapies, are able to show resistance within 48 hours with continued ability to 
proliferate (albeit at a lower rate) in the presence of the drugs (Eramo, 2006). Many of these 
cells also show increases in DNA-mismatch repair with over-expression of methyl guanine 
methyl transferase (MGMT) which is common in resistance to alkylating or alkylating-like 
agents  (Jullierat-Jeanneret et al., 2008). Anti-apoptotic proteins like Bcl-2 and Bcl-XL were 
found to be over-expressed in the increased population of CD133+ cells GCSC treated with 
TMZ, carboplatin, or taxol, as were members of the inhibitor of apoptosis (IAP) family such 
as surviving (Lui et al., 2006). Numerous mechanisms and pathways have been associated 
with treatment resistance of GCSCs. 
Not only are GCSCs able to survive therapeutic insults, but many interventions actually 
select for the cancer stem cells. Radiation has been shown to enrich for GCSC. These stem 
cells have increased survival advantages over their non-radiotreated counterparts. 
Radioresistant tumors showed increases in CD133+ status. Notch-1 signaling has also been 
shown to be activated upon radiation exposure (Scharpfenecker et al., 2009). All cells had 
the same amount of initial damage to DNA and organelles, but GCSCs were able to repair 
damage more quickly than matched non-stem cells (Bao et al., 2006). CD133+ cells are able 
to evade radiation damage by preferential activation of DNA damage checkpoints. Bao 
determined that the resistance to radiation can be partially circumvented by inhibiting cell 
cycle proteins, Chk1 and Chk2. Treatment with alkylating agents also increased GCSC 
populations, as determined by stem cell markers (Kang and Kang, 2007). 
Due to the ability of gliomas to either induce stem cell dedifferentiation or to select for 

already present GCSC populations during treatment and stress, glioma cancer stem cells 

present a considerable problem for future therapeutic regimens. While common therapies 

can reduce the size of gliomas to microscopic levels, these small populations of stem cells 

remain within the tissues, resistant to therapies and selected due to their ability to survive. 

Recurring tumors will therefore be more malignant and progress more quickly than the 

original glioma. Therefore, focus on eliminating GCSCs should be pursued during brain 

cancer research treatment. 

2.5 Targeting stress response as glioma therapy 

The preceding sections have focused on how glioma cells manage to evade the deleterious 

effects of both intrinsic and extrinsic stressors. Future developments in glioma therapy 

should take into account these survival pathways. New treatment options should take 

advantage of the stress response and new survival mechanisms such as autophagy, while 

others could target GCSCs in order to completely, and hopefully, permanently eliminate 

glioma tumors. Novel treatments can be used to sensitize glioma cells to traditional 

therapies by exacerbating the stresses the cells are under (Table 3). 

Most importantly, gliomas need to be characterized for the proteins that they express. This can 
then inform clinicians what therapies with which that particular tumor may be treated. For 
example, glioma cells or tumors that are shown to be deficient in autophagic proteins might be 
more susceptible to traditional apoptotic therapies or radiation. Tumors void of any stem cell 
markers might be less likely to recur, and those patients can be offered more simple treatment 
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plans. The key is to make the most of the information available to personalize the therapies 
given to each patient. Therefore, a compilation of an assortment of markers and screening 
panels needs to be created to fit into the era of personalized medicine. 
 

Category Compound Target

Autophagic 
Inhibitors 3-MA 

Pre-autophagosomal 
structure inhibition 

 Bafilomycin A1 
Block autophagosome and 
lysosome fusion 

 HCQ 
Block autophagosome and 
lysosome fusion 

 
Monensin 

 
Block autophagosome and 
lysosome fusion 

 
siRNA against BECN1,ATG5, 
ATG7, ATG10, etc. 

Blocks translation of 
autophagic response 

 NH125 Inhibits EF-2K 

Autophagic 
Enhancers Rapamycin 

Inhibit mTOR pathway to 
increase stress

 Arsenic trioxide 
Targets mitochondria for 
destruction to sensitize to 
autophagy inhibition 

Agents Affecting 
Tumor Stem Cells Bevacizumab 

Anti-angiogenic to sensitize 
stem cell population to 
therapy

 Sodium Bicarbonate 
Increase cellular pH to 
sensitize stem cell 
population to therapy 

 
siRNA against ┚-catenin/wnt, 
SSH, and Notch-1 pathways 

Reduce stem cell signaling 

   

Table 3. Proposed therapies for sensitization of gliomas to current treatments. 

Since the majority of current glioma therapies induce autophagy in glioma cells, including 
radiation and chemotherapy, inhibition of autophagy would decrease the survival of these 
cells. Tumor cells may undergo apoptosis when autophagy is started and then disrupted. 
Adding the autophagy inhibitor bafilomycin A1 (H+-APTase inhibitor) to TMZ lead to cell 
death via apoptosis through caspase-3 and mitochondrial permeabilization. Autophagy can 
be blocked at multiple levels, allowing for adjustment according to whether cells are using it 
as a protective or cell death mechanism. The P13K inhibitor, 3-methyladenine (3-MA), can 
be used to inhibit autophagy before formation of the autophagosome (Kanzawa et al., 2004). 
Other agents like bafilomycin A1 blocks the fusion of the autophagosome with the 
lysosome, as do several other drugs like hydroxychloroquine (HCQ) and the proton 
exchanger, monensin. The natural product arsenic trioxide targets mitochondria and 
induces autophagy in glioma cells, and when combined with bafilomycin A1, is able to 
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eliminate all remaining tumor cells (Kanzawa et al., 2005). Drugs like rapamycin could be 
used to further the stress caused by nutrient starvation, activating autophagy, thereby 
leading to cell self-digestion. Synergistic killing of glioma cells has been shown with 
treatment of rapamycin and either Akt or PI3K inhibitors (Takeuchi et al., 2005). These are 
just a few examples of how therapies can be combined to sensitize and eliminate glioma 
cells through autophagic inhibition or enhancement. 
In the future, genetic modification of cells will be more feasible, so eventually the 
autophagic response could also be targeted with small interfering RNA (siRNA) against 
autophagy proteins such as BECN1, ATG5, and ATG10 along with many others. EF-2K 
presents a novel target for inhibiting autophagy and sensitizing cells to other therapies. 
NH125 is the preclinical inhibitor of EF-2K and could be developed into a bioavailable agent 
for humans or an siRNA could be used against the kinase as well. 
Glioma cancer stem cells are another cell type that could be targeted as glioma therapy for 
complete abolishment of the malignancy. Bmi-1 is an E3-ubiquitin ligase that is up-regulated 
in GCSCs and other cancer stem cells. GSCSs have low proteosome activity, which can be 
used to track stem cells through Bmi-1 degradation (Vlashi et al., 2009). Eliminating GCSCs 
by targeting Bmi-1 expressing cells was sufficient for causing regression of the solid glioma 
indicating that ridding the tumor of cancer stem cells may actually be curative. 
Several possibilities exist for targeting stem cells. As mentioned previously, anti-VEGF 
treatments like bevacizumab might help to normalize the vasculature and allow for efficient 
delivery of chemotherapies (von Baumgarten et al., 2011). In xenotranpslants, bevacizumab 
synergizes with radio- and chemo-therapy to effectively kill glioma cells (Vredenburgh et 
al., 2007). Anti-angiogenic therapy could help reduce the stem cell niches. Bevacizumab 
blocked the GSCSs ability to induce the migration of endothelial cells necessary for 
neoangiogenesis and cell migration (Ailles & Weissman, 2007). Thus, anti-VEGF treatment 
might work in multiple ways. 
GSCSs could be targeted by additional approaches. Treatment of tumors with sodium 
biocarbonate increased tumor pH and reduced invasion, while reducing stem cell markers 
in breast cancer (Robey et al., 2009). While not yet used in glioma, this could restore the non-
acidic pH environment, targeting the tumor microenvironment. Also, developing agents 
against the stem cell signaling pathways will be important in eliminating tumors. The ┚-
catenin/wnt and SHH pathways along with Notch-1 signaling are all good candidates for 
targeting. Markers, CD133 and nestin, could be used to identify potential responders. 
Overall, new therapies should be used to take advantage of the stress that glioma cells 
already encounter, in addition to targeting their means of survival. Those gliomas that use 
autophagy as a protective mechanism could be treated with autophagic inhibitors to 
enhance efficacy of therapy. These therapies could be used to sensitize tumors to treatment 
with standard radiation and chemotherapies. Also, any gliomas that have markers 
indicative of cancer stem cells might be considered to be treated with agents that target stem 
cells to circumvent that avenue of cancer cell survival. Autophagy and GCSCs represent 
attractive, novel targets for future glioma therapy that can be combined with conventional 
therapy to fully eradicate glioma cells. 

3. Conclusions/perspectives 

The preceding chapter sought to introduce the concept that glioma cells are constantly 
under stress, a factor which needs to be taken into consideration during the treatment of 
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brain cancers. Both intrinsic and extrinsic stresses impact the development and progression 
of glioma. Stresses like nutrient deficiency, hypoxia, acidity, and the immune response are 
present during normal tumor growth and throughout treatment. Tumor cells that survive 
these stresses are more adept at surviving hostile conditions and are more resistant to 
current therapies. Stress, therefore, shapes the tumor cell population. The autophagic 
response and glioma cancer stem cells are two of the prevalent survival and resistance 
mechanisms in glioma, and both can be induced by cellular stresses.  
New treatment regimens should take advantage of various stresses and stress responses 
present in glioma. Stresses like hypoxia or acidity could be exacerbated and sustained with 
new agents, allowing traditional therapies, such as TMZ or radiation, to permanently 
eliminate the sensitized cells. Autophagy is a fragile state for cancer cells, and inhibition of 
the autophagic process at the level of EF2K, beclin-1, and other proteins may combat this 
glioma cell survival mechanism. Targeting the autophagy pathway has already been shown 
to render glioma cells and other types of cancers more susceptible to currently available 
treatments. Recognition of GCSC markers could lead to better diagnostic and prognostic 
tools in addition to targeted cancer stem cell therapy. Combining current therapy with 
inhibitors that interrupt the stress response of glioma cells is an attractive approach for 
future glioma treatment. 
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