
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322401096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5

Massively Parallelized
DNA Motif Search on FPGA

Yasmeen Farouk1, Tarek ElDeeb2 and Hossam Faheem1
1Faculty of Computer and Information Sciences, Ain Shams University,

2Faculty of Engineering, Cairo University,
Egypt

1. Introduction

Understanding the mechanisms that regulate gene expression is a major challenge in

biology. Motif finding problem is considered an important task in this challenge.

Addressing the complexity nature of the problem together with being very data intensive

has encouraged introducing field programmable gate arrays (FPGAs) to the problem.

FPGAs are very powerful in such computationally intensive tasks.

Many Algorithms are introduced to solve this problem. They can be categorized into

pattern-based and profile-based algorithms [1]. Pattern-based algorithms include

PROJECTION[4], MULTIPROFILER[6], and MITRA[3]. Profile-based algorithms includes

CONSENSUS[7], MEME[2] and Gibbs sampling[5]. Although these algorithms show good

performance, they still can fail to identify all the possible motifs in the sequences. They also

show poor performance when trying to solve the challenge problem presented by Pvzner

and Sze[8]. Some of them fail due to local search, others which are based on statistical

measures fail to separate the motif from the background sequences.

We can also categorize Motif finding algorithms due to the solution they provide. Some

algorithms provide exact solution others provide approximate one. Brute Force algorithm is

an exact algorithm but it suffers from the intractability of its running time. It increases

exponentially with the size of the required motif. This makes the Brute Force unsuitable for

long motifs.

Our enhanced Brute Force algorithm, skip Brute Force, can predict the quality of the

computed motif. The algorithm skips those iterations which will lead to a poor scored motif,

thus leads to a better running time than the original Brute Force. This enhancement

guarantees the same exactness of the Brute Force. But, it still suffers from the intractable

running time for long motifs.

Many approaches can be applied to speed up the running time of any algorithm using

hardware; examples include chip multiprocessors, graphics processing units (GPUs) and

(FPGAs). GPUs are inexpensive, commodity parallel devices and have already been

employed as powerful coprocessors for a large number of applications. However, GPUs

have limited instructions and limited parallelism relative to FPGA's configurability. The

research in [10] employed acceleration using GPU. Another approach uses clusters of

workstations [12]. However, clusters typically have high maintenance and energy costs

www.intechopen.com

Bioinformatics – Trends and Methodologies 108

when compared to single node solutions. Others use special hardware [9][11], where a cost

performance ratio would be fairer for comparison [9].

The repetitive nature of the algorithm and the locality of the data encourage the use of
FPGAs. Many operations can be done concurrently to enhance the running time. FPGAs
proved to successfully accelerate sequential algorithms minimum by one or two orders of
magnitude. They also have been widely used to accelerate bioinformatics problems such as
Smith-Waterman and BLAST algorithms. This research offers an enhanced Brute Force
algorithm hardware accelerated using Field Programmable Gate Arrays (FPGAs). Our
research leads to a speed up by 1.5MX and thus boosting the running time without
sacrificing the accuracy.
The rest of this chapter is organized as follows: In Section 2 we describe the motif finding
problem and presents our enhanced Brute Force algorithm; skip Brute Force. Section 3
presents the hardware implementation of our novel approach with a detailed view to its
components. Performance evaluation is presented in section 4. Finally, section 5 concludes
our work and presents future enhancements.

2. Skip brute force algorithm

Brute-force search or exhaustive search, also known as generate and test, is a very general
problem solving technique that consists of systematically enumerating all possible
candidates for the solution and checking whether each candidate satisfies the problem's
statement.
The motif finding problem can be summarized as follows:
Planted (l,d)- Motif Problem: Find the motif consensus M which is a fixed but unknown
nucleotide sequence of length l. Suppose that M occurs once in each of t background
sequences of common length n. Each occurrence of M is mutated by exactly d point
substitutions in positions chosen independently at random. Given the t sequences, recover
the motif occurrences and the consensus M.
Pevzner and Sze[8] presented the challenge problem(15,4) which makes a particular
parameterization to the panted motif problem. The motif we are searching for is of length
l=15, the allowed mutations d=4 and the number of sequences we are searching in is t=20
each of size n=600. The parameters of the challenge problem are typical values for finding
transcription factor binding sites in co-regulated gene promoter regions yeast [4].
The Brute Force algorithm solves the motif finding problem by considering the set of all 4l
possible l-mers. It computes the total distance of each l-mer in that set to all other l-mers in all t
sequences. The correct motif is the one that have the smallest total distance along all the other
l-mers. The run time of this algorithm is O(4lnt). The running time for finding a motif of l=11 is
about 5hrs and it fails to handle longer motifs in reasonable time. To solve the challenge
problem, the running time of the Brute Force algorithm would obviously be too slow.
The idea behind our skip Brute Force algorithm is that it skips all the iterations that will not
lead to a correct solution. The algorithm is forced to skip over the remaining iterations in two
cases. The algorithm generates all possible 4l l-mers. It then iterates over all the sequences
examining that generated l-mer with all the windows in each sequence. For each sequence
iteration, the current score is initialized with the allowed mutation and then the score of each
window is computed; i.e. the hamming distance between that window and the current l-mer.
If this distance beats the current score then we would suspect the current window to be an
implanted motif until another window in the same sequence with a higher score beats it.

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 109

The planted motif problem guarantees to find the motif in each sequence. Based on this fact
the skip algorithm skips the iterations over the remaining sequences if it reached the end of
the current sequence without finding any window that matches the current l-mer (this l-mer
can not be the motif) and jumps to the next l-mer. Assuming a single solution, the algorithm
also skips the iterations over the remaining l-mers if it reaches the last sequence (t=20)
without skipping any iteration (the solution is found).
A pseudo code of the skip Brute Force algorithm is shown below in Figure 1.

Fig. 1. Pseudo Code of the skip Brute Force Algorithm. If the commented break command is
applied, then algorithm will skip-more.

2.1 Skip-more brute force

In our early implementation of the skip algorithm, we did not consider scores for the motifs
found. We forced to skip the current sequence if a single motif is found that has d mutations
within the allowed range (line 15). Here the algorithm fails to find the best motif as more
windows in the current sequence can reveal occurrences of motifs with lower mutations.
The complexity of this algorithm is O(4lnt) at its worst case, just as the Brute Force.

3. Hardware implementation of skip brute force

Our design benefits from the concurrent nature of the FPGAs as a hardware platform;
control, multiplexing, matching and decision making are all occurring on the same clock

www.intechopen.com

Bioinformatics – Trends and Methodologies 110

edge. We used VHDL to model our design preserving its extendibility for more complex
challenging problems in future. Figure 2 shows the system block diagram.

Fig. 2. Block diagram of the skip Brute Force - running on an FPGA with one matching unit.

All t-sequences are first loaded into an on-chip read-only memory 'ROM' as shown in Figure
3. On the contrary, the set of all 4l l-mers are not stored, but locally generated. Gaining from
encoding each nucleotide into 2-bit symbol, the 4l Motif Generator is a simple controlled
binary counter. The shifter block is fed by the currently needed sequence and only reveals a
sliding l-sized window of it at a time. The matching block compares the revealed window to
the generated l-mer and outputs the hamming distance as the mutation score. The logical
control unit synchronizes the system to properly implement the skip Brute Force algorithm.
More details are found in the following subsections.

Fig. 3. The ROM Block holding the challenging problem sequence.

3.1 Sequence multiplexor

The sequence multiplexor gets one sequence at a time. The Logical control issues the signal
to the multiplexor to load the sequence from the ROM and feed the shifter.

3.2 Sequence shifter

The sequence shifter block has the following inputs: clk, reset and the sequence to be shifted.
The shifter outputs an l-sized motif each clock cycle through a windowing approach.

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 111

The shifter outputs (n-l+1) motifs for each sequence unless it is interrupted by resetting it.
Our skip Brute Force resets the shifter in one case; when the shifter has generated all the (n-
l+1) l-mers for this sequence. The shifter is reset to be fed with new sequence to generate the
newly suspected motifs (l-mers) from this sequence.

Fig. 4. Sequence Shifter block diagram.

The skip-more algorithm resets the shifter in two cases. The first case is the one previously

explained. The second case happens when the matching unit finds an l to be within the d
allowed mutations. In this case the system resets the shifter as the motif is considered to be

found. Block diagram of Sequence Shifter is shown in Figure 4.

3.3 Motif generator

The set of all 4l l-mers starting with AA ... A to TT ...T is not stored in the system. The four
DNA nucleotides {A,C,G,T} are easily encoded into the 2-bit symbols 00,01,10 and 11

respectively. The system locally generates all the possible l-mers by a simple controlled
binary counter of size l bits.

That is, in a system with l=3 we would like to generate AAA, AAC, AAG, AAT, ...,TTT.
According to the encoding mentioned above; we would like to generate a series of 6-bits

each as follows 000000, 000001, 000010, 000011, ..., 111111. The relation between these

encoded bits can be obtained by a simple binary counter of size l bits.

3.4 Matching block

The matching block consists of many sub-blocks; xoring units, an l-bit adder and a
comparison block. The matching block takes two l-sized sequences and compares them. If

the difference between the two sequences is less than or equal to the allowed mutation
(the two sequences have less than or equal to d different nucleotides), it outputs a match

signal.
The matching block uses a series of xoring gates to determine if two l nucletoids are

identical. The l-bit adder is used to count the differences between them. Finally, a
comparison block is used to compare the value obtained from the adder with the d allowed

mutation.
The matching block also outputs the score of the matching process. This score is used by the

logical control to determine the quality of the motif obtained. The Matching block diagram
is shown in Figure 5. Detailed Matching block diagram is shown in Figure 6.

www.intechopen.com

Bioinformatics – Trends and Methodologies 112

Fig. 5. Matching block diagram.

Our design is meant to be extendible by instantiating more of the matching units. Thus, its

circuit implementation has to be highly optimized. Classical hamming distance circuits start

with an array of XOR gates to determine matching nucleotides, followed by l sequential

adders to compute the required distance. This approach leads to long circuit delays that will

cause the system maximum frequency to drop, degrading the performance.

Our design replaces the sequential adders with a specially designed adders tree. For the (15, 4)

problem, the proposed design shortens the critical path from fifteen 4-bit adders to only four

full adders and two half adders. Figure 7 shows the optimized adder tree.

Fig. 6. Matching block components - xoring units are double the size of the motif.

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 113

3.5 Adder tree

The l-bit adder takes a pattern of size l, calculates the number of ones in this pattern and
outputs the count in a log2l bits. For l=15, the adder would accept a 15 bit input signal and
ouputs a 4-bit output signal. A 15-bit input signals needs five full adders; this would be
stage 0. Stage 0 outputs 5 sum signals and 5 carry signals. Stage 1 needs 1 full adder and 1
half-adder for the output sum signals and the same for the output carry signals.
Accordingly, stage 2 needs only 4 half adders, stage 3 needs 2 full adder and stage 4 needs 1
half adder. The final stage needs 1 full adder.

Fig. 7. The six stages adder tree - The critical path involves 4 full adders and 2 half adders.

3.6 Logical control

The system is managed by the logical control. Reset signals are issued to the motif generator

and to the sequence shifter to control the flow of the sequences to be compared. As

explained earlier, the logical control issues this signal under certain events. The logical

control outputs the best motif which is determined by the scoring function.

3.7 Multiple matching units

It is clear that scaling up the design by utilizing more matching units in parallel will speed

up the overall performance by the factor of extra units. Slight modifications and some logic

duplication will be introduced for proper functionality and synchronization. The only

limiting factor to the performance boost is the FPGA resources.

www.intechopen.com

Bioinformatics – Trends and Methodologies 114

Figure 8 shows the block diagram of the skip Brute force running on an FPGA with multiple
matching units. All t sequences are also loaded into an on-chip read-only memory ROM as
the previous architecture. The sequence multiplexor feeds n series of sequence shifter
followed by a matching unit. The matching unit takes its two l-sized sequences one from the
shifter and the other from the logical unit which contains the motif generator. The outputs of
the matching unit in each series are ANDed to determine the value of solution found. The
number of the series of sequence shifter followed by matching unit is equal to n, where n is
the number of the examined sequences. In the previous architecture, the system has to loop
over all the sequences for each generated motif. This corresponds to n.t.4l loops. In this
enhanced architecture, the system loops only n . 4l.

Fig. 8. Block diagram of the skip Brute Force - running on an FPGA with multiple matching
units.

4. Performance evaluation and results

We tested the performances of Brute Force algorithm and skip Brute Force on synthetic
problem instances generated according to the planted (l,d)-motif model. We followed the
FM model described by Pvzner and Sze [8] to generate synthetic data to test our work. We
produced problem instances as follows:
First, a motif consensus M of length l is chosen by picking l bases at random. Second, t= 20
occurrences of the motif are created by randomly choosing d positions per occurrence
(without replacement) and mutating the base at each chosen position to a different,
randomly chosen base. Third, we construct t background sequences of length n=600 using
n*t bases chosen at random. Finally, we assign each motif occurrence to a random position
in a background sequence, one occurrence per sequence. All random choices are made
uniformly and independently with equal base frequencies.
The skip Brute Force achieves an average speedup of 9.11X. Both Brute Force and skip Brute
Force algorithms were modelled and implemented on MatlabR2006b[15]. All the
experiments ran on an AMD 5500 X2+ processor with 2GB RAM. For fair comparison, it is
reported in literature that the Matlab platform is about 5 to 6 times slower than an
optimized C coded program.
To evaluate the hardware implementation; we need to define the expected number of
matching operations. First, we define the probability to find a random l-mer in a given
sequence with up to d mutations as:

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 115

Additionally, we define the expected number of required matching operations to find the
correct implanted motif as:

We then deduce for a problem of size n=600, t=20, the expected matching operations to be as
shown in table 1.

L D Expected Matching
Operations

9 2 7.7699 x 107

11 3 1.2388 x 109

12 3 4.9428 x 109

13 4 1.9750 x 1010

14 4 7.8813 x 1010

15 4 3.1464 x 1011

17 5 5.0170 x 1012

Table 1. Expected matching operations for different (l,d) problems.

We synthesized our design for multiple matching units (MU). Synthesis results of one, five,
ten and twenty matching units need further analysis. Figure 9 shows the area utilization of
the FPGA. The FPGA utilization increases almost linearly with increasing the number of
MUs.

Fig. 9. FPGA area utilization - increases almost linearly.

The design of multiple MUs inherits parallelization; this means the system critical path
remains the same even after increasing the number of MUs. Unfortunately, the system
maximum frequency decreases with increasing the number of MUs. This is due to the
increased complexity of the FPGA interconnects. Over 80% of transistors inside the FPGA
are dedicated to the programmable routing network as programmable switches and buffers.
The increased complexity of the interconnects leads to FPGA resource starvation.

www.intechopen.com

Bioinformatics – Trends and Methodologies 116

Fig. 10. Maximum system frequency - decreases due to interconnects complexity.

Furthermore, It is well known that interconnects in FPGA dominate the system performance

and power consumption.

Depending on the architecture, 60% to 80% of the FPGA critical path delay is due to the

routing between logic blocks. Long interconnects exhibit a substantial delay and often lead

to timing violation and require further optimizations. In a recent study [13], it was found

that FPGA interconnects is poorly scaled. Based on the extrapolation of future device

performance, interconnects will become the performance bottleneck, of which the clock rate

will be slowed down to 17 MHz in a 13 nm process. Figure 10 shows degradation in the

maximum frequency of the system with increasing the number of matching units.

We define the system throughput as the number of matching operations per second. Figure

11 shows the curve of the system throughput. The throughput increases by increasing the

number of MUs. The curve tends to be linear but the degradation in the maximum

frequency alters this linearity.

Fig. 11. System throughput - increases almost linearly.

Figure 12 compares the running time of Brute Force, skip Brute Force, skip Brute Force

running on FPGA with one matching unit and with 20 matching units of different challenge

problems. The running time of Brute Force in all challenge problems is the highest. Our skip

Brute Force algorithm running on an FPGA has the best running time.

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 117

Fig. 12. Running time of various challenge problems - skip Brute Force running on an FPGA
based architecture with 20 matching units has the fastest running time.

Utilizing one matching unit leads to a speedup by 9800X over pure software running time of

skip Brute Force. It is clear that scaling up the design by utilizing more matching units in

parallel will speed up the overall performance nearly by the factor of extra units. We used

20 matching units and achieved a speed up factor 16.88X over one matching unit.

Thus, applying the skip Brute Force (9.11X) on 20 matching units (16.88X) running on an

FPGA-based architecture (9800X) would offer 1.5MX boosting in the performance.

Figure 13 illustrates these observations.

Fig. 13. Speedup factors of our accelerating designs - Total speedup is 1.5MX.

www.intechopen.com

Bioinformatics – Trends and Methodologies 118

RTL synthesis and Place and route were accomplished using Quartus tool on the Stratix III
FPGA technology, a product from Altera[14]. The skip Brute Force FPGA design does not
use any of the FPGA memory blocks. The PowerPlay tool showed a total of power
consumption of 400mW.

5. Conclusion and future work

This chapter presents a proof-of-concept parallization of motif finding on FPGA to achieve
high performance at low cost. Among all Motif Finding Algorithms, Brute Force is known to
be the most accurate. This is mainly because it searches the space of all possible motifs. The
major drawback of Brute Force is the intractability of its running time. The algorithm
running time grows exponentially with the length of the motif. This makes the Brute Force
unsuitable for long motifs. The algorithm can not be used to solve the (15,4) challenge
problem in a reasonable time.
In order to find the correct solution for the planted motif problem; we have to over-come
two main problems. We have to be able to identify the motif from background sequences by
applying an exact algorithm such as the Brute Force that guarantees to always find the
correct motif. We also have to overcome its running time and memory complexities through
acceleration by enhancement in the algorithm itself and by hardware implementation. Our
research presented here addresses these two issues.
We presented an enhanced Brute Force algorithm; skip Brute Force, which can predict the
quality of the obtained motif. The algorithm skips those iterations which will lead to a poor
scored motif, thus leads to a better running time. This enhancement guarantees the same
exactness of the Brute Force. Our enhanced algorithm showed a speedup factor of average
9.11X.
The repetitive nature of the algorithm and the locality of the data encourage the use of
FPGAs. Many operations can be done concurrently to enhance the running time. FPGAs
proved to successfully accelerate sequential algorithms minimum by one or two orders of
magnitude. They also have been widely used to accelerate bioinformatics problems such as
Smith-Waterman and BLAST algorithms. This research offers an enhanced Brute Force
algorithm hardware accelerated using Field Programmable Gate Arrays (FPGAs).
We designed an FPGA-based architecture to accelerate our skip Brute Force algorithm. The
core of the skip Brute Force algorithm is its matching unit. Utilizing one matching unit leads
to a speedup by 9800X over pure software running time of skip Brute Force. It is clear that
scaling up the design by utilizing more matching units in parallel will speed up the overall
performance nearly by the factor of extra units. We used 20 matching units and achieved a
speed up factor 16.88X over one matching unit.
Thus, applying the skip Brute Force (9.11X) on 20 matching units (16.88X) running on an
FPGA-based architecture (9800X) would offer 1.5MX boosting in the performance.
Obviously, the real boosting in the performance (9800X) is achieved by introducing FPGA to
the algorithm. It is neither the effect of enhancing the Brute Force algorithm, nor the effect of
applying more matching units.
Many motif finding algorithms achieves better running time on the expense of the motif
accuracy obtained. We succeeded to accelerate the motif finding problem without sacrificing
the accuracy by applying an exact algorithm; skip Brute Force.
Our work can be extended to accelerate other motif finding algorithms that have shown
better performance to solve the motif finding problem. Algorithms such as Projection [4]

www.intechopen.com

Massively Parallelized DNA Motif Search on FPGA 119

and MEME [2] proved to have high accuracy and much better running time. Introducing
these algorithms to hardware acceleration will offer more boosting to its running time.
An embedded processor can be added on the FPGA to run the algorithm on chip. This
approach will eliminate the communication overheads which is the bottleneck in most
hardware-software co-designs.
Furthermore, our approach can be applied to other biological applications. One of the most
important problems in the biological research is the tertiary structure prediction of a protein
using amino acid information. This is particularly important in the context of designer
proteins in the area of drug discovery. Graph analysis of biological networks is also
computationally intensive.

6. References

[1] Rajasekaran, S., Balla, S. and Huang, C.H.: Exact algorithm for planted motif
challenge problems, Proceedings of Asia-Pacific Bioinformatics Conference, 249–
259 (2005)

[2] Bailey, T.L., Williams, N., Misleh, C., Li, W.W.: MEME: discovering and analyzing DNA
and protein motifs. Nucleic Acid Research 34, W369–W373 (2006)

[3] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen, Predicting gene regulatory elements in
silico on a genomic scale, Genome Research 15, 1202-1215(1998)

[4] Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Biol. 9, 225–
242 (2002)

[5] Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton, J.C.:
Detecting subtle sequence signals: a Gibbs sampling strategy for multiple
alignment. Science 262, 208–214 (1993)

[6] E. Eskin and P. Pevzner, Finding composite regulatory patterns in DNA sequences,
Bioinformatics S1, 354-363(2002)

[7] Hertz, G., Stormo, G.: Identifying DNA and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics 15(7-8), 563–577 (1999)

[8] Pevzner, P., and Sze, S.-H.: Combinatorial approaches to finding subtle signals in DNA
sequences. Proc. 8th Int. Conf. Intelligent Systems for Molecular Biology, 269–
78(2000)

[9] Jan SchrOder, Lars Wienbrandt, Gerd Pfei�er, and Manfred Schimmler: Massively
Parallelized DNA Motif Search on the Reconfigurable Hardware Platform
COPACOBANA. PRIB 2008 LNBI 5265, 436-447(2008)

[10] Chen Chen, Bertil Schmidt, Liu Weiguo, and Wolfgang Müller-Wittig: GPU-MEME:
Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences. PRIB
2008 LNBI 5265, 448-459(2008)

[11] Sandve, G.K., Nedland, M., Syrstad, B., Eidsheim, L.A., Abul, O., Drablas, F.:
Accelerating motif discovery: Motif matching on parallel hardware. In: Bücher, P.,
Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 197–206. Springer,
Heidelberg (2006)

[12] Grundy, W.N., Bailey, T.L., Elkan, C.P.: ParaMEME: A parallel implementation and a
web interface for a DNA and protein motif discovery tool. Computer Applications
in the Biological Sciences (CABIOS) 12, 303–310 (1996)

[13] Terrence Mak The Future Looks Gloomy for FPGA Interconnects Technical Report
Series NCL-EECE-MSD-TR-2009-145, 2009.

www.intechopen.com

Bioinformatics – Trends and Methodologies 120

[14] Altera Inc., http://www.altera.com/
[15] Matlab Product Family. http://www.mathworks.com.

www.intechopen.com

Bioinformatics - Trends and Methodologies

Edited by Dr. Mahmood A. Mahdavi

ISBN 978-953-307-282-1

Hard cover, 722 pages

Publisher InTech

Published online 02, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Bioinformatics - Trends and Methodologies is a collection of different views on most recent topics and basic

concepts in bioinformatics. This book suits young researchers who seek basic fundamentals of bioinformatic

skills such as data mining, data integration, sequence analysis and gene expression analysis as well as

scientists who are interested in current research in computational biology and bioinformatics including next

generation sequencing, transcriptional analysis and drug design. Because of the rapid development of new

technologies in molecular biology, new bioinformatic techniques emerge accordingly to keep the pace of in

silico development of life science. This book focuses partly on such new techniques and their applications in

biomedical science. These techniques maybe useful in identification of some diseases and cellular disorders

and narrow down the number of experiments required for medical diagnostic.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yasmeen Farouk, Tarek ElDeeb and Hossam Faheem (2011). Massively Parallelized DNA Motif Search on

FPGA, Bioinformatics - Trends and Methodologies, Dr. Mahmood A. Mahdavi (Ed.), ISBN: 978-953-307-282-1,

InTech, Available from: http://www.intechopen.com/books/bioinformatics-trends-and-methodologies/massively-

parallelized-dna-motif-search-on-fpga

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

