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1. Introduction 

Corrosion of steel reinforcement has been identified as a key factor of deterioration and 
structural deficiency (Masoudi et al., 2011) in reinforced concrete (RC) structural members. 
The corrosion state of current RC bridges and high-rise buildings has been a source of 
concern to designers and engineers. In addition, such structures have been invulnerable to 
harsh environmental exposures, with little or no maintenance. Furthermore, such structures 
are experiencing larger amount of loads than their original capacities due to the increase 
number of users over the years (Bisby, 2003).  Several different solutions were proposed to 
retrofit deteriorated structural members (Masoudi et al., 2011; Hawelih et al., 2011; Al-
Tamimi et al., 2011) by replacing cracked concrete, using epoxy injected supplements, and 
FRP externally bonded systems.   
The use of embedded FRP bar reinforcement seems to be a promising solution (Masoudi et 
al., 2011; Bisby, 2003; Abbasi & Hogg, 2005; Abbasi & Hogg, 2006; Qu et al., 2009; Aiello & 
Ombres, 2002) to strengthen structural RC members in flexure and shear. Compared to the 
conventional reinforcing steel bars, the FRP bars seem to have a high strength to weight 
ratio, moderate modulus of elasticity and resistance to chemical and electrical corrosion. 
Although FRP materials were shown to have a brittle failure, due to their natural 
composition, still if designed properly they can show considerable amount of ductility 
(Rasheed et al, 2010; De Lorenzis & Teng, 2007). One of the draw backs of using FRP 
embedded bars is their low glass temperature and tendency to change state; from solid to 
liquid at elevated temperatures. Hence, the performance of FRP reinforced structural 
members under elevated temperatures draws many doubts and concerns and warrants 
further investigation. Few experimental tests have been conducted in the previous years on 
the fire performance of RC beams reinforced with FRP bars due to the high costs of such 
tests, tremendous amount of preparation, and shortage of specialized facilities (Franssen et 
al., 2009).  
Sadek et al. (Sadek et al., 2006) conducted a full scale experimental program on the fire 
resistance of RC beams reinforced with steel and Glass Fibre Reinforced Polymer (GFRP) 
bars. The test matrix composed of different reinforcing rebars used along with different 
concrete compressive strengths. The testing took place in a special testing facility and the 
beams were loaded statically at 60% of their ultimate load capacity during the course of the 
fire test. The tests followed the ASTM E119 (ASTM E119, 2002) standard and fire curve. 
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Because of forming of flexure and shear cracks, fire was able to penetrate through the cross-
section of the tested beams. The beams with low and normal strength concrete achieved a 30 
and 45min fire endurance, respectively. On the other hand, the steel reinforced concrete 
beam achieved 90min fire endurance. The short fire endurance observed was mainly due to 
the small concrete cover used to protect the flexural reinforcements. 
Abbasi and Hogg (Abbasi & Hogg, 2006) conducted two full scale fire tests on RC beams 
reinforced with GFRP bars as the main reinforcement having a concrete cover of 75mm. The 
beams were fully loaded up to 40kN and subjected to the ISO 834 (ISO, 1975) fire standard 
curve. Eurocode 2 (Eurocode, 1992) and ACI-440 (ACI, 2008) procedures were used to 
design the beams. The beam reinforced with the steel stirrups achieved a 128min fire 
endurance while the beam reinforced with GFRP stirrups achieved a 94min fire endurance. 
Both RC beams limited the mid-span deflection to less than L/20; the deflection limit used 
in the load bearing capacity of BS 476: Part 20. In addition, the RC beams showed that they 
can pass the building regulations for fire safety by withstanding the fire test more than 90 
min.  
Hawileh et al. (Hawileh et al., 2009, 2011) developed FE models that predicted the 
performance of RC beams strengthened with insulated carbon CFRP plates subjected to 
bottom and top fire loading. The models predicted with reasonable accuracy the experimental 
results of Williams et al. (Williams et al., 2008). It was concluded the developed models can 
serve as a valid alternative tool to expensive experimental testing especially in design oriented 
parametric studies, to capture the response of such beams when subjected to thermal 
loading.  
Different building codes recommend conducting further experimental and analytical 
research studies to investigate the thermal effect on RC members strengthened or reinforced 
with FRP sheets, plates or bars. Such studies would lead to a reduction on the tough 
restrictions and requirements set by the current codes of practice on the use of FRP materials 
in building and other types of structures. In addition, such studies would draw a better 
understanding on the behavior of FRP materials under fire actions that would enhance the 
available documentation and literature that in turn would encourage designers and engineers 
to use FRP bars more frequently to reinforce RC structural members.  
This chapter aims to develop a 3D nonlinear FE model that can accurately predict the 
temperature distribution at any location with RC beams reinforced with GFRP bars when 
exposed to the standard fire curve, ISO 834. The model is validated by comparing the 
predicted average temperature in the GFRP bars with the measured experimental data 
obtained by Abbasi and Hogg (Abbasi & Hogg, 2006). The developed FE model incorporates 
the different thermal nonlinear temperature dependant material properties associated with 
each material including density, specific heat, and thermal conductivity. Transient thermal 
analysis was carried out using the available FE code, ANSYS (ANSYS, 2007). The results of 
the developed FE model showed a good matching with the experimental results at all stages 
of fire loading.  Several other observations and conclusion were drawn based on the results 
of the developed model.  

2. Heat transfer equations 

Heat transfers via the following three methods: Conduction, Convection, and Radiation. They 
can occur together or individually depending on the heat source exposure and environment. 
Conduction transfers heat within the RC beam by movement or vibrations of free electrons 
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and atoms. On the other hand, convection transfers the heat from the source to the RC beam 
via cycles of heating and cooling of the surrounding fluids. Radiation is the transfer of heat 
by electromagnetic waves. The basic one dimensional steady state governing equations for 
conduction, convection and radiation are presented in Eq. 1-3, respectively.  

 kq k dT dx′′ =  (1) 

 hq h T′′ = Δ  (2) 

 4
r t eq TΦε σ′′ =  (3) 

where, 

kq′′  is the heat flux due to conduction 

hq′′  is the heat flux due to convection 

rq′′  is the heat flux due to radiation 

ρ  is the density 
c is the specific heat 
k is the conductivity 
h is the convective heat transfer coefficient in (W/m2K), typical vale is 25W/m2K 
∆T is the temperature difference between the solid surface and fluid in (°C or K) 
Φ is a configuration or view factor depends on the area (A) of the emitting surface and 
distance (r) to the receiving surface.  (Φ = A/πr2) 
εt is the emissivity factor, ranged from 0-1.0 
σ is the Stefan-Boltzmann constant taken as (5.67×10-8 W/m2K4) 
Te is the absolute temperature of the emitting surface (K) 
Furthermore, the three dimensional transient governing heat transfer equation as a function 
of time is given by Eq. 4. Equation 4 is derived from the Law of Conservation of Energy 
which states that the total inflow of heat in a unit time across a certain body must be equal 
to the total outflow per unit time for the same body. It should be noted that Eq. 4 can be 
solved giving both initial and boundary conditions on a division or all the boundary of the 
body in question (domain). The initial conditions define the temperature distribution over 
the domain at the initiation of the heat transfer (i.e. at t = 0). The initial and boundary 
conditions can be given by Eqs. 5 and 6, respectively: 

 
2 2 2

2 2 2

T T T T
c k k k S

t x y z
ρ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

 (4) 

 ( ) ( )0, , ,0 , , ,0T x y z T x y z=  (5) 

 ( ) ( )c S f r S f

T
k h T T h T T

u

∂
− = − + −

∂
 (6) 

where, 
S is the internally generated heat on unit volume per unit time; T is the temperature gradient 
t is time; u is the direction of heat; hc is the heat transfer coefficient of solid surface 
TS is the temperature of solid surface; Tf is the temperature of fluid; hr is the radiation heat 
transfer coefficient given by Eq. 7 

www.intechopen.com



 
Convection and Conduction Heat Transfer 

 

302 

 ( )( )2 2

S fr S S fh T T T Tσε= + +  (7) 

where, 

Sε  is the emissivity of the surface in question  

σ  is the Stefan-Boltzmann constant 5.669 × 10–8 W/m2K4 (0.1714× 10–8 BTU/hr ft2 R4) 

3. Experimental program 

The experimental program of Abbasi and Hogg (Abbasi & Hogg, 2006) is used as a benchmark 

in this study to validate the accuracy of the developed model. The experimental program 

(Abbasi & Hogg, 2006) consisted of three RC beams reinforced with GFRP bars. The RC 

beams were casted using marine siliceous gravel coarse aggregates. Figure 1 shows the 

cross-section detailing of the tested RC beams. The beams had a height and width of 400 mm 

and 350 mm, respectively and effective depth of 325 mm. The concrete cover from the beam’s 

soffit to the GFRP flexural reinforcement was 75 mm.  The total length of the beam specimens 

was 4400 mm having an exposed span length of 4250 mm. The beams were reinforced with 

nine Φ12.7 mm (Area= 1303.6mm2) GFRP bars, seven were placed in two layers at the 

tension side and two serving as compression reinforcement. In addition, Φ9 mm stirrups 

were used as shear reinforcements spaced at 160mm center to center. The concrete 

compressive strength was 42MPa. The first beam specimen was tested under monotonic 

loading at ambient temperature conditions to serve as a control beam. The other two beams 

were tested under sustained static and transient fire loading defined according to ISO 834. 

 

b = 350mm

h = 400mm

d = 325mm

9mm
stirrups

50mm

50mm12.7mm
main rebars

concrete
 

Fig. 1. Details of the tested RC beams (Abbasi & Hogg, 2006) 
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The fire testing was conducted at the building research establishment (Abbasi & Hogg, 
2006). The internal dimensions of the furnace were 4000mm wide, 4000mm long and 
2000mm deep. Each side of the furnace contained 10 burners lined in parallel to each other. 
The top side of the furnace is closed with either the test specimen, or lined with steel cover 
slabs. On the other hand, the furnace is lined with 1400 grade insulating brick to comply 
with British Standard and ISO 834 requirements.  

4. Finite element model development 

The developed FE model has the same geometry, material properties, and loading as the 
tested GFRP-RC beam by (Abbasi & Hogg, 2006). The FE model was developed and 
simulated using the commercial FE code, ANSYS 11.0 (ANSYS, 2007). Figure 2 shows a 
detailed view of the developed FE model. To take advantage of the symmetrical nature of 
the geometry, material properties and heat transfer actions, only one-quarter of the RC beam 
was modeled. The development of a one-quarter model will still yields the same accuracy as 
the full scale model and saves a lot of computational time. 
In order to simulate such complex behavior, an analytical procedure must be determined. 
Firstly, the different material properties and corresponding constitutive laws were collected 
from the open literature. Then, the development of the geometry and simulation enviroment 
was conducted using ANSYS (ANSYS, 2007) were different element types, meshing and 
simulation techniques were incorporated to simulate the concrete and reinforcing GFRP 
bars elements. Finally, a 3D transient thermal analysis is conducted to simulate the applied 
ISO 834 fire curve. 
 

 

GFRP rebars 

Concrete  

Symmetry Axis no. 2  

Symmetry Axis no. 1  

 

(a) Isoperimetric view 
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Symmetry Axis no. 2  

 

(b) Side view 

 

 

Symmetry Axis no. 2  

GFRP Bars 

 

(c) Cross-sectional view 

Fig. 2. Developed FE model  

Different element types were selected from the ANSYS element type selection library. The 

thermal elements implemented to model the concrete material and reinforcing GFRP rebars 

were SOLID70 and LINK33, respectively. SOLID70 has eight nodes with a single degree of 

freedom at each node, defined as temperature as well as 3-D thermal conduction capability. 

SOLID70 has 2×2×2 integration scheme for both conductivity and specific heat matrices. On 

the other hand, GFRP rebars were modeled using LINK33. LINK33 is a thermal uniaxial 

element with the ability to conduct heat between its two nodes. The element has a single 

degree of freedom SDF, temperature, at each node. In addition, both elements are applicable 

to conduct 3-D, steady-state and/or transient thermal analysis (ANSYS, 2007). Figure 3 

shows the different element types used in this study. 
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Fig. 3. 3-D Thermal elements (ANSYS, 2007) 

4.1 Material constitutive models 

The thermal material properties are required as inputs to the developed FE model. Table 1 
tabulates the thermal properties for the concrete and GFRP bars materials used in this study 
at room temperatures. Figure 4 shows the thermal concrete material temperature-dependent 
material properties including the conductivity and normalized density and specific heat. 
 

Material Ko (W/mm K) Co (J/kg K) ρ (kg/mm3) 

Concrete 2.7×10-3 722.8 2.32×10-6 
GFRP 4.0×10-5 1310 1.60×10-6 

Table 1. Thermal material properties at ambient room temperature 

where,  
Ko is the thermal conductivity (W/mm K) 
Co is the heat capacity (J/kg K) 

ρ is the density (kg/mm3) 
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Fig. 4. Thermal temperature-dependent material properties of concrete material 

Few limited studies were conducted on the mechanical temperature-dependant properties 
of GFRP bars (Abbasi & Hogg, 2005). Abbasi and Hogg (Abbasi & Hogg, 2005) 
recommended empirical equations to predict the mechanical properties (stiffness, tensile 
strength, etc.) as a function of increasing temperature. To the top of the author’s knowledge, 
there is no available data in the open literature on the thermal material-dependant 
properties of GFRP bars. Thus, the thermal material properties of the GFRP bars at ambient 
room temperature are used in this study.  
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Fig. 5. The applied ISO 834 fire curve 

 

Fig. 6. Location of applied nodal temperatures 

Exposed surfaces to the 
applied fire loading 
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4.2 Loading & boundary conditions 

The developed FE model was exposed to thermal transient temperature-time curve, ISO834 

(ISO, 1975). The applied ISO 834 fire curve is shown in Fig. 5. The ISO 834 curve was applied 

as nodal temperature loading versus time at the soffit and vertical sides of the RC beam 

specimen. The locations of the applied nodal transient temperatures are shown in Fig 6.  

It must be noted that the applied nodal temperatures in the transient analysis domain 

started at 200mm away from the edge of the RC beam to simulate the furnace boundary 

conditions. 

Since the fire nozzles in the furnace are very close to the tested RC beams, the author 

applied the average furnace temperature directly to the soffit and sides of the developed FE 

model (Hawileh et al., 2009, 2011). Thus, heat is transferred mainly by conduction in the 

developed model. This approach resulted in good matching with the temperature results 

recorded in the experimental program by Abbasi and Hogg (Abbasi & Hogg, 2006) and will 

be discussed in the subsequent section.  

The average furnace temperature was applied in terms of small time incremental steps. Each 

time step is composed of several smaller sub-steps that are solved using Newton-Raphson’s 

technique. In this study, automatic time stepping option is turned on to predict and control 

time step sizes. At the end of each time (temperature) step, convergence is achieved by 

Newton-Raphson equilibrium iterations when the temperature difference at each node from 

each iteration to another is less than one degree. 

 

 

Fig. 7. Comparison between measured and predicted average temperature in the GFRP bars 

4.3 Failure criteria 

The failure criterion adopted in this study was based upon reaching a critical temperature in 

the GFRP bars. There has been a lot of debate on defining a critical temperature for FRP 
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bars. In this study, a critical temperature of 462°C in the GFRP is defined as the failure 

criteria. Thus, the time to failure (fire endurance) of the RC beam specimen is defined when 

the temperature in the GFRP bars reached 462°C during fire exposure. The same criteria is 

used in the experimental program of Abbasi and Hogg (Abbasi & Hogg, 2006). 

5. Results and discussions 

5.1 Model validation 

The predicted FE and experimental results were compared in order to validate the accuracy 

of the developed model presented in this study. Figure 7 shows a comparison between the 

predicted and measured average temperature of the GFRP bars during the course of fire 

loading. The predicted average temperature in the GFRP bars is obtained every 0.5 second 

time increment. It is clear from Fig. 7 that there is a good correlation between the predicted 

and measured results throughout the entire thermal fire exposure. It should be noted from 

Fig. 7 that the predicted average temperature results overestimates the temperature after 25 

minutes of fire exposure. This slight deviation could be related to the lack of temperature-

dependant material properties of the GFRP bars. The tested RC beam failed approximately 

after 128min of fire exposure, when the average temperature in the GFRP bars reached 

462°C. Similarly, the predicted time to failure is 130 minutes. The percentage difference 

between the FE model and experimental testing time to failure was 1.5%. Thus, the developed 

model could serve as a valid numerical tool to predict the temperature distribution of RC 

beams strengthened with GFRP bars when exposed to transient thermal loading. 

5.2 Model behavior 

The experimental programs are restricted to limited number of instrumentations 

(thermocouples and strain gauges) due to their high cost and complex preparation. On the 

contrary, full fields of temperature distribution at any location (node) within the beam could 

predicted from the FE simulation of the validated model. Having a viable FE model, further 

results can be extracted and used. For instance, Fig. 8 shows the temperature evolution 

across the beam's cross section at different time periods of fire exposure. Figure 8 could be 

used to determine the nodal temperature at any point (node) within the beam especially at 

the GFRP bar reinforcement. As expected, the temperature evolution starts at the edges, 

then propagate within the beam. It seems that the available concrete cover is sufficient to 

delay the increase of temperature at the GFRP reinforcement level up to 130min. Figure 9 

shows the temperature distribution along the RC beam specimen at the end of fire. The FE 

simulation can thus provide a wide range of results and the developed model could be used 

as an alternative to the expensive experimental testing. 

The experimental program lacked data on the increase of temperature in the individual 

GFRP bars during the fire exposure. However, the FE model can predict the increase of 

temperature at any specific location and time. Figures 10 and 11 shows the location of the 

GFRP bars and temperature evolution in the individual bars at mid-span during fire 

exposure. It is clear from Fig. 11 that the temperature rise in GFRP Bar 2 is the highest. This 

is due to the application of the fire curve to the soffit and vertical side of the RC beam 

specimen. Being located at the corner, Bar 2 thus has the shortest distance to the exposed 

surfaces. Although Bars 1 and 3 seem to have the same perpendicular distance from the 

exposed edge, the increase in temperature of Bar 1 seems to be slightly lower than that of 
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Bar 3. This could be related to the small bar spacing Bar 2 and Bar 4 that would increase of 

temperature in the closely spaced GFRP bars. Furthermore, upon comparing the increase of 

temperature in Bars 3 and 4, Bar 3 seems to experience higher temperatures because it is 

closer to the exposed faces than that of Bar 4. Figure 12 shows the temperature distribution 

along the GFRP bars after 130min of fire exposure. Figure 12 also shows that the edge GFRP 

bar (Bar 2) experienced the highest increase of temperature during fire exposure.  

6. Summary and conclusions 

A nonlinear 3D FE model was developed in this study and validated against the 

experimental program conducted by Abbasi and Hogg (Abbasi & Hogg, 2006). Good 

agreement between the measured experimental and predicted FE simulation was obtained 

for the average temperature in the GFRP bars at all stages of fire exposure. Although the UK 

Building Regulations (Building Regulations, 2000) for fire safety recommends the minimum 

periods of the fire resistance for the most structural elements to be of 90 min, the fire tests 

and FE simulation results showed that concrete beams reinforced with GFRP bars can 

achieve a fire endurance of about 130 minutes. Thus, using GFRP bars as concrete 

reinforcement seems to meet the fire design requirements.. Upon the validation of the 

measured data, the FE modeling could provide full field of results, in terms of 3D 

temperature distribution. It could be concluded that the developed FE model is a great tool 

to aid designers and researchers to predict numerically the temperature distribution of RC 

beams reinforced with GFRP bars. Thus, the validated model could be used as a valid tool in 

lieu of experimental testing especially in design oriented parametric studies. Furthermore, 

the developed and verified FE model in this study could be used as a tool for further 

investigation of the fire performance of RC beams reinforced with GFRP bars under 

different applied fire curves and boundary conditions. 

 

          

         30min                       60min                      90min                     120min                   130min 

 
25.529 142.248 258.967 375.686 492.405 609.124 725.843 842.562 959.281 

         

Fig. 8. Temperature evolutions at different time of fire exposures 
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115.56 222.22 328.88 435.54 542.2 648.86 755.52 862.18 968.84 

         

Fig. 9. Temperature distribution at the end of thermal loading  
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Fig. 10. Location of GFRP bars within Beam’s cross-section 
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Fig. 11. Predicted temperature evolution in the GFRP bars 

 

 

 
271.79 306.395 341 375.605 410.21 444.815 479.42 514.024 548.629 

         

Fig. 12. Temperature distribution along the GFRP bars after 130min of fire exposure 

7. Future research 

• Experimental studies on the temperature-dependent thermal properties of GFRP bars 
are warranted. 
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• Extend the current analysis into a 3D nonlinear thermal-stress analysis that can capture 
the response of RC beams reinforced with GFRP reinforcement. 

• Conduct several parametric studies on the developed model to investigate the 
temperature distribution under different applied fire exposure curves. 

• Investigate the temperature distribution when the beams get exposed to different fire 
local exposures.  
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issues in a design of wide range of industrial processes and devices. This book includes 18 advanced and

revised contributions, and it covers mainly (1) heat convection, (2) heat conduction, and (3) heat transfer

analysis. The first section introduces mixed convection studies on inclined channels, double diffusive coupling,

and on lid driven trapezoidal cavity, forced natural convection through a roof, convection on non-isothermal jet

oscillations, unsteady pulsed flow, and hydromagnetic flow with thermal radiation. The second section covers

heat conduction in capillary porous bodies and in structures made of functionally graded materials, integral

transforms for heat conduction problems, non-linear radiative-conductive heat transfer, thermal conductivity of

gas diffusion layers and multi-component natural systems, thermal behavior of the ink, primer and paint,

heating in biothermal systems, and RBF finite difference approach in heat conduction. The third section

includes heat transfer analysis of reinforced concrete beam, modeling of heat transfer and phase

transformations, boundary conditions-surface heat flux and temperature, simulation of phase change

materials, and finite element methods of factorial design. The advanced idea and information described here

will be fruitful for the readers to find a sustainable solution in an industrialized society.
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