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1. Introduction 

The skeletal and immune systems are interconnected in normal (physiologic) and pathologic 

conditions. Both systems are intimately coupled, as osteoclastogenesis and hematopoiesis 

occur in the bone marrow. Osteoclasts, macrophages, and dendritic cells also share common 

precursors. Furthermore, the skeletal and immune systems share various cytokines, 

receptors, adaptor proteins, signaling molecules, and transcription factors, thereby allowing 

crosstalk to occur between the various cells and their respective signal transduction 

pathways involved in osteoclastogenesis and hematopoiesis.  

Hematopoietic stem cells are maintained in the bone marrow. Adjacent osteoblast 

precursors produce signals that control hematopoietic stem cell replication and 

differentiation. Hematopoietic stem cells may either maintain their pluripotency or 

differentiate into multipotential progenitor cells, which have the capacity to form common 

lymphoid progenitor or common myeloid precursor cells. Common lymphoid progenitor 

cells undergo additional differentiation to form T lymphocytes, B lymphocytes, or natural 

killer cells, whereas common myeloid precursor cells form all other myeloid lineages and 

preosteoclasts. Activated osteoclasts are formed from the fusion of preosteoclasts and 

multinucleated osteoclasts, the regulation of which is complex and affected by multiple 

factors. Multipotential stem cells differentiate into chondrocytes, adipocytes, and 

mesenchyme precursors; the latter undergo differentiation to form preosteoblasts and, 

eventually, mature matrix-producing osteoblasts. Osteoblasts may remain on the bone 

surface as lining cells or undergo terminal differentiation to form osteocytes, which become 

encased in the mineralized bone matrix [1]. The shared lineages and paracrine signaling 

between osteoclasts and hematopoietic cells highlight the potential for bone-targeted agents 

to influence the immune system.  

2. Transduction signaling pathways between skeletal and immune system  

The skeletal and immune systems share various signal transduction pathways, thereby 

allowing a complex interplay to occur between bone metabolism and immunology. 

Furthermore, immune system components, such as T cells, cytokines, and chemokines, can 

exert substantial effects on osteoclastogenesis. 
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2.1 Osteoclastogenesis and immune system 

Osteoclastogenesis is primarily regulated via interactions between c-FMS and macrophage 
colony-stimulating factor, receptor activator of nuclear factor (NF)-kappaB (RANK) and 
RANK ligand (RANKL), and immunoglobulin (Ig)-like receptors and their ligands [2]. The 
role of RANK signaling in osteoclastogenesis has also been reviewed elsewhere [2-16]. Other 
key regulatory pathways are described below. 

RANK/RANKL/osteoprotegerin signaling 

Receptor activator of NF-κΒ ligand is a member of the tumor necrosis factor (TNF) cytokine 
superfamily that is expressed by osteoblasts, monocytes, neutrophils, dendritic cells, B 
lymphocytes, and T lymphocytes [3]. Secretion of RANKL by osteoclastogenesis-supporting 
cells (osteoblasts and synovial fibroblasts) occurs in response to osteoclastogenic factors 
such as 1,25-dihydroxyvitamin D3, prostaglandin E2, and parathyroid hormone [2]. T cells 
express RANKL as a type-2 membrane-bound protein and also release it in soluble form, 
although the function of the soluble form remains unknown [16]. Inflammatory cytokines, 
such as interleukin (IL)-1, IL-6, and TNF-α, also potently induce RANKL expression on 
osteoblasts and synovial fibroblasts, thereby stimulating RANKL signaling [2].  
Receptor activator of NF-κB, the RANKL receptor, shares high homology with CD40, which is 
expressed on lymphocytes and, similar to RANKL, is reported to play a role in atherosclerosis 
and coronary artery disease [17-19]. Interaction of RANK with RANKL is inhibited by 
osteoprotegerin (OPG), a soluble competitor (decoy) receptor that binds to RANKL [12, 13]. 
Receptor activator of NF-κB lacks intrinsic enzymatic activity in its intracellular domain and 
transduces signals by recruiting adaptor molecules such as the TNF-receptor–associated factor 
(TRAF) family of proteins, especially TRAF6 [4, 5, 15]. By an unknown mechanism, RANKL 
binding to RANK induces trimerization of RANK and TRAF6, leading to activation of NF-κB 
and of mitogen-activated protein kinases such as Jun N-terminal kinase and p38 [6]. Activated 
RANK can also lead to stimulation of Ig-like receptor signaling. 

Nuclear factor of activated t cells cytoplasmic (NFATc)-1 pathway 

Expression of NFATc-1, the master regulator of osteoclast differentiation, depends on 
induction of the TRAF6–NF-κB and c-FOS pathways, in addition to activation of calcium 
signaling [20]. Nuclear factor of activated T cells cytoplasmic-1 is initially induced by 
TRAF6-activated NF-κB and NFATc-2. After translocation into the nucleus, NFATc-1 
autoregulates its own expression by binding to the NFAT-binding site of its promoter, 
enabling robust induction of NFATc-1 expression [21]. Activator protein 1 and continuous 
activation of calcium signaling by calcineurin are crucial for NFATc-1 autoamplification 
[20]. Nuclear factor of activated T cells cytoplasmic-1 cooperates with other transcription 
factors, such as AP1, PU.1, microphthalmia-associated transcription factor, and cyclic AMP 
responsive-element-binding protein, to regulate various osteoclast-specific genes, including 
tartrate-resistant acid phosphatase, cathepsin K, calcitonin receptor, osteoclast-associated 
receptor, and β3-integrin [2, 20, 22-24].  

2.2 Cytokines, chemokines and osteoclastogenesis 

Immune cells produce a variety of proinflammatory cytokines that contribute to bone 
damage [25]. Tumor necrosis factor-alpha and IL-1, -3, -6, -7, -11, -15, and -17 potentiate 
bone loss by inducing RANKL expression on osteoblasts or by increasing osteoclast 
differentiation and activation. In contrast, IL-4, -5, -10, -12, -13, and -18, and interferon (IFN)-
α, -β, and -γ, inhibit osteoclastogenesis by directly or indirectly blocking RANKL signaling 
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(Table 1). Interleukin-1 stimulates TRAF6 expression, thereby potentiating the RANKL-
RANK signaling cascade and inducing mature osteoclasts to perform bone-resorbing 
activity. Interferon gamma down-regulates TRAF6 expression via proteosomal degradation,  
 

Cytokine 
Main producer 
cells 

Primary target in 
osteoclastogenesis 

Effect on 
osteoclastogenesis 

Role in 
osteoimmunology 

RANKL 
T-cells; 
Osteoblasts 

Osteoclast 
precursor cells 

Activation 
Induction of 
osteoclast 
differentiation 

TNF-α 
Macrophages; 
Th1 cells 

Osteoclast 
precursor cells; 
mesenchymal cells 

Activation 

RANKL induction on 
mesenchymal cells, 
RANKL synergy, 
inflammation 

IL-6 
Th2 cells; 
dendritic cells 

Mesenchymal cells; 
T cells 

Activation 

RANKL induction on 
mesenchymal cells, 
Th17-cell 
differentiation, 
inflammation 

IL-17 
Th17 cells; 
memory T 
cells 

Mesenchymal cells Activation 
RANKL induction on 
mesenchymal cells, 
inflammation 

IFN-γ 
Th1 cells; 
natural killer 
cells 

Osteoclast 
precursor cells 

Inhibition 
RANKL signaling 
inhibition, cellular 
immunity 

IL-4 
Th2 cells; 
natural killer T 
cells 

Osteoclast 
precursor cells 

Inhibition 
RANKL signaling 
inhibition, humoral 
immunity 

IL-10 Th2 cells 
Osteoclast 
precursor cells 

Inhibition 
RANKL signaling 
inhibition, anti-
inflammatory 

IL-12 
Macrophages; 
dendritic cells 

T cells Inhibition 

Th1-cell 

differentiation, IFN- 
and GM-CSF 
induction 

IL-18 
Macrophages; 
dendritic cells 

T cells Inhibition 
Th1-cell 

differentiation, IFN- 
induction 

GM-CSF Th1 cells 
Osteoclast 
precursor cells 

Inhibition 

RANKL signaling 
inhibition, 
granulocyte 
differentiation 

Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, 
interleukin; RANKL, receptor activator of nuclear factor-κB ligand; Th, T-helper;  
TNF, tumor necrosis factor. 

Table 1. Cytokines Involved in Osteoclastogenesis 
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resulting in termination of osteoclast formation [26, 27]. Receptor activator of NF-κB induces 
expression of IFN-β in osteoclast precursor cells, and IFN-β functions as a negative-feedback 
regulator of osteoclast differentiation by interfering with RANKL-induced c-FOS expression 
[28]. Tumor necrosis factor-alpha stimulates NF-κB activation primarily via interacting with 
TRAF2. Although TNF-α alone cannot induce osteoclastogenesis and TNF-α overexpression 
cannot rescue RANKL deficiency, TNF-α combined with transforming growth factor (TGF)-
β induces osteoclastogenesis even in the absence of RANK or TRAF6 [29-31]. These results 
suggest that TNF-α plays a pivotal role in the pathologic activation of osteoclasts associated 
with inflammation [2]. Osteoblast-mediated bone formation is also affected by various 
soluble cytokines such as TNF-α, IL-1, and IL-4 [32]. The molecular mechanisms involved in 
osteoblast regulation by the immune system and the pathologic significance of such 
regulation are less understood than in osteoclasts.  

2.3 T cells and osteoclastogenesis 

In general, activated T cells exert an inhibitory effect on osteoclastogenesis. The CD4+ T 
helper (Th) cells have traditionally been divided into 2 main subtypes—Th1 and Th2—based 
on their associated cytokine profiles. The Th1 cells mainly produce IFN-γ and IL-2, and 
mediate cellular immunity. In contrast, Th2 cells mainly produce IL-4, IL-5, and IL-10, and 
mediate humoral immunity. Although T cells express RANKL, most Th1 cytokines, as well 
as certain Th2 cytokines (eg, IL-4 and IL-10), exert an inhibitory effect on osteoclastogenesis. 
However, the Th-cell subset involved in producing IL-17 (Th17 cells) is considered to be the 
typical osteoclastogenic Th subset. The Th17 cells express RANKL at higher levels than Th1 
or Th2 cells and, as a result, may directly participate in osteoclastogenesis. In addition, Th17 
cells do not produce large amounts of IFN-γ, an inhibitor of osteoclastogenesis. 
Furthermore, Th17 cells activate local inflammation, triggering release of proinflammatory 
cytokines that potentiate RANKL expression on osteoclastogenesis-supporting cells and 
RANKL-RANK signal transduction in osteoclast precursor cells [33]. Interleukin-17, 
produced by Th17 cells, induces the synthesis of matrix-degrading enzymes, such as matrix 
metalloproteinases, that mediate bone and cartilage degradation [34]. The effects of Th17 
cells on osteoclastogenesis are balanced by regulatory T cells, which suppress osteoclast 
formation via a cytokine-dependent mechanism mediated by TGF-β, IFN-γ, IL-4, and IL-10 
[35-37]. Therefore, the effects of T cells on osteoclastogenesis depend on the balance between 
positive and negative factors expressed by these cells under pathologic conditions.  

3. Disruption of the skeletal and immune systems in cancer 

Tumorigenesis can disrupt the skeletal and immune systems. Tumor growth and metastasis 
necessitate evasion of the immune system, especially phosphoantigen-targeted gamma delta 
T cells (γδ T cells), which can detect and destroy cancer cells. Immune system components 
also play other key roles in tumor development and progression. For example, tumor-
associated macrophages (TAMs) are abundant in the bone microenvironment and influence 
multiple steps in tumor development, including growth, survival, invasion, and metastasis, 
as well as angiogenesis and lymphangiogenesis [38, 39]. During early metastasis of solid 
tumors, disseminated tumor cells (DTCs) survive in the bone marrow of patients with 
various tumor types. Cancers for which DTCs have been detected in patients who have not 
developed overt metastases include breast, colon, gastric, lung, and prostate cancers [40-46]. 
The hematopoietic niche in the bone marrow also provides a “harbor” for DTCs to survive 
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despite anticancer therapies. Whether this niche also harbors cancer cells against anticancer 
immune defenses is unknown. However, the shared signal transduction pathways among 
the bone remodeling and immune system machineries in this common microenvironment 
suggest that activation of this vicious cycle of tumor growth and osteolytic bone destruction 
could also lead to localized immunosuppression or recruitment of metastasis-supporting 
TAMs, an unfortunate juxtaposition of osteoimmunology effects. Later in the disease course, 
interactions between malignant cells and bone may result in a vicious cycle of bone 
destruction and cancer growth (the “seed and soil theory”) [47]. The effects of cancer on 
bone can result in skeletal-related events (SREs) that include pathologic fracture, spinal cord 
compression, hypercalcemia of malignancy, and the need for radiotherapy. Furthermore, 
some cancers such as myeloma can exert additional deleterious effects on bone metabolism 
via inducing osteolysis, systemic bone loss, and suppression of new bone formation 
throughout the skeleton [48, 49]. 

3.1 Osteoclastogenesis and cancer cell growth and metastases 

Osteoclast-mediated osteolysis results in release of growth factors in the bone 
microenvironment that facilitate cancer growth and metastases. Bone-derived cytokines 
provide a chemotactic stimulus for directed tumor cell migration [50]. Recent studies 
established that RANKL is a chemoattractant that increases migration and invasion of 
RANK-positive cancer cells (bone tropism) [51, 52]. In preclinical models, bone resorption 
by bone cell cultures stimulated proliferation of various tumor cell types, including breast 
cancer that possessed bone-metastasizing properties [53]. In animal models, cancer cells 
located immediately adjacent to bone surfaces had significantly greater proliferation rates 
compared with those distant from bone, suggesting a mitogenic effect within the bone 
microenvironment [54]. Furthermore, in an animal model wherein bone resorption was 
stimulated by tumor cells, the proliferation rate of metastatic cancer cells was increased in 
bone but not in other tissues [55].  

3.2 Cancer cell biology and bone resorption 

Cancer cells stimulate osteoclast-mediated osteolysis via several mechanisms. Cancer cells 
may express RANKL and RANK, up-regulate RANKL expression by other osteoimmune 
cell types, down-regulate OPG expression, and stimulate release of factors that activate 
RANKL-RANK signaling in osteoclasts [56]. Expression of RANKL has been detected in 
prostate cancer cells [57] and multiple myeloma (MM) cells [58, 59], and RANKL expression 
by MM cells correlated with the propensity to cause bone destruction [58]. Although breast 
cancer cells do not typically express RANKL [60, 61], they can up-regulate RANKL 
expression by osteoblasts [60, 61] and bone marrow stromal cells [61, 62]. Prostate cancer 
cells can up-regulate RANKL expression in osteoblasts [63], and MM cells up-regulate 
RANKL expression in bone marrow stromal cells [64], endothelial cells [65], and T cells [66]. 
Several studies also reported expression of functional RANK by breast cancer, prostate, and 
melanoma cell lines [51, 52]. Breast cancer cells and MM cells down-regulate OPG 
production by osteoblasts and bone marrow stromal cells [60, 64]. Multiple myeloma cells 
express the heparin sulfate proteoglycan, syndecan, on their surface, which sequesters and 
degrades heparin-binding proteins including OPG [67]. Notably, the RANKL-OPG balance 
is disturbed in severe osteolytic pathologies in favor of RANKL, with large quantities of 
OPG being released within the tumor microenvironment to counterbalance high RANKL 
concentrations [64, 68].  
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Bisphosphonate Cancer type 
Patients, 

N 
Reduction 

of SREs 
Reduction 

of pain 

Acute-
phase 

reaction 

Survival 
benefit 

Clodronate [70] 
Multiple 
myeloma 

350 Yes Yes No NE 

Clodronate [72] 
Multiple 
myeloma 

536 Yes Yes No +/–a 

Clodronate [74] Breast cancer 173 Yes Yes No No 

Clodronate [75] Prostate cancer 819 NR NR No Yes 

Pamidronate [76] 
Multiple 
myeloma 

392 Yes Yes Yes +/–b 

Ibandronate [77] 
Multiple 
myeloma 

198 No No +/– No 

Zoledronic acid 
[78] 

Multiple 
myeloma or 
breast cancer 

1,648 Yes Yes Yes Yes 

Zoledronic acid 
[79] 

Breast cancer 228 Yes Yes Yes NE 

Zoledronic acid 
[80] 

Lung cancer 
and other solid 
tumors 

773 Yes NE Yes No 

Zoledronic acid 
[81] 

Hormone-
refractory 
prostate cancer

122 Yes Yes Yes NE 

Denosumab [82] Breast cancer 2,046 Yes NE Yes NE 

Abbreviations: NE, not evaluated; NR, not reported; SREs, skeletal-related events. 
aIn a post hoc analysis, patients without vertebral fracture at study entry survived significantly longer 
on clodronate therapy (median survival was 23 months longer compared with patients receiving 
placebo). 
bSurvival of patients with more advanced disease was significantly increased in the pamidronate group 
(median survival of 21 vs 14 months, P = .041). 

Table 2. Efficacy of Bone-Targeted Agents in Patients With Bone Metastases 
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4. Bone-targeted therapies and immune system in cancer 

4.1 Early generation bisphosphonates 

In general, early generation bisphosphonates do not appear to activate the immune system 
against cancer cells. However, clodronate combined with IL-2 stimulated proliferation of γδ 
T cells in the absence of other cellular components in peripheral blood mononuclear cell 
(PBMC) cultures (wherein nitrogen-containing bisphosphonates have been tested), and 
clodronate-treated γδ T cells exhibited higher cytotoxic activity against neuroblastoma cells 
compared with untreated control cells [69]. There are currently no data on whether these 
effects can result in meaningful anticancer activities in in vivo models. Clodronate has 
shown efficacy in preventing SREs in patients with bone metastases from MM [70-73] and 
breast cancer [74], and was recently reported to significantly prolong survival in men with 
bone metastases from prostate cancer [75] (Table 2) [70, 72, 74-82]. Results from trials in the 
adjuvant breast cancer setting were inconsistent, and provided some evidence to suggest 
that clodronate can delay not only metastasis to bone but also to visceral sites. 

4.2 Nitrogen-containing bisphosphonates 

Nitrogen-containing bisphosphonates, such as zoledronic acid (ZOL) and pamidronate, 
cause immune system activation against cancer cells via activating γδ T cells [83, 84]. By 
blocking G-protein signaling, these agents prevent differentiation of monocytes into 
osteoclasts, inhibit osteoclast recruitment and maturation, induce osteoclast apoptosis, and 
inhibit adhesion of osteoclasts to bone [85].  
Pamidronate therapy is associated with SRE reductions in patients with bone metastases 
from MM [76]. Although there was no overall difference in survival between pamidronate- 
and placebo-treated patients, pamidronate prolonged survival among patients who had 
received more than 1 previous antimyeloma regimen (14 vs 21 months; P = .041; N = 392) 
[86]. Although evidence is limited, pamidronate has demonstrated effects on the immune 
system that may result in anticancer activity. Treatment with pamidronate induced 
expansion of γδ T cells in PBMC cultures from healthy donors, and pamidronate-activated 
γδ T cells produced immunostimulatory cytokines and exhibited specific cytotoxicity 
against lymphoma and myeloma cell lines. Furthermore, pamidronate-treated bone marrow 
cultures from patients with MM exhibited reduced plasma cell survival compared with 
untreated cultures, especially in pamidronate-treated cultures, in which activation of bone 
marrow γδ T cells was evident (14 of 24 patients) [87].  
Administration of ibandronate to patients with advanced MM failed to reduce bone 
morbidity or prolong survival [77]. Ibandronate also produced a lesser reduction in markers 
of bone resorption and disease activity, including N-telopeptide of type I collagen (NTX), IL-
6, and β2-microglobulin, compared with pamidronate [88]. However, ibandronate has 
demonstrated efficacy in the reduction of skeletal complications in other tumor types such 
as breast cancer [89]. 
Numerous studies established that zoledronic acid (ZOL) exhibits consistent efficacy in 

delaying and preventing SREs in patients with malignant bone disease from MM [78, 90, 91] 

and various solid tumors including breast [79], lung [80, 92], and prostate cancers [81]. In a 

25-month randomized trial comparing ZOL with pamidronate in patients with bone lesions 

from MM or breast cancer (N = 1,648), a 15-minute infusion of 4 mg ZOL was at least as 

effective as a 2-hour infusion of 90 mg pamidronate at reducing the risk of SRE 

complications in the overall population [78]. Similarly, treating patients with lung cancer 
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and other solid tumors with ZOL resulted in fewer patients developing SREs (ZOL 8 mg 

reduced to 4 mg = 36%, placebo = 46%; P = .023; N = 773) [80]. Administration of ZOL to 

men with hormone-refractory metastatic prostate cancer also reduced the proportion of 

patients with SREs (38% vs 49%; P = .028 vs placebo; N = 122) [81]. 

A recent study also demonstrated that ZOL may elicit anticancer effects associated with 
immune system stimulation. Zoledronic acid activated γδ T cells in vitro, and administration 
of ZOL to patients with prostate cancer resulted in the activation of γδ T cells in peripheral 
blood after the first infusion. Moreover, after the first ZOL infusion, serum prostate-specific 
antigen (PSA) levels were reduced in 3 of 11 evaluable patients, and PSA velocity was reduced 
in 5 of 10 evaluable patients [93]. These results suggest that ZOL-activated γδ T cells may be 
associated with the induction of an anticancer response in patients with prostate cancer. 
Numerous in vitro studies established that ZOL directly and indirectly inhibits multiple 
steps involved in the processes of cancer development and progression. In addition, ZOL 
stimulates cancer cell apoptosis and expansion of γδ T cells, which play an important role in 
immune surveillance against neoplasia [94]. Preclinical studies reported that ZOL elicits 
anticancer activity in various cancer types and exhibits synergy with cytotoxic agents [95-
100]. Four separate studies reported that ZOL reduced the persistence of DTCs in the bone 
marrow of patients with breast cancer [101-104]. In the clinical setting, adding ZOL to 
standard anticancer therapy improved clinical outcomes in early breast cancer. 
Administration of ZOL combined with adjuvant endocrine therapy to premenopausal 
women improved disease-free survival (hazard ratio [HR] = 0.64; P = .01) compared with 
endocrine therapy alone in the ABCSG-12 trial (N = 1,803) [105]. Similarly, ZOL plus 
neoadjuvant chemotherapy reduced residual invasive tumor size by 44% compared with 
chemotherapy in an exploratory subgroup from the AZURE trial (P = .006; n = 205) [106]. A 
multivariate analysis adjusted for potential prognostic factors in addition to neoadjuvant 
treatment group demonstrated that patients treated with ZOL plus neoadjuvant 
chemotherapy had a 2-fold greater complete pathologic response rate (breast and axilla) 
compared with patients treated with chemotherapy alone (odds ratio = 2.2; P = .1457). In the 
ZO-FAST (N = 1,065; median follow-up = 48 months; HR = 0.59; P = .0176) and Z-FAST (N = 
602; median follow-up = 61 months; P = .6283) studies in postmenopausal women receiving 
adjuvant letrozole, immediate addition of ZOL reduced disease recurrence [107, 108]. In 
contrast with ABCSG-12, which had disease-free survival as a primary endpoint, ZO-FAST 
and Z-FAST were not designed or powered to evaluate disease recurrence (primary 
endpoints were bone loss); however, these studies demonstrated that upfront 
administration of ZOL resulted in improved disease-free survival among women with 
breast cancer. Subset analyses of the phase III clinical studies revealed that ZOL significantly 
prolonged survival compared with placebo among patients with high baseline NTX levels. 
Benefits were independent of SRE prevention, and multiple anticancer mechanisms, some of 
which involved immune system activation, may have contributed [109, 110]. Additionally, 
ZOL elicited anticancer responses in patients with MM, bladder cancer, lung cancer, or 
advanced solid tumors [111-114]. The Medical Research Council (MRC) Myeloma IX trial 
demonstrated that, after median follow-up of 3.7 years, ZOL significantly improved overall 
survival (by 5.5 months; 16% reduction in risk of death; P = .0118) and progression-free 
survival (by 2 months; 12% reduction in risk of disease progression; P = .0179) versus 
clodronate in patients with newly diagnosed MM (N = 1,960 evaluable patients) [111]. The 
survival benefit associated with ZOL was maintained in analyses adjusting for the potential 
effects of SREs on survival (P = .0178 vs clodronate), again supporting anticancer 
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mechanisms for ZOL, which may involve positive effects on anticancer immune responses 
[111]. 

4.3 Anti-RANKL agents 

Denosumab is a fully human IgG2 monoclonal antibody that binds to RANKL with high 

affinity and specificity, thereby inhibiting osteoclastogenesis. The effects of denosumab on 
bone remodeling have been evaluated in patients with postmenopausal osteoporosis, 

rheumatoid arthritis, and various cancers [115-118]. Limited safety data from the advanced 
cancer setting have been released. However, results from phase III studies in bone-loss 

settings suggested that adverse immunologic effects might occur. The FREEDOM trial, a 
phase III clinical study of 7,868 healthy postmenopausal women with osteoporosis, 

demonstrated that denosumab reduced the risk of new vertebral fractures by 68% compared 
with placebo (P < .001) [117]. A number of recent studies also demonstrated that denosumab 

can prevent SREs among patients with bone metastases from breast cancer, prostate cancer, 
other solid tumors, or MM. Denosumab was superior to ZOL in delaying time to first on-

study SRE (HR = 0.82; P = .01 superiority), and time to first and subsequent on-study SREs 
(rate ratio = 0.77; P = .001) in 2,046 patients with advanced breast cancer [82], and in 

delaying time to first on-study SRE in patients with advanced castration-resistant prostate 
cancer (CRPC) (HR = 0.82; P = .008 superiority; N = 1,901) [119]. Median time to first on-

study SRE was 20.7 months for denosumab versus 17.1 months for ZOL [119]. However, a 
significantly greater proportion of denosumab-treated patients experienced increased PSA 

levels compared with ZOL-treated patients (3.8% vs 2.0%, respectively; P < .05) [119]. Based 
on these results, it is possible that RANKL inhibition may impair immunosurveillance. 

Denosumab was non-inferior to ZOL in delaying time to first SRE in 1,776 patients with 
other advanced solid tumors or MM (HR = 0.84; P = .0007) [115]. Denosumab demonstrated 

antitumor activity in a phase II trial in 37 patients with benign giant-cell tumor (GCT) of 
bone, a tumor type that overexpresses RANKL and is associated with increased osteoclastic 

activity [120]. Given the low metastatic potential of GCT, the results observed in this patient 
population may not translate to patients with malignancies wherein the pathophysiology is 

distinct from that of GCT. Anticancer activity of blocking RANKL has been recently 
described in mouse models. RANKL inhibition was acting directly on hormone-induced 

mammary epithelium at early stages in tumorigenesis, and the permissive contribution of 
progesterone to increased mammary cancer incidence was due to RANKL-dependent 

proliferative changes in the mammary epithelium [121]. Based on these data, we assume 
that denosumab may have an anticancer activity; however, this has not yet been 

demonstrated in the clinical setting. Signaling via the RANKL-RANK pathway is involved 

in B-cell and T-cell differentiation and in survival of dendritic cells. As a result, concerns 
have been raised regarding possible immunosuppression with RANKL inhibitors. Recent 

clinical studies suggest that increased infection risk may be associated with denosumab 
therapy. The incidence of skin infections requiring hospitalization (cellulitis: 0.3% vs < 0.1% 

for placebo; P = .002) and endocarditis (3 patients vs 0 for placebo) was increased among 
postmenopausal women with osteoporosis who received denosumab therapy (FREEDOM) 

[115, 117]. A meta-analysis of 10,329 patients with osteopenia or osteoporosis also reported 
an increased risk of serious infections (odds ratio = 4.54 for denosumab vs placebo; P = .03) 

[122]. Serious infections were reported in 2.3% of denosumab-treated patients with early 
stage breast cancer compared with 0.8% of placebo-treated patients (P = not reported [NR]; 
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N = 249; HALT-BC trial) [123]. Similarly, serious infections occurred at a higher incidence 
among denosumab-treated patients with androgen-dependent prostate cancer (5.9% vs 4.6% 

for placebo; P = NR; N = 1,468; HALT-PC trial) [124]. Urinary-tract infections also occurred 
more frequently among denosumab-treated patients with prostate cancer-related bone 

metastases (15% vs 6% for bisphosphonates; P = NR; N = 49) [125]. 
Denosumab is specific for human and certain nonhuman primate RANKL, and fails to 
inactivate rodent RANKL. Consequently, no carcinogenicity studies have been performed 
with denosumab because of the absence of an appropriate animal model. However, safety 
analyses from clinical trials of denosumab to prevent bone loss in patients receiving 
hormone-ablation therapy (HALT) for early stage breast or prostate cancer suggest that the 
potential for cancer progression may be increased with denosumab therapy. Among 1,456 
patients with androgen-dependent prostate cancer in HALT-PC, 8.2% (n = 60) of 
denosumab-treated patients and 5.5% (n = 40) of placebo-treated patients experienced 
metastatic events (P = NR) [115]. Similarly, metastatic events were reported in 7% (n = 9) of 
denosumab-treated patients compared with 4.2% (n = 5) of placebo-treated patients with 
breast cancer in HALT-BC (P = NR; N = 249) [115]. Indeed, given the significantly increased 
rates of PSA progression in patients with CRPC and the significantly reduced survival in 
patients with MM treated with denosumab versus ZOL in the phase III clinical trials 
program (HR = 2.26) [126], further investigations on the potential effects of RANKL 
inhibition on cancer immunosurveillance and response are warranted. 

5. Conclusions 

The skeletal and immune systems have a complex relationship under normal (physiologic) 
and pathologic conditions. The RANKL-RANK-OPG signal transduction pathway plays a 
key role in regulating osteoclastogenesis. However, the effects of RANKL signaling are not 
limited to the skeletal system; RANKL is also expressed in other regulatory systems 
including the immune, cardiovascular, endocrine, and nervous systems. Expression of 
RANKL in the immune system regulates antigen-specific T-cell and B-cell responses, as well 
as the ability of T cells to interact with dendritic cells. Furthermore, RANKL directly affects 
the survival of antigen-presenting dendritic cells, which help other cells in the immune 
system to recognize and destroy abnormal cells and foreign antigens. Because of the 
systemic nature of RANKL expression, RANKL inhibition to prevent bone destruction may 
result in unintended consequences outside of the bone, including immune suppression with 
resulting possible increases in risk of infection or new malignancies. The long-term safety 
profiles of agents targeting this pathway are not yet known.  
Currently available therapies designed to reduce pathologic osteolysis may also result in 
modulation of the immune system. Nitrogen-containing bisphosphonates such as ZOL exert 
beneficial effects on the immune system, resulting in activation of anticancer responses, as 
demonstrated in several clinical studies in various malignancies. Careful consideration 
should be paid to the shared pathways in bone immunology to maximize beneficial and 
minimize potentially negative effects in the clinical setting. 
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