
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322401108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0

Identifying Enzyme Knockout Strategies on
Multiple Enzyme Associations

Bin Song1, I. Esra Büyüktahtakın2, Nirmalya Bandyopadhyay1,
Sanjay Ranka1 and Tamer Kahveci1

1CISE Department, University of Florida, Gainesville
2Systems and Industrial Engineering, University of Arizona, Tucson

USA

1. Introduction

Many biochemical engineering applications in drug discovery, food generation and cosmetic
production, aim to modify the metabolism of a given organism to increase or decrease the
production of a specific compound or a set of compounds. For example:

1. Fatty acid biosynthesis pathway converts fatty acids that are used in the cosmetic industry
in creams and lotions.

2. Butanoate metabolism produces poly-β-hydroxybutyrate which is essential for producing
plastics.

3. Mevalonic acid pathway and MEP/DOXP pathway produce carotenoid that are often used
as anti-oxidant in food industry. The metabolisms of many organisms, such as bacteria,
algae and plants naturally produce these compounds. A common practice is to extract
them from these organisms.

Enzymes play a significant role in metabolism. They catalyze the chemical reactions that
transform a set of substrates (i.e., input compounds) into products (i.e., output compounds).
Metabolic engineering techniques often aim to manipulate a small set of genes to alter the
speed of the targeted enzymatic reactions. Their eventual goal is to reach a desired level
of compound concentrations produced or consumed by these reactions. One way to alter
the speed of the reactions dramatically is to knockout a set of enzymes. When an enzyme
is knocked out, it cannot catalyze a subset of the reactions, resulting in changes to the
productions of compounds.
When detailed in silico models are available, computational methods can be successfully used
to determine the enzyme set to knockout. These methods, when applicable, have much
lower time and cost requirements as compared to in vitro or in vivo experiments conducted
in wet labs. Wet-lab experiments often require substantial effort and time of the domain
experts and overall time requirements may be hours to several days. Moreover, the cost of
wet-lab experimentation significantly increases when the number of enzymes that needs to
be knocked out is more than one. Manipulations that involve four to six enzymes are not
uncommon. As a result, biologists often employ computational methods as a preprocessing
step to filter out less promising compounds.
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A number of heuristic in silico solutions exist to find a promising set of enzymes. However,
finding the set of enzymes whose knockout leads to achieving the optimal compound
production rate is a computationally difficult problem. The number of possible subsets of
enzymes that can be considered for manipulation grows exponentially with the number of
enzymes in the pathway. Even if the size of each potential subset is limited to at most four, the
number of possible subsets for a pathway consisting of 500 enzymes is more than 2.5 billion.
Therefore, efficient methods that avoid inspecting the entire search space are necessary.
In order to find a promising set of enzymes to knock out, we first need to provide a
computational method to evaluate the metabolic system after some enzymes are knocked
out. There are several models to simulate the steady state of a metabolic network. We
categorize these methods into three different groups named, boolean models, linear models
and non-linear models. Boolean models can be an oversimplification of the metabolic
network, especially if the number of reactions and their connectivity increase. Non-linear
models require additional information about the network, which may not be available. Flux
Balance Analysis, (FBA) is a popular linear model which is widely used to compute the flux
distribution on the steady state of metabolic networks (Bonarius et al., 1997; Forster et al.,
2003; Kauffman et al., 2003). Segre et al. presented a quadratic programming method, named
minimization of metabolic adjustment(MOMA) (Segre et al., 2002). Shlomi et al. described
a MIP method, called regulatory on/off minimization (ROOM) for predicting the metabolic
steady states after the gene or enzyme knockouts (Shlomi et al., 2005).
It is easy to use these models to determine the impact on the metabolism, when a given set of
genes are knocked out. However, as discussed earlier, we are interested in finding the subset
of enzymes that lead to a desired impact. Optknock (Burgard et al., 2003), OptReg (Pharkya
& Maranas, 2006) and OptStrain (Pharkya et al., 2004) are three MIP based methods for
identifying the enzymes to be knocked out for the FBA model. All these methods make
the simplifying assumption that each reaction can be catalyzed by only one enzyme. This
simplification allows a quick conversion of the underlying variables using linear constraints,
where MILP or quadratic programming can be used to solve the problem. However, in
real metabolic networks, more than one enzyme can be involved in catalyzing a reaction.
In particular, more than two enzymes can substitute each other or work collaboratively to
catalyze a reaction. Figure 1 illustrates this on a real example we adopted from Reed et
al. (Reed et al., 2003). Here we describe these two kinds of enzyme collaborations in brief.

• Collaborative enzymes: Some reactions require the presence of two or more proteins
or enzymes simultaneously. We call such enzymes as collaborative enzymes. In this case,
absence of even one of these enzymes is sufficient to slow down or stop the reaction.
Logically, there is an Boolean AND relation among these enzymes. In Figure 1 (top
portion), D-Xylose ABC Transporter is responsible for exporting/importing a variety of
molecules to and from bacteria. To carry out this function the genes XylF, XylG and XylH
jointly work to catalyze the reaction XYLabc.

• Substitute enzymes: Two or more enzymes can substitute each other in catalyzing a
reaction. We call such enzymes as substitute enzymes. In this case, the presence of one of
the substitute enzymes suffices to carry out that reaction. Logically, there is a Boolean OR
relation among these enzymes. In Figure 1 (bottom portion), Glyceraldehyde 3-Phosphate
Dehydrogenase works in a number of metabolic pathways such as the Glycolysis /
Gluconeogenesis pathway or biosynthesis of phenylpropanoids. In a number of organisms
such as Arabidopsis thaliana (A. thaliana) this can be done by GapA or GapC with OR
association.
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Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations 3

One can easily generalize the notion of collaborative and substitute enzymes. Thus, a complex
topology consisting of multiple enzymes connected by a combination of OR and AND may
catalyze a reaction.

Protein

Reaction

Reaction

Protein

D-Xylose ABC Transporter

Glyceraldehyde 3-

Phosphate Dehydrogenase

XylF XylHXylG

&

XYLabc

GapA GapC

GAPD

Fig. 1. The figure depicts two examples of reactions catalyzed by multiple enzymes. In the
top portion, D-Xylose ABC Transporter is responsible for exporting/importing a variety of
molecules to and from bacteria. To carry out this function the genes XylF, XylG and XylH
jointly work to catalyze the reaction XYLabc with AND association. In the other portion,
Glyceraldehyde 3-Phosphate Dehydrogenase works in a number of metabolic pathways such
as the Glycolysis / Gluconeogenesis pathway or biosynthesis of phenylpropanoids.

Our goal aims to find the optimal set of enzymes in the presence of multiple enzymes jointly
catalyzing the same reaction to knock out so that the production of the system is optimal. In
summary, the main contributions of this chapter are as follows:

• We prove that the problem of finding the optimal enzyme set to knockout using
MIPL-based approaches is NP-hard even when only one enzyme catalyzes each reaction.
This proof is also corroborated by the fact that when the network size increases, the
execution time of Optknock framework increases exponentially.

• We develop two solutions to deal with multiple enzyme association along with linear
constraints. Our solutions eliminate the limitation that each reaction is catalyzed by a
single enzyme. In our model, we allow multiple substitute and collaborative enzymes. Our
first solution uses a small number of binary variables in the underlying MILP formulation.
The second method increases the number of binary variables but requires a smaller number
of constraints. Inclusion of multiple enzymes significantly extends the applicability of our
methods, as in real networks, multiple enzymes can catalyze a reaction.

Our experiments using the synthetic and real datasets demonstrate that allowing multiple
enzymes to catalyze a reaction increases the computational cost of the solution as compared

355Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations

www.intechopen.com



4 Will-be-set-by-IN-TECH

to the cases when all reactions are catalyzed by a single enzyme. In our experiments, we
observe that our second method that introduces extra binary variables is significantly superior
to our first method in terms of execution time. These results also demonstrate that the enzyme
topology can have a substantial influence on the performance of the MILP solution.
The rest of the chapter is organized as follows. Section 2 discusses the related work for this
chapter. Section 3 proves that finding the optimal set of enzymes to knock out using MILP is
NP-hard even when we allow only one enzyme to catalyze each reaction. Section 4 describes
the proposed methods when a reaction is catalyzed by multiple enzymes. Section 5 discusses
experimental results. We conclude our discussion in Section 6.

2. Related work

In order to identify a promising set of enzymes to knock out, we first require a computational
method to evaluate the state of the metabolic system after multiple knockouts. There are
several models to simulate the steady state of a metabolic network. These methods can be
classified into three categories named Boolean models, linear models and non-linear models.

- Boolean Models: Boolean models consider each enzyme as a boolean variable. Each
variable can take a either true or false value representing whether the corresponding
enzyme is active or inactive. Each reaction is a boolean predicate that depends on
these variables. A reaction takes place only if its predicate evaluates to true. Sridhar
et al. and Song et al. propose a boolean model of the enzyme knockout strategy (Song
et al., 2007; Sridhar et al., 2007; 2008). These methods require the user to supply a list
of targeted compounds along with a metabolic network. The goal is to identify the set
of enzymes whose deletion stop producing all the targeted compounds while causing
minimum damage. Here, we define damage as the number of non-targeted compounds that
are eliminated because of the knockouts. Minimum damage is defined as the minimum
number of non-targeted compounds eliminated from the metabolism while eliminating
the targeted compounds given all possible ways of eliminating the targeted compounds.
Sridhar et al. propounds an optimal algorithm for this model (Sridhar et al., 2008). Song et
al. discusses a heuristic algorithm for finding the knockout enzyme strategy (Song et al.,
2007). Klamt et al. finds the enzymes for knockout by finding a minimal set of reactions
whose deletion leads to an infeasible balanced flux distribution. It employs a minimum
cut approach to solve the problem (Klamt & Gilles, 2004).

- Linear models: Boolean models can be an oversimplification of the metabolic network,
specially when the number of reactions and their connectivity increase. Flux Balance
Analysis, (FBA) is a popular technique used to analyze the steady state of metabolic
networks (Bonarius et al., 1997; Forster et al., 2003; Kauffman et al., 2003). FBA describes
a metabolic network as a set of linear equations. FBA finds an optimal steady-state
flux distribution that maximizes growth rate under constraints such as mass balance and
capacity. FBA achieves a successful description of the metabolic state system by predicting
growth rate and by-products of the metabolism (Edwards & Palsson, 2000a;b; Kauffman
et al., 2003). However, FBA may not be able to predict an accurate metabolic state after
gene or enzyme knockouts. Segre et al. presents a quadratic programming method named
minimization of metabolic adjustment (MOMA) for simulation of the resultant state after
knockouts (Segre et al., 2002). MOMA attempts to minimize the changes between the
flux distribution after a knockout. MOMA uses linear constraints such as mass balance,
capacity, and knockout constraints, which are the same set of constraints used by FBA.
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Shlomi et al. describes a mixed integer programming method, named regulatory on/off
minimization (ROOM), for predicting the metabolic steady states after gene or enzyme
knockouts (Shlomi et al., 2005). ROOM finds the flux distribution which minimizes the
number of significant flux changes from the wild-type flux distribution. Experiments
demonstrate that MOMA and ROOM are superior to FBA in their ability to predict the
resultant states after gene or enzyme knockouts. Optknock is an enzyme knockout strategy
based on the FBA model (Burgard et al., 2003). It uses a bi-level programming framework
for identifying the enzymes to be knocked out. In the inner level, the optimization finds
the flux distribution for a given cellular objective such as maximization of biomass yield
or minimization of metabolic adjustment (MOMA) (Alper et al., 2005; Segre et al., 2002)
etc). In the outer level, the optimization finds the enzymes to be knocked out to optimize a
biological objective (e.g., chemical production). OptReg is another bilevel programming
method for the enzyme knockout strategy (Pharkya & Maranas, 2006). The difference
between Optknock and OptReg is that Optknock framework considers only two states
(knockout vs non-knockout) for each reaction which are controlled by enzymes. However,
OptReg considers three sets of binary variables for each reaction. These correspond to
knockout or non-knockout and down regulation or up regulation. Thus, OptReg provides
more candidate manipulation solutions for enzymes. OptStrain, a MILP based method,
identifies desired phenotypes by adding or deleting genes or enzymes (Pharkya et al.,
2004). All of the above methods use a MILP or a quadratic programming method.
Although the objective function of these methods may not be linear, the constraints are
linear.

- Non-linear models: Although less prevalent, these methods are also used to describe
metabolic networks. These methods incorporate further details about the network and
thus can simulate the cell system better than the linear model. S-systems (Savageau & Voit,
1987; Voit, 2000) and GMA model (Peschel & Mende, 1986; Voit, 2000) are two examples
of non-linear models for metabolic networks. Song et al. proposes methods for these
non-linear models (Song et al., 2011). Patil et al. presents an evolutionary programming
method which can be applied to non-linear models (Patil et al., 2005). These heuristic
solutions use non-linear models with non-linear constraints. They are not guaranteed
to produce optimal solutions. Also, the non-linear constraint models require additional
information about the network, which may not be available. Therefore, in this chapter we
still focus on the linear constraint model.

The methods described in this chapter use a linear model. Our major contribution, as
discussed already, is to allow multiple enzymes to catalyze a reaction. This significantly
extends the usability of such methods, as in real networks more than one enzymes can catalyze
a reaction.

3. Problem formulation

Given a metabolic network and an objective function, one standard way to find the optimal
set of enzyme knockouts is to solve the problem as an MILP which is modeled using FBA. In
this section, we focus on the MILP formulation of the enzyme knockout problem and prove
that the problem is NP-hard even when a single enzyme catalyzes each reaction.

357Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations
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3.1 Formulation

Given a set N = {1, ..., N̄} of N metabolites and a set M = {1, ..., M̄} of M metabolic
reactions, our goal is to determine the maximum yield of the desired products in a metabolic
network while minimizing the enzyme knockout costs. We summarize the decision variables
as follows:

vj : the flux of reaction j;

yj : binary variable which equals to 0 if an enzyme in reaction j is knocked out,

and 1 otherwise.

Other relevant parameters used in this problem are:

Sij : stoichiometric matrix coefficient of metabolite i in reaction j;

lj : minimum possible flow corresponding to flux j;

uj : maximum possible flow corresponding to flux j;

hj : cost of blocking the enzyme corresponding to reaction j;

wj : weight corresponding to the value of flux j.

Here, lj and uj are estimated by minimizing and maximizing every reaction flux subject to the
constraints from the enzyme knockout flux balance model (EKFB) framework given below.
Let I be a set of external metabolites that are imposed on the pathway, and J be the set of
metabolites that will not be used within the pathway once they are produced. We denote
the flux of the source metabolites in the metabolic pathway by bi and the flux of the sink
metabolites by ci.
Given these variables and parameters, we represent the integer programming formulation for
EKFB as follows:

max ∑
j∈M

wjvj − ∑
j∈M

hj(1 − yj) (1)

s.t. ∑
j∈M

Sijvj =

⎧

⎪

⎨

⎪

⎩

−bi if i ∈ I;

ci if i ∈ J;

0 if i ∈ N\ {J ∪ I}.

(2)

ljyj ≤ vj ≤ ujyj j ∈ M (3)

∑
j∈M

(1 − yj) ≤ K, ∀j ∈ M (4)

yj ∈ {0, 1} ∀j ∈ M. (5)

The objective function (1) maximizes weighted flux less fixed charge corresponding to
the enzyme knockouts. Constraint (2) provides flux balance equations defined by the
stoichiometric matrix. Constraint (3) includes the fixed charge variable yj. If the enzyme
corresponding to reaction j is knocked out, the value of the flux is set to zero and a fixed
charge hj for knocking out the enzyme is imposed. If the fixed charge variable yj takes value
1, then the lowest flux value is lj while the highest possible flux value is uj. Constraint (4)
imposes the condition that the maximum number of knockouts is K. Constraints (5) enforce
integrality on the fixed charge variables. Similar formulations are provided in Burgard et
al. (Burgard et al., 2003), Cover et al. (Covert et al., 2001) and Palsson (Palsson, 2000).
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3.2 NP completeness

To prove that finding the enzymes to knockout by EKFB is NP-hard, we show that the
uncapacitated fixed charge network flow problem, which is NP-hard, is a special case of the
EKFB (Ng & Rardin, 1996). Let G = (V, A) be a directed graph, where V is the set of nodes,
A is the set of arcs, s ∈ V is the single source node, T ⊆ V is a collection of sink vertices and
dt > 0 is the demand for node t. Let xij denote the flow on arc (i, j) with a cost cij. Let the
variable zij be equal to 1 if arc (i, j) is selected with a fixed cost fij and 0 otherwise. We then
define the uncapacitated fixed charge network flow problem (UFNF) as the problem of finding a
set of arcs that allow a supply node to send resources to a set of demand nodes, such that the
sum of fixed and variable costs are minimized. UFNF can be formulated using the following
mixed-integer program:

min ∑
(i,j)∈A

fijzij + ∑
(i,j)∈A

cijxij (6)

s.t. ∑
(i,k)∈A

xik − ∑
(k,j)∈A

xkj =

⎧

⎪

⎨

⎪

⎩

−∑t∈T dt if k = s;

dk if k ∈ T;

0 if k ∈ V\ {T ∪ s}.

(7)

xij ≤ λzij ∀ (i, j) ∈ A (8)

xij ≥ 0 ∀ (i, j) ∈ A (9)

zij ∈ {0, 1} ∀ (i, j) ∈ A. (10)

The objective function (6) minimizes the sum of the fixed costs associated with selecting arc
(i, j) and variable costs for sending flow through (i, j). Constraints (7) are classical flow
conservation constraints. Constraints (8) ensure that there can not be any flow if zij is 0. Also,
the maximum flow can be at most λ if zij is 1. Constraints (9) and (10) ensure that xij is
nonnegative and zij is binary respectively.

Theorem 1. Finding the enzyme knockout strategy by EKFB is NP-Hard.

Proof: Let N′ be the set of the metabolites and M′ be the set of the reactions in a special case
metabolic pathway in EKFB. We model it as a network graph G′ = (N′, M′), where each node
represents a metabolite i ∈ N′ and each arc represents a reaction k ∈ M′ using metabolite i to
produce metabolite j.

For i ∈ N′ and k ∈ M′, we redefine the stoichiometric matrix Sik as S
′

ij (i, j ∈ N′) such that

(i, j) represents reaction k as follows:

S
′

ij =

⎧

⎪

⎨

⎪

⎩

1 if (i, j) ∈ M′;

−1 if (j, i) ∈ M′;

0 otherwise.

(11)

Note that S
′

ij has entries 1, −1, and 0, and thus is a special case of Sik. We also define a new

variable v̄ij as the flux corresponding to reaction k ∈ M′. Let I′ ⊆ I be a set of external

metabolites that are imposed to the pathway, and J′ ⊆ J be the set of metabolites that will
not be used within the pathway after they are produced. Let us define a parameter b̄i such

that bi = b̄i and ci = b̄i for each i ∈ N′. By using the stoichiometric matrix S
′

ij and the new

variables v̄ij, the constraint (2) can be written as,

359Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations
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∑
(i,l)∈M′

v̄il − ∑
(l,j)∈M′

v̄l j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−b̄l if l ∈ I′;

b̄l if l ∈ J′;

0 if l ∈ N′\ {I′ ∪ J′}.

(12)

We now define a binary variable z̄ij for each variable yk, which assumes value 1 if the arc (i, j)

is selected and 0 otherwise. We define costs c̄ij and f̄ij such that c̄ij = −wk, f̄ij = hk. Finally,

we define a constant λ̄ as λ̄ = uk, and set lk = 0 for each reaction k ∈ M′, which is defined by
the arc (i, j). Then, the constraint (3) can be written as,

0 ≤ v̄ij ≤ λ̄z̄ij ∀ (i, j) ∈ M′ (13)

with an objective function,

min ∑
(i,j)∈M′

c̄ij v̄ij + ∑
(i,j)∈M′

f̄ij z̄ij (14)

Thus, a special case of EKFB with an objective function (14) and constraints (11), (12), (13) and
z̄ij ∈ {0, 1} is a UFNF and hence EKFB is NP-Hard.

4. Methods for multiple enzymes

In this section, we develop a more general version of EKFB where we allow multiple enzymes
to catalyze a reaction. This extension improves the applicability of our methods as in real
networks more than one enzymes can catalyze a reaction. In particular, we focus on the
constraints (3) and model the possible interactions between enzymes regarding the reactions
they catalyze.
Let Ei be a Boolean variable that denotes whether the ith enzyme is active (i.e., Ei = true) or
inhibited (i.e., Ei = false). As discussed earlier, in EKFB, we assume that a reaction can be
catalyzed only by a single enzyme. We use the Boolean variable yi which is equal to 1 if an
enzyme is active, and 0 otherwise.
Let us denote the set of variables for the enzymes that are involved in catalyzing the ith
reaction with Ei ⊆ {E1, E2, · · · , EM}. For simplicity, we will use the notation Ei = {Eij| Eij ∈ {E1,

E2, · · · , EM}} to denote this set. Let Fi be a function on {0, 1}|Ei | representing the relationship
between the enzymes for the ith reaction. This function takes Ei as input and produces an
integer. It evaluates to 1 if the ith reaction takes place according to the values of the variables
in Ei. It evaluates to 0 otherwise. Also, let the constants li and ui represent the minimum and
the maximum flux values. We write the second set of constraints as:

liFi ≤ vi ≤ uiFi. (15)

Depending on association between the enzymes that catalyze a reaction, we formulate Fi for
three different scenarios.

• A topology consisting only of substitute enzymes that catalyze any reaction. Each reaction
may be catalyzed by a single enzyme or a set of enzyme based on the OR association i.e.,
only one of the enzymes need be present to catalyze the reaction (Section 4.1).

360 Bioinformatics – Trends and Methodologies
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• A topology consisting only of collaborative enzymes that catalyze any reaction. Each
reaction may be catalyzed by a single enzyme or a set of enzymes based on the AND
association i.e., all of the enzymes need to be present to catalyze the reaction (Section 4.2).

• A complex topology consisting of multiple enzymes related by a combination of OR and
AND may catalyze a reaction (Section 4.3).

Shlomi et al. presents a way of replacing Boolean expressions that contains two Boolean
variables with linear inequalities (Shlomi et al., 2007). However, as the number of Boolean
variables grows, the number of additional variables required by this method grows rapidly
making the problem nontrivial. In the following sections we discuss two alternative strategies
to deal with each of these three scenarios. We name these strategies the Binary Method and
Continuous Method. The former one introduces additional Boolean variables. The second one
avoids the addition of Boolean variables, but comes at the expense of additional constraints.
We discuss these in detail in the following sections.

4.1 MILP solution in the presence of substitute enzymes

In this section, we consider the case when all the enzymes that catalyze the same reaction can
substitute each other. In this case, the presence of at least one of the substitute enzymes is
sufficient to carry out the corresponding reaction. Let Ei = {Eij| Eij ∈ {E1, E2, · · · , EM}} denote
a set of variables representing the substitute enzymes for reaction i (i.e., flux vi). Then we
write the function Fi that governs the relationship between the variables in Ei as:

Fi = max
Eij∈Ei

{Eij}

Thus the constraint (15) becomes:

li max
Eij∈Ei

{Eij} ≤ vi ≤ ui max
Eij∈Ei

{Eij}. (16)

We address the problem of nonlinearity in constraint (16) by performing a variable
transformation, which leads to a set of linear constraints. We solve them using traditional
MILP solution techniques such as simplex method.
Our linearization technique considers lower and upper bounds separately. We linearize lower
bounding constraints given by the inequality li maxEij∈Ei

{Eij} ≤ vi as follows,

liEij ≤ vi ∀ Eij ∈ Ei. (17)

Linearization of the upper bounding constraints given by the inequality vi ≤ ui maxEij∈Ei
{Eij}

is more complex compared to that of the lower bound. For the linearization, we consider two
approaches, namely binary and continuous methods.

Binary method: In this method, we propose the following linear constraints in order to
enforce binary restrictions on Fi (i.e., Fi ∈ {0, 1}):

Fi ≥
∑j Eij

n
∀i (18a)

Fi ≤ ∑
j

Eij ∀i (18b)

Fi ∈ {0, 1} ∀i (18c)

361Identifying Enzyme Knockout Strategies on Multiple Enzyme Associations
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Continuous method: In this method, we define Fi using a continuous variable that takes
value in the real domain. We replace the upper bound constraint vi ≤ ui maxEij∈Ei

{Eij} with
the following linear constraints:

Fi ≤ ∑
j

Eij ∀i (19a)

Fi ≤ 1 ∀i (19b)

Fi ≥ Eij ∀i, j (19c)

The constraints (19b)- (19c) enforces Fi to assume a binary value, even though we do not
directly impose binary restrictions on it.

4.2 MILP solution in the presence of collaborative enzymes

In this section, we consider the case where multiple enzymes collaborate with each other to
catalyze the same reaction. In this case, all the enzymes are necessary for the reaction to
initiate. Let Ei = {Eij| Eij ∈ {E1, E2, · · · , EM}} denote a set of variables representing the
substitute enzymes for reaction i (i.e., flux vi). We write the function Fi that governs the
relationship between the variables in Ei as:

Fi = min
Eij∈Ei

{Eij}

Thus, we write constraint (15) as,

li min
Eij∈Ei

{Eij} ≤ vi ≤ ui min
Eij∈Ei

{Eij}. (20)

As we discussed in Section 4.1, constraint (20) is nonlinear. We linearize this constraint using
additional variables. We address lower and upper bounds separately.
First, we focus on the upper bound constraints given by the inequality vi ≤ ui maxEij∈Ei

{Eij}.
We linearize this part without introducing new variables as follows:

vi ≤ uiEij ∀ Eij ∈ Ei (21)

The linearization of the lower bound constraints given by the inequality li minEij∈Ei
{Eij} ≤ vi

is more complicated. Analogous to the substitute enzyme case, we develop both binary and
continuous methods presented in the following two sections.

Binary method: We have already assumed that Fi ∈ {0, 1}. We linearize the nonlinear
constraint li minEij∈Ei

{Eij} ≤ vi under this assumption as follows:

Fi ≤
∑j Eij

n
∀i (22a)

Fi >
∑j Eij

n
− 1 ∀i (22b)

Fi ∈ {0, 1} ∀i (22c)
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Continuous method: For the continuous method, we replace the lower bound constraint
li minEij∈Ei

{Eij} ≤ vi with the following linear constraints:

Fi ≤ Eij ∀i (23a)

Fi ≥ ∑
j

Eij − (n − 1) ∀i (23b)

Fi ≥ 0 ∀i (23c)

4.3 MILP solution in the presence of complex association of enzymes

In this subsection, we generalize the methods described in the previous two subsections in
order to allow associations with arbitrary forms. We consider the case when the reaction can
be catalyzed by a set of enzymes such that some of them can substitute for each other and
others need to work collaboratively.
For example, assume that ith reaction can be catalyzed by two alternative enzyme complexes
that can substitute each other. Also assume that the first and the second of these complexes
are formed from two and three enzymes, respectively. These two or three enzymes in the
complexes collaborate with each other. We formulate this relationship as Fi = max { min {Ei1,
Ei2}, min {Ei3, Ei4, Ei4} }.
Using standard rules from Boolean algebra, all Boolean equations can be written into
disjunctive or conjunctive normal forms. Thus, we transform the equation for each reaction
into the following form:

Fi = max
E k

i

{ min
Eij∈E k

i

{Eij}}. (24)

In this equation, E k
i denotes the kth set of collaborative enzymes required by the ith reaction.

Thus, we have
⋃

k E
k
i = Ei. We define a new binary variable Zk

i ∈ {0, 1} corresponding to each

E k
i and rewrite Equation (24) as,

Fi = max
E k

i

Zk
i . (25)

where,

Zk
i = min

Eij∈E k
i

{Eij}. (26)

The methods in Section 4.1 and Section 4.2 are used for constraints (26) and (25) respectively
to linearize the constraint (15).

5. Experiments

In this section, we evaluate the performance and the limitations of our methods on real and
artificially generated metabolic networks. The synthetic datasets provide us a controlled
simulation environment that allows us to determine the impact of different characteristics
of the network on the performance of our algorithms. We evaluate the performance of our
methods quantitatively in terms of their execution time (in seconds).
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5.1 Datasets

In our experiments, we used the following real and synthetic datasets.

- Synthetic datasets: We randomly generated ten networks of different sizes (given by the
number of compounds and the number of reactions). In order to simulate the real
networks accurately, we generated these networks so that the number of reactions that
involve a compound is distributed according to the power law distribution (Voit, 2000). In
other words, the probability of the number of reactions that each compound involves in
decreases exponentially with the number of reactions.

In order to evaluate the impact of multiple enzymes for catalyzing a reaction, on the
performance of the algorithms, we generated two types of datasets:

Single enzyme dataset: In this dataset, each reaction is catalyzed by only one enzyme.
Thus, the number of enzymes is equal to the number of reactions.

Multiple enzyme dataset: In this dataset, all the reactions are catalyzed by at least one
enzyme. The number of enzymes attached to a reaction is based on the power law
distribution: the probability that a reaction is catalyzed by k enzymes decreases exponentially
with k. Roughly, 40% of the reactions are catalyzed by at least two enzymes; 30% of the
reactions are catalyzed by at least three enzymes; 23.5% of reactions are catalyzed by at
least four enzymes; 18.5% of reactions are catalyzed by at least five enzymes and 5% of
reactions are catalyzed by at least nine enzymes. Based on these probabilities, we build
ten synthetic networks for each network size. Section 5.2.1 describes the results for the
synthetic datasets.

- Real dataset: We use the metabolic pathways of Homo sapiens (H. sapiens) from
KEGG (Kanehisa & Goto, 2000). The entire H. sapiens metabolism consists of 640 enzymes,
1176 reactions and 1067 compounds. Section 5.2.2 provides the results for these real
datasets.

Experiment platform: We implemented our algorithms in C++. We applied ILOG CPLEX
11.2 to find the integer linear programming solutions. We executed our experiments on a
system with two Pentium 4 3.2Ghz and 1M cache processors, 6 gigabytes of RAM, and a
Linux operating system.

5.2 Results

In this section, we evaluate the performance of our algorithms on the synthetic (Section 5.2.1)
and real datasets (Section 5.2.2).

5.2.1 Evaluation on synthetic datasets

Our goal in this section is to evaluate the performance of our algorithm for a variety
of network parameters using synthetic datasets. These experiments can be decomposed
into two sets as described in the previous subsection, namely, single enzyme dataset and
multiple enzyme dataset. For an effective comparison, we use identical topology of reactions
and compounds for both multiple and single enzyme set. We consider two cases for the
multiple enzyme set: a) All multiple enzymes substitute each other. b) All multiple enzymes
collaborate with each other.

Performance analysis on single enzyme set: Section 3 proves that finding the enzyme
knockout strategy using MILP is NP-Hard. Consider the case when only one enzyme
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Fig. 2. The average execution time (in seconds) for the networks on single enzyme set. #R
denotes the number of reactions and #C denotes the number of compounds in the network.
The execution time grows exponentially as the number of reactions increases for both the
cases and can be prohibitive even for a few hundred reactions.

catalyzes a reaction. We conduct our experiments using the MILP formulation for two
different settings. In the first setting, the number of compounds is 25% of that of the reactions,
while for the second setting, it is 50%. Figure 2 plots the average execution times for networks
with different number of reactions.
The execution time grows exponentially as the number of reactions increases for both the cases
and can be prohibitive even for a few hundred reactions. This time constraint necessitates
the advent of heuristic methods for large networks. Also, we observe a steep increase in
execution time for larger number of compounds. For the same number of reactions, doubling
the number of compounds leads to an overall time increase by several orders of magnitude. It
can be concluded that, heuristic methods which can reduce the number of compounds from
the constraint set, can have the potential to improve the execution time of the MILP solutions.

Performance analysis for multiple enzymes set: The results in the previous section (along
with the NP-hardness of the problem) show that the MILP solution has exponential execution
time complexity in terms of the network size. We now study performance of our two
solutions with multiple enzymes per reaction. In this experiment, we study the running time
requirements in the presence of multiple substitute and collaborative enzymes. We compare
these times to those of single enzymes. Note that, the comparison against single enzyme
favors the single enzyme dataset as it has fewer variables. This, however, should serve as a
lower bound for execution time for the multiple enzyme cases. We summarize the result as
follows:

1. Binary method: Figure 3 depicts the results of our binary method for variable number of
compounds and reactions. The results demonstrate that the presence of multiple enzymes
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Fig. 3. The average execution time (in seconds) for the networks with single and multiple
enzymes. All multiple enzymes cases are either all substitutions or all collaborations. For
multiple enzymes set, we use binary method. The results demonstrate that the presence of
multiple enzymes increases the execution time significantly as compared to the case when
only a single enzyme catalyzes a reaction.

increases the execution time significantly as compared to the case when only single enzyme
catalyzes a reaction. This improvement holds true for both substitute and collaborative
enzymes. The running time for multiple enzymes is two to 16 times that of the single
enzyme case. In most of the test cases, collaborative enzymes resulted in a higher increase
in execution time.

2. Continuous method: Figure 4 shows the execution time of multiple enzymes set by
continuous method and that for the single enzyme set. Similar to the binary method,
multiple enzymes set requires much more time than that of the single enzyme set. As
the network size increases, the gap between the execution time of the multiple enzymes
set and that of the single enzyme set increases exponentially. This suggests that the
presence of multiple enzymes necessitates heuristics solutions for large networks. Also,
collaboration among enzymes requires relatively higher execution time as compared to
that of the substitution between enzymes in majority of the experiments.

3. Comparison of the two methods: Recall that the binary method introduces additional
binary variables to linearize the constraints. The continuous method only generates
additional continuous variables. However, it requires additional constraints. Our
experiments (see Figures 3 and 4) demonstrate that the Binary method executes twice or
more faster than the continuous method for the case when all multiple enzymes cases are
substitutions. When the multiple enzymes collaborate with each other, the gap between
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Fig. 4. The average execution time (in seconds) for the networks with single and multiple
enzymes. All multiple enzymes cases are either all substitutions or all collaborations. For
multiple enzymes set, we use continuous method. As the network size increases, the gap
between the execution times of the multiple enzymes set and the single enzyme set increases
exponentially.

the running time of the binary and continuous method increases further. Therefore, for the
large networks, binary method is the preferred choice.

5.2.2 Evaluation on the real dataset

In this section, we evaluate the performance of our algorithm on real metabolic networks
taken from the KEGG database. We use the metabolisms of H. sapiens. Given, the superior
performance of the binary method over continuous method (as described in the previous
subsection), we limit ourselves to the binary method on the real dataset. We execute the binary
method for purine metabolism, metabolism of cofactors and vitamins, amino acid metabolism
and the entire metabolism. However, the KEGG database does not provide the details of
enzyme association information. Thus, we consider two alternative cases: a) all the enzymes
are collaborations, b) all the enzymes are substitutions. Table 1 demonstrates the running time
using the binary method. These results show that our method requires less than one second
of execution time and hence, are scalable to practical network sizes for both cases. Even for
the entire metabolism of H. sapiens, the execution time is less than half a second. This makes
our methods of great practical importance.
It is worth mentioning that the execution times on the real datasets are substantially lower
than that of the synthetic datasets. This is because, the topology of the real networks is much
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sparser than the ones we used for our synthetic experiments. Therefore, less time is required
to find the flux distribution on the real networks.

Pathway #E #R #C Collaborative Substitute

Purine metabolism 52 92 65 0.07 0.13

Metabolism of cofactors and vitamins 90 132 122 0.04 0.05

Amino acid metabolism 195 317 305 0.05 0.06

the entire metabolism 640 1176 1067 0.38 0.28

Table 1. Execution time in seconds of our binary method for the metabolisms of H. sapiens
from KEGG. #E, #R and #C denote the number of enzymes, reactions and compounds
respectively in the metabolism. The results demonstrate that our method requires less than
one second of execution time. Hence it is scalable to practical network sizes for both the
cases.

6. Conclusions

Given a metabolic network and a goal, such as maximizing or minimizing the production of
a set of compounds, we considered the problem of computationally determining the optimal
enzyme knockouts to modify the production of compounds using the Flux Balance Analysis
(FBA) model. We proved that the problem of finding the optimal enzyme set to knockout is
NP-hard even when only one enzyme catalyzes a reaction.
We developed two strategies to identify the enzymes to knockout, when multiple enzymes
catalyze a single reaction. We allowed multiple substitute and collaborative enzymes. In the
proposed solutions, we eliminate this limitation of single enzyme. Our first solution uses a
small number of binary variables in the underlying MILP formulation. The second method
increases the number of binary variables but requires a smaller number of constraints.
Our experiments using synthetic and real datasets demonstrated that adding extra binary
variables is significantly superior to adding additional constraints in terms of execution time.
For the metabolism consisting of all the pathways of H. sapiens, our binary method requires
less than one second. This makes our methods of great practical importance.
We believe that the approach presented in this chapter is not limited to MILP based strategies.
It should also be applicable to other linear constraint strategies, e.g. quadratic programming,
where the objective function is non-linear but the constraints are linear.
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