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1. Introduction 

Most lysosomal storage disorders (LSDs) are usually inherited, caused by the deficiency of a 
single lysosomal hydrolase, leading to the accumulation of the corresponding substrate. 
LSDs can also result from mutations in proteins involved in the intracellular trafficking of 
lysosomal enzymes (Carrell & Lomas, 1997, Kopito & Ron, 2000, Selkoe, 2003, and Arakawa 
et al., 2006). Indeed, LSDs are considered as a group of more than sixty diverse inherited 
disorders. Each of the diseases is due to a specific enzymatic defect (Hodges & Cheng, 2006, 
Raben et al., 2009). Pompe disease is one of these LSDs through point mutations (single wild 
type amino acid substitutions) in the gene that encodes for acid α-glucosidase (GAA). The 
resulting total or partial deficiency of lysosomal acid α-glucosidase triggers glycogen to 
accumulate in lysosomes (Alberts et al., 2002, Raben et al., 2002, Bernier et al., 2004, Kroos et 
al., 2008).  
Recently, various small molecule pharmacological chaperones have been discovered to 
increase stability of such mutant proteins and facilitate their efficient trafficking of 
lysosomal enzymes. As such, it pointed the way to a new therapeutic approach in LSDs 
treatment. In this study, we are concerned with revealing the mechanism and accurate 
structures underlying the defects in the folding behaviors of the involved enzymatic protein 
mutants, also the way in which they interact with small molecule pharmacological 
chaperones.  
The pharmacological chaperone 1-deoxynojirimycin (DNJ) showed improvement in the 
treatment of Pompe disease. Yet, experimental data had shown that only a number of GAA 
mutants responded well to this pharmacological chaperone (Hirschhorn & Reuser 2001, 
Petsko & Ringe, 2004, and Chaudhuri & Paul 2006, Sugawara et al., 2009, Flanagan et al., 
2009). In an effort to improve the stability of mutant enzymes, the understanding on the 
molecular interaction between the enzyme and the chaperones is very important. Since 
neighboring residues share physical characteristics, we undertook a detailed study of the 
surroundings of GAA variants in the structures (Zvelebil, et al., 1987). Thus, we herein aim 
at discriminating between structural, as opposed to, GAA mutants, based on analysis of 
their local environments.  
Despite the absence of crystallographic data of human acid alpha-glucosidase, we reviewed 
recently published papers to construct a structural model of human maltase-glucoamylase 
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(MGAM) through homology modeling using the structural information (PDB ID: 2QLY) as a 
template. Note that there are approximate 44% amino acid sequence identities between the 
GAA and template. Based on the sequence alignment and the structural mode, our structural 
model, GAA residues (84-952) were threaded on to the MGAM template. The active site region 
for both GAA and MGAM overlaid well and the key catalytic residues had high similar spatial 
alignment (D518/D616 and D445/D542 in GAA and template respectively).  
This study involved active site analysis that we applied the proposed model to reveal 
whether any conformational changes take place at the active site of GAA mutants and 
molecular docking studies on DNJ which we presented the geometry of the binding site of 
the complexes of GAA/DNJ and GAA mutants/DNJ.  These were done by visual inspection 
of the atomic models looking at the interaction between the human GAA variants and 
chaperones, in terms of both binding energy and spatial orientation of the active site.  
Structural studies should be useful in improving our understanding of enzyme protein 
stability, molecular recognition and binding and then will help us to further elucidate the 
molecular basis of Pompe diseas. 

2. Methodology 

2.1 Structural modelling of the wild-type and mutant human acid α-glucosidase 
A structural model of wild-type human acid α-glucosidase was built using molecular 
modeling software, MIFit (a cross-platform interactive graphics application for molecular 
modelling), and Molecular Operating Environment, MOE (CCG-Chemical Computing 
Group Inc.), by means of homology modeling. The structural of human intestinal maltase-
glucoamylase (PDB: 2QLY) was used as a template and then energy minimization was 
carried out. The root-mean-square gradient (RMSD) was computed in terms of all the atoms 
in a protein backbone and the value was less than 0.6 Å which is indicative of considerable 
structural similarity.  
More than hundred different GAA mutations know to cause Pompe disease are predicted to 
produce full-length proteins corresponding to a single amino acid substitution. Thus, based 
on the wild-type human acid α-glucosidase model, the structural models of mutants 
incorporating the amino acid substitutions were constructed using MIFiT. And the initial 
model was further refined by energy minimization. However, because of the low amino 
acids sequence identity between the human acid α-glucosidase and template, the 
investigations were restricted to a limited region of the enzyme protein.  

2.2 Molecular docking 
2.2.1 Preparation of ligand 
The initial structure of the pharmacological chaperone 1-deoxynojirimycin (DNJ) (Figure 1) 
for the docking was generated using ChemDraw Ultra Version 9.0 (CambridgeSoft Corp.). 
And then geometry optimized ligands were prepared using MOE. 

2.2.2 Docking 
According to the effect of DNJ on responsive GAA mutants, six severe effects of GAA 
variants (G377R, A445P, L552P, Y575S, E579K, and H612Q) and wild-type GAA were chosen 
as the receptor for docking (Flanagan et al., 2009). Enzyme proteins and ligand structures 
were imported into MOE 2010.10 where three-dimensional structures were generated using 
a course energy minimization protocol and the MMFF94x force field (Halgren, 1996, 1999). 
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Fig. 1. 3D and 2D visualization of DNJ. 

2.2.3 Structural analysis of GAA mutation 
To exam the effect of atoms, each mutant model was superimposed on the wild-type 
structure on the basis of the C atom by the least-square-mean fitting method (Matsuzawa 
et al., 2005 and Saito et al., 2008). We assumed that the structure was influenced by an amino 
acid substitution when the position of an atom in a mutant differed from that in the wild-
type structure, thus, such substations were expected to affect neighboring residue and to 
locally affect the electrostatic surface of the enzyme.  

3. Results and discussion 

3.1 Structure modelling of human GAA  
3.1.1 Wild-type 
As the results showed, our constructed wild-type model of GAA appears to be composed of 
five domains: a trefoil type- domain (residues 89–135), an N-terminal b-sandwich domain 
(residues 136–346), a catalytic (/)8 barrel domain (residues 347–723) with two inserted 
loops, which include insert 1 (residues 444–491) and insert 2 (residues 522–567) protruding 
out between 3 and 3, and between 4 and 4, respectively, a proximal C-terminal domain 
(residues 724–818) and a distal C-terminal domain (residues 819–952) (Figure 2). The key 
catalytic activity (D518 and D616) (Hermans et al., 1991, Sugawara et al., 2008 and Sugawara 
et al., 2009) and sequence motifs of family 31 glycosyl hydrolases were well conserved 
(Davies & Henrissat, 1995, and Lovering et al., 2005).  
The proposed active-site pocket here was composed to residues of residues W376, W402, 
D404, I441, D443, W481, W516, D518, M519, F525, R600, W613, D616, D645, F649, and H674 
(see Figure 3). Like many other sugar-binding enzymes, there were a lot of hydrophobic 
residues lining the active-site pocket, including W376, W402, I441, W481, W516, F525, W613, 
and F649. 

3.1.2 Wild-type vs. mutants 
The six mutant forms of GAA which responded to DNJ severely were superposed with 
wild-type. After the structure was superimposed, RMSD was computed in terms of the 
active-site pocket between the wild-type and mutants and the value were found to be less 
than 0.8 Å respectively in between. These varied situations were illustrated in Figure 3.  
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Fig. 2. GAA structural model. A ribbon diagram of GAA structural model. The orange 
shallow circle area represents the active-site pocket. 

 
 
 

 
 

Fig. 3. A close-up view of the active-site pocket (W376, W402, D404, I441, D443, W481, 
W516, D518, M519, F525, R600, W613, D616, D645, F649, and H674). 
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Fig. 4. Superimposed with the corresponding active-site pocket of the wild-type and six 
mutant variants GAA. The conserved catalytic residues D518/D616 are circled in red. Of 
GAA variant (G377R), Try turned forwards in the active site. 

The comparison results were shown that no significant changes in the conformations of 
amino acid residues that comprise the active site and mutations of the key catalytic residues 
were conserved but when mutated as G377R, Try veered forward in active site. This might 
imply that new drugs can be designed or existing drugs can be modified based on its 
interaction with the new tyrosine residue (see Figure 4). This observation rules out the 
possibility of a conformational difference between the mutant and the wild-type enzyme as 
the derivation cause for the reduction of catalytic activity. 

3.2 Docking 
Molecular docking is utilized for the prediction of protein-ligand complexes which creates 
possible protein-ligand complex geometries. To understand the interaction between the 
enzyme and the pharmacological chaperone DNJ, we examined the binding affinity of the 
DNJ to the enzyme based on the complex geometry and binding energy. In the complex of 
the DNJ and enzyme model (either wild-type or mutants), the DNJ molecule fitted into the 
active-site pocket well.  
Of the wild-type, residues D404, D518 and D616 were predicted to bind to the hydroxyl 
groups and the nitrogen of DNJ through hydrogen bonding inside the active-site pocket. 
Residues W376, I441, W481, W516, M519, W613, and F649 might be involved in the 
hydrophobic interaction of the DNJ. It is assumed that these residues contribute to the 
substrate binding specificity. The active-site pocket was apt for DNJ as to both space and 
binding. We also observed that the interactions between DNJ and the active-site pocket 
residues of wild-type and mutants; the nitrogen of DNJ was interacted with D518 through 
hydrogen bonding. (Figure 5 and Figure 6)  
The DNJ fit into the active-site pocket well and a limit space between the nitrogen atom of 
DNJ and the wall of the active-site pocket of wild-type GAA and mutant variants 
respectively were observed (Figure 7, Figure 8 and Figure 9).  

www.intechopen.com



 
Bioinformatics – Trends and Methodologies 

 

318 

 

 
Fig. 5. The interaction diagram between DNJ and the wild-type GAA inside the active-site 
pocket 

 
 

 
 

Fig. 6. Structure of wild-type GAA bound to DNJ. 
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Fig. 7. Surface representation of the active-site pocket of wild-type GAA with bound DNJ. 
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(a) G377R (b) A445P 

 
(c) L552P (d) Y575S 

 
(e) E579K (f) H612Q 

 
 
 

Fig. 8. Structure of GAA mutant variants bound to DNJ.  
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(a) G377R (b) A445P 

 
(c) L552P (d) Y575S 

 

(e) E579K (f) H612Q 

                 

Fig. 9. Surface representation of the active-site pocket of GAA variants with bound DNJ. 
G377R variant shows a larger narrow funnel-shaped region of the active-site cavity. 

www.intechopen.com



 
Bioinformatics – Trends and Methodologies 

 

322 

We noticed that a narrow funnel-shaped region of the active-site cavity of wild-type GAA 
was smaller compared with that of other mutant variants. Especially, not only G377R 
variant showed a larger narrow funnel-shaped region of the active-site cavity compared 
with that of wild-type GAA or other mutant variants but also of GAA variant (G377R), Try 
turned forwards in the active site. Thus, it should be possible to modify this molecule to 
develop a novel derivative suitable for Pompe disease. 
The theme of molecular docking is a vital aspect in drug discovery and development.  
Molecular docking is utilized for the prediction of protein–ligand complexes which predicts 
the binding affinity of the ligand to the protein based on the complex geometry. The binding 
energies also reflect the binding affinity of a ligand. The docking results were described in 
Table 1. The values showed that the binding energy of mutated complex (GAA variants) 
was higher than that of wild-type complex. Thus, it is interesting to speculate that increase 
in binding energy due to mutation might decrease the binding affinity of GAA towards 
DNJ, stabilizing GAA, and modulating its activity.  
 

Ligand 
(DNJ) 

wild-type 
Mutants (GAA variants) 

G377R A445P L552P Y575S E579K H612Q 
Binding Energy 

(kcal/mol) -149.782 -107.416 -99.904 -130.414 -102.599 -109.852 -95.383 

Table 1. Energy values obtained in docking calculation. 

Still, these binding energies might not yet sufficient for determining binding affinity of 
ligands or drug candidates associations, some other physical effects such as electrostatics, 
van der waals, hydrogen bonding, and hydrophobic could affect the binding affinity; those 
are also needed to be evaluated.  

4. Conclusions 

This work involved active site analysis, molecular docking and binding energy studies. We 
revealed the mechanism in the folding behaviors of the involved enzymatic protein mutants, 
and the way they interacted with small molecule pharmacological chaperones based on 
spatial schematics which provided a basis for experimental validation. The validity of this 
approach was supported by the identification of some known GAA mutants. Therefore, the 
conformational changes detected in the distribution of various residues and their 
constituents around various GAA mutants should be useful in improving our 
understanding of enzyme protein stability, molecular recognition and binding. Effectively 
we have demonstrated the corresponding structural conformations associated with GAA 
wild-type and mutants in their three-dimensional environment. The difference in binding 
energies might rise due to mutations which could affect the binding affinity of DNJ. And 
then, it turns out that the complex structures and energy results presented here may provide 
useful consideration in the therapeutic approaches to these diseases as well as in the design 
of novel inhibitors associated with sucrose degradation. 
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